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In this work, we formulate a model describing the growth of a pest population with sea-
sonal diapause at the larval stage. The model includes the insect resistance to chemical
treatments and their adaptation against a hostile environment. It consists on the descrip-
tion of three classes: the immature stage that includes eggs, larvae and pupae, and two
mature stages corresponding to the vulnerable adult stage and the insecticide resistant
adult stage. The main result consists in an analytical approach for the existence of a non-
negative periodic solution. The proof uses comparison results and Kamke’s Theorem for
cooperative systems. As an important illustration, a threshold type result on the global
dynamics of the pest population is given in terms of an index R. When R 6 1, the trivial
solution is globally asymptotically stable. When R > 1, the positive periodic solution is
globally asymptotically stable. Numerical simulations confirm the analytical results.
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1. Introduction

With global warming, the risk of contamination of vineyards by the European Grapevine Moth is
increasing day by day in the world, and particularly in the Mediterranean basin, see [1]. This pest
should be considered as a potential dangerous pest on a worldwide scale. Damages are caused during
the larval stage. Thus, some research have been conducted to study the behavior and the life cycle of
the insect Lobesia–Botrana (see [2–9]), and the references therein. The acquisition of this knowledge
gradually allowed the construction of mathematical models able to describe with varying precision
degrees the evolution in time and space of the insect densities, see also [2, 3, 6], and the references
therein. The integrated pest management programs usually includes chemical, and biological controls
that acts at different stages of the pest. The most used one is based on the dispersion of pheromones
to act on the mating disruption, see [10, 11].

Chemical control has been extensively used to reduce the proliferation of the pest population,
however, in some areas, the insect has developed resistance to different classes of chemical insecticides,
see for instance [5]. This resistance represents a major obstacle to the sustainability of pest control.
Understanding insect resistance is particularly important when the treatment needs to use larger
quantities, or new and more expensive pesticides to effectively control pest populations.

The insect develops a mechanism of resistance under the form of a genetic mutation which de-
stroys the ingested pesticides. This mutation disrupts the hormonal functioning of the insect, and the
individuals enter an early diapause, or delays their emergence in the adult phase.

However, only a few studies have investigated the phenomenon of Lobesia–Botrana diapause which
is still not very well understood. This latter is a strategy adopted by the insect to survive in the harsh
environmental conditions. Among other causes that induce insect diapause, we cite the photoperiod
(short day and long night), and the gradual drop in temperature. In general, diapause consists of 03
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phases, the first is called normal growth or pre-diapause, it consists of storing energy in the form of
reserves to maintain the metabolism. In the second phase, development is slowed down or interrupted,
this period is called diapause. The last stage corresponds to the awakening or activation of devel-
opment, it is called post-diapause, see [4]. In [12] a model is investigated to analyze the impact of
insecticides control on mosquitoes without diapause. In [13], the authors consider the following scalar
delay differential equation

x′(t) = −dx(t) + f(1 − α) ρ x(t− τ) + αρx(t− 2τ), (1)

with a proportion constant α with which the population undergoes a diapause, f is a function. They
establish global continuation of a branch of periodic solutions through the Hopf bifurcation analysis.

In [14], the authors consider the diapause as an independent growth process. An important property
of the proposed model is that the rate of change of the population may jump instantaneously. In [14],
the dynamics of seasonal mosquito population when juveniles enter into diapause is given by the
following model: let L(t), and F1 be respectively the density of the immature and mature population.
During the normal period





dL

dt
= b(F1(t)) − b(F1(t− τ))e−µLτ − µLL,

dF1

dt
= b(F1(t− τ))e−µLτ − µF1F1,

(2)

during the diapause period,
{

dL

dt
= −µLL,

F1 decreases to zero continuously,
(3)

during the post-diapause period,




dL

dt
= b(F1(t)) − b(F1(t− τ − τd))e

−uLτ−µLτd − µLL,

dF1

dt
= b(F1(t− τ − τd))e

−µLτ−µLτd − µF1F1.
(4)

The second term in the normal period represents the maturation of the immature born at previous
time (t− τ). The diapause duration is assumed to be τd.

The intraspecific competition among immatures is ignored during the normal period. As it is
mentioned in [14], one feasible way to incorporate competition is to add a density dependent term,
which gives difficult theoretical analysis of the system (2)–(4).

Understanding the impact of insecticides and the behavior of the pest is challenging. To respond
to this challenge, we propose a model that includes (a) diapause in the larval stage, (b) resistance of
adults to insecticides, and (c) adaptation of the new generation against hostile environment. To account
for (d) intraspecific competition in the larval stage, the model has been developed by introducing a
quadratic nonlinear term. The study of the model is achieved by an alternative approach, namely the
theory of monotone systems which is adapted for systems structured on three periods with continuous
transition. We need to ensure for system (5)–(7) that the transition does not lead to a jump in the
wrong direction. Note that important contributions have been made on monotone dynamical systems
in [15–17] to cite a few.

We present our model in Section 2. With the help of preliminaries of Section 3, we establish the
main results in Section 4. The global dynamics is analyzed in Section 5. We illustrate the analytical
results with numerical solutions in Section 6. Concluding remarks are given in Section 7.

2. Model description

During her lifetime, the female can lag more than 300 eggs. Eggs remain until natural death or emerge
into larvae, after seven to eleven days in the spring, but only three to five days in the summer.
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After a few days, larvae die by natural death or evolves into pupae. Individuals stay approximately
seven days before emerging into adult.

The first adults emerge in April or May, and those of later generation in August or September.
The insect makes 3 or 4 generations per year depending on the climate, for example in Spain, Italy,

and Greece, the insect can produce up to 4 generations. Between, August and September, the larvae
feed inside the berries, hence the last generations causes enormous damage, see [8]. We divide the
population into two classes, juvenile and adult individuals. The juveniles stage includes all pre-adult
stages like eggs, larvae, and pupae. We suppose that once an adult emerges from the larvae stage, it
is exposed to insecticides.

Let F1(t) be the density of females at time t, that are vulnerable to insecticides, and let F2(t) be
the density of resistant females at time t. Let L(t) be the density of juveniles at time t. Each year,
the population spend three periods, the normal period of length T1, the diapause period of length τ ,
and the post-diapause period from T2 = T1 + τ to 1, where 1 denotes one year.

a) The normal period (0 6 t 6 T1). Before the diapause period, the population evolves with a
logistic law during the time interval (0, T1),





dL

dt
= λ1F1 + λ2F2 − rL− µLL− cL2,

dF1

dt
= ρrL− µF1F1 − δF1,

dF2

dt
= (1 − ρ)rL− µF2F2,

(5)

where λ1 is the birth rate of the vulnerable females, λ2 denotes the birth rate of resistant females.
The juvenile competition rate is given by the parameter c. The rate at which juveniles develop into
adults is given by r. The parameter µL represents the juveniles mortality, and µF1 , µF2 are respectively
the mortality rate of vulnerable and resistant females. The parameter, 1 − ρ is the mutation rate to
resistant insect. The term−δF1 represents the mortality induced by insecticides.

b) The diapause period (T1 6 t 6 T2). During the diapause period, all individuals stop growing
in an adverse environment. In this case, the dynamics of the population is described by





dL

dt
= −µLL,

dF1

dt
= −µdF1,

dF2

dt
= −µdF2.

(6)

The adults disappear, hence, we assume that the mortality rates µd, is very high. The length of the
diapause period is τ = T2 − T1 > 0.

c) The post-diapause period (T2 6 t 6 1). In this period, juveniles survive through the diapause
and emerge into adults. The model is given by the system





dL

dt
= λ1F1 + λ2F2 − rL− µLL− cL2,

dF1

dt
= γ1L(t− τ) − µF1F1 − δF1,

dF2

dt
= γ2L(t− τ) − µF2F2,

(7)

where γ1 is the rate of vulnerable females coming from larvae with diapause. Note that γ2 represents
the rate that a larvae emerges to a resistant adult. At the pupae stage some individuals adapt their
abilities against hostile environment.

We shall describe a solution of the problem (5)–(7). Let u(t, u0) be a solution of system (5)–(7).
The trajectory of the solution u(t, u0) starts at the point (0, u0), where
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u0 = (L(0), F1(0), F2(0)) ,

and moves along the solution of problem (5) until the moment t = T1. At the time t = T1, it continues
along the solution of system (6) with initial point

(T1, u(T1, u0))

till the moment t = T2. At the time t = T2, the trajectory moves along the solution of system 7 with
initial conditions

(ϕ(t), F1(T2), F2(T2)) ,
where

ϕ(t) = L(t), T2 − τ 6 t 6 T2

is the history segment in the diapause period.
Taking into account the seasonal effects, the system (5)–(7) are considered respectively in the

periods [n, T1 + n], [T1 + n, T2 + n], and [T2 + n, 1 + n], where n is the n-th year.

One year
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Fig. 1. Diagram describing the life cycle of Lobesia-Botrana over one year.

Remark 1. For clarity, in the previous diagram, we only consider the most important biological
traits for each stage.

3. Preliminaries

In this section, we establish some preliminary results on ODEs systems of cooperative type. Let
a, b ∈ Rn.

Definition 1. We write a 6 b, if b − a ∈ Rn+ = Rn+ = {x ∈ Rn : x > 0} . We write a < b, if b − a ∈
Rn+\{0}. We write a≪ b, if b− a ∈ Int

(
Rn+
)
.

The n-dimensional interval is defined by [a, b] = {x ∈ Rn : a 6 x 6 b} .
Let D ⊂ Rn be an open domain. Consider the system of ODE’s

{
x′(t) = f(x(t)), x ∈ D, t > 0,
x(t0) = x0.

(8)

We denote by x(t, x0), a solution of (8). If f : D → Rn is differentiable on a convex D, then the
system (8) is said to be cooperative if the Jacobian matrix df

dx is a Metzler matrix, for x ∈ D, and
t > 0, i.e. its diagonal entries are nonnegative.

Assume that f is C1, and there exists b > 0, such that f(b) 6 0, with f(0) = 0. Suppose the
system (8) is cooperative, then

Lemma 1. For any x0 ∈ [0, b], the system (8) has a solution x(t, x0) satisfying x(0, x0) = x0, and
x(t, x0) ∈ [0, b], for all t > 0.

Proof. Since f is C1, Cauchy–Lipchitz theorem implies that (8) has an unique solution x(t, x0) defined
on a maximal interval of existence [0, Tmax[. Since the system is cooperative, then Kamke’s theorem,
(see [15]) implies that the solution is monotone with respect to initial values, i.e. if a 6 b, then

Mathematical Modeling and Computing, Vol. 10, No. 1, pp. 212–225 (2023)



216 Ainseba B., Bouguima S. M., Kada K. A.

x(t, a) 6 x(t, b) for t > 0.

Hence for 0 6 x0 6 b, we obtain that

0 = x(t, 0) 6 x(t, x0) 6 x(t, b).

From proposition 3.2.1 in [15], it follows that the solution t→ x(t, b) is nonincreasing. We deduce that

0 = x(t, 0) 6 x(t, x0) 6 x(t, b) 6 x(0, b) = b. �

Now we consider the delayed system
{
x′(t) = f(x(t), x(t− τ)), x ∈ Rn, t > 0,
x(t) = ϕ(t), −τ 6 t 6 0,

(9)

where f : Rn×Rn → Rn is C1, and the initial condition ϕ ∈ C ([−τ, 0];Rn), for some τ > 0. The order
relation on C ([−τ, 0];Rn) is induced by the positive cone

{ϕ ∈ C ([−τ, 0];Rn) : ϕ > 0} .
For ϕ ∈ C ([−τ, 0];Rn), we denote by x(t, ϕ) a solution of (9). We define ϕ̂ ∈ C (R;Rn) by the

relation ϕ̂(t) = ϕ(t), for all t ∈ [−τ, 0].
The system (9) is cooperative if f(x, y) satisfies

∂fi
∂xj

> 0 for all i 6= j, and
∂fi
∂yl

> 0 for all i, l.

Assume that f is C1, and there exists b > 0, such that f(b, b) 6 0, with f(0, 0) = 0. Suppose the
system (9) is cooperative, then

Lemma 2. For any ϕ ∈ C ([−τ, 0];Rn), such that 0̂ 6 ϕ̂ 6 b̂, the system (9) has a solution x(t, ϕ),
with 0 6 x(t, ϕ̂) 6 b̂ for all t > 0.

Proof. Since f is C1, then (9) has a local solution defined on a maximal interval of existence [0, Tmax[,
see [18]. Since the system is cooperative, Th. 1.1 in [15] implies that

0 = x(t, 0̂) 6 x(t, ϕ̂) 6 x(t, b̂) for all t > 0.

Corollary 2.2 in [15] implies that the map

t→ x(t, b̂)
is nonincreasing. We deduce that

0 6 x(t, ϕ̂) 6 x(t, b̂) 6 x(0, b̂) = b̂ for all t > 0. �

Let U = [0, b], b ∈ Rn+, and b≫ 0, or U = Rn+.
Let f : U → U be a continuous map.

Definition 2. f is said to be
i) monotone on U if x1 > x2 ⇒ f(x1) > f(x2);
ii) strongly monotone if x1 > x2 ⇒ f(x1) ≫ f(x2);
iii) subhomogeneous if f(λx) > λf(x), ∀λ ∈ [0, 1], ∀x ∈ U .
iv) strictly subhomogeneous if f(λx) > λf(x), ∀λ ∈ (0, 1), x ∈ U , with x≫ 0.

4. Main results

Definition 3. A function u is called a solution to system (5)–(7) if i) u is absolutely continuous with
respect to Lebesgue measure, ii) u satisfies (5)–(7), whenever u is differentiable.

We assume that T1 + 2τ < 1.

Remark 2. We will need this assumption when we consider step method for delayed equations.

Theorem 1. For any u0 ∈ R3
+, there exists b ∈ R3

+, such that the system (5)–(7) has a unique
solution u(t, u0) satisfying u(0, u0) = u0, and u(t, u0) ∈ [0, b], for all t > 0.
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Proof. First, we assume n = 0. Assume that the initial value

u0 = (L(0), F1(0), F2(0)) > 0.

Let Lm be a positive number large enough such that

Lm >
1

c

{
λ1ρ r

µF1 + δ
+
λ2(1 − ρ)r

µF2

− r − µL

}
,

and

Fm1 >
ρ rLm

µF1 + δ
, Fm2 >

(1 − ρ)rLm

µF2

.

Let
bm = (Lm, Fm1 , F

m
2 ) .

If f(L,F1, F2) denotes the right hand side of (5 it is clear that

f(bm) < 0.

Hence Lemma 1 implies that system (5) admits a solution u(t, u0) that satisfies

0 6 u(t, u0) 6 bm for 0 6 t 6 T1.

In the diapause period, the system (6) has a solution that satisfies

L(t) = L(T1)e−µL(t−T1),

F1(t) = F1(T1)e−µF1
(t−T1),

F2(t) = F2(T1)e−µF2
(t−T1),

where the initial value at time t = T1 satisfy

(L(T1), F1(T1), F2(T1)) = u(t, T1) 6 bm.

Hence
0 6 u(t, u0) 6 bm for T1 6 t 6 T2.

Let g(x(t), x(t − τ)) denotes the righ hand side of system (7). We choose bl such that

bl =
(
Ll, F l1, F

l
2

)
,

where

Ll >
1

c

{
λ1ρr

µF1 + δ
+
λ2(1 − ρ)r

µF2

− r − µL

}
,

F l1 >
(ρr + γ1)Ll

µF1 + δ
, F l2 >

((1 − ρ)r + γ2)L
l

µF2

.

This gives that
g
(
bl, bl

)
< 0.

Note that
F l1 > Fm1 , F l2 > Fm2 ,

and
u(T2, u0) 6 bm 6 bl.

Lemma 2 implies that system (7) has a solution such that

0 6 u(t, u0) 6 bl for T2 6 t 6 1,

where the initial value u0 = (ϕ,F1(T2), F2(T2)) and

ϕ(t) = L(t) for T2 − τ 6 t 6 T2.

The same arguments hold for the case n > 1. We conclude that system (5)–(7) has a continuous
solution satisfying

0 6 u(t, u0) 6 b = bl for all t > 0. �
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Let φt(u0) be the semiflow generated by the system (5)–(7), that is φt(u0) is the solution u(t, u0)
of system (5)–(7) satisfying u(0, u0) = u0, then we obtain the following lemma.

Lemma 3. i) φ0(u0) = u0. ii) φt+1(u0) = φt(φ1(u0)), for all t > 0. iii) The map u0 → φt(u0) is
continuous on R3 for every t > 0.

Proof. Due to the lack of a specific reference, we give a proof in the appendix B. �

Lemma 4. The semiflow φt(u0) is strictly monotone with respect to u0.

Proof. Let
u0 < v0.

Without loss of generality, assume that

L(t, u0) < L(t, v0).

If there exists τ > 0 such that
φτ (u0) = φτ (v0),

then, in the normal period, the function L of the system (5) satisfies an equation of the form

dL

dt
= a(t) − rL− µLL− cL2,

with a(t) = λ1F1(t) + λ2F2(t). By uniqueness of the solution, we deduce that

L(t, u0) = L(t, v0), ∀t > 0,

but this contradicts the hypothesis L(t, u0) < L(t, v0). Hence the flow is strictly monotone, it follows
that

φt(u0) = (L(t, u0), F1(t, u0), F2(t, u0)) < (L(t, v0), F1(t, v0), F2(t, v0)) = φt(v0) for 0 6 t 6 T1.

In the diapause period, it is clear from the expression of the solutions that

L(t, u0) = L(T1, u0)e−µL(t−T1) < L(T1, v0)e−µL(t−T1),

F1(t, u0) = F1(T1, u0)e−µL(t−T1) < F1(T1, v0)e−µL(t−T1),

F2(t, u0) = F2(T1, u0)e−µL(t−T1) < F2(T1, v0)e−µL(t−T1).

In the post-diapause period, system (7) becomes an ODE on the interval [T2, T2 + τ ],




dL

dt
= λ1F1 + λ2F2 − rL− µLL− cL2,

dF1

dt
= γ1L(T1, u0)e−µL(t−τ−T1) − µF1F1 − δF1,

dF2

dt
= γ2L(T1, u0)e−µL(t−τ−T1) − µF2F2.

On the interval [T2, T2 + τ ], the solution F1(t, u0) is given by

F1(t, u0) = e−(δ+µF1
)(t−T2)γ1L(T1, u0)e

−µL(t−τ1−T1) +

∫ t

T2

e−(δ+µF1
)(s−T2)γ1L(T1, u0)e−µL(s−τ−T1)ds.

This gives that

F1(t, u0) < e−(δ+µF1
)(t−T2)γ1L(T1, v0)e

−µL(t−τ1−T1)

+

∫ t

T2

e−(δ+µF1
)(s−T2)γ1L(T1, v0)e−µL(s−τ1−T1)ds = F1(t, v0).

Similarly, we obtain that
F2(t, u0) < F2(t, v0).

Hence
dL(t, u0)

dt
< λ1F1(t, v0) + λ2F2(t, v0) − rL(t, u0) − µLL(t, u0) − cL2(t, u0).
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By comparison principle, see appendix B, we obtain that

L(t, u0) < L(t, v0).

By a similar method, we extend the comparison to the interval [T2, 1], and step by step, the inequalities
will be established on [n, n+ 1], ∀n ∈ N . �

Lemma 5. The flow φt(u0) is strictly sub-homogeneous.

Proof. Let u0 ≫ 0. Then by the previous lemma, φt(u0) ≫ 0. Let λ ∈ (0, 1), and h1(u) be the right
hand side of system (5), then h1 is strictly sub-homogeneous. Let v(t) = λu(t, u0), where u(t, u0) is a
solution of system (5)–(7) satisfying u(0, u0) = u0. Let w(t) = u(t, λu0) be a solution of system (5)–(7)
satisfying w(0) = λu0. Then,

dv

dt
= λ

du

dt
= λh1(u) < h1(λu) = h1(v).

This implies that
dv

dt
− h1(v) < 0 =

dw

dt
− h1(w).

By comparison principle, see [19], we obtain that

v = (λL(t, u0, λF1(t, u0), λF2(t, u0)) 6 w = (L(t, λu0), F1(t, λu0), F2(t, λu0)) .

If v = w, then we will have
dv

dt
− h1(v) = 0 < 0 =

dw

dt
− h1(w),

and this constitutes a contradiction. It follows that v < w. As in the diapause period, the system is
linear, we obtain that

v 6 w.

In the post-diapause period, since the system (7) is cooperative, Kamke’s theorem for delayed equations,
(see [15]) implies that v 6 w. Hence

φ1 (λu0) > λφ1 (u0) . �

Theorem 2. For any u0 ∈ R3
+, there exists a nonnegative 1-periodic solution u∗(t) of system (5)–(7).

Proof. Consider the Poincaré operator

P : R3
+ → R3

+,

u0 → φ1(u0).

Then P is continuous, maps [0, b] into itself, P ([0, b]) has compact closure in R3, strongly monotone,
and sub-homogeneous. By Theorem 2.1 in [20], and Theorem 3.2 in [21] we will have that for any
u0 ∈ R3

+, there exists a nonnegative point e = e(u0) such that

lim
m→+∞

Pm(u0) = e.

Since P is continuous,

P (e) = P
(

lim
m→+∞

Pm(u0)
)

= lim
m→+∞

Pm+1(u0) = e,

and u∗(t) = u(t, e) is a 1-periodic solution of system (5)–(7). �
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5. Global dynamics of the pest population

It is clear that (0, 0, 0) is an equilibrium for the system (5)–(7). The linearized system at (0, 0, 0)
becomes on (0, T1),





dL

dt
= λ1F1 + λ2F2 − rL− µLL,

dF1

dt
= ρrL− µF1F1 − δF1,

dF2

dt
= (1 − ρ)rL− µF2F2,

(10)

on (T1, T2),




dL

dt
= −µLL,

dF1

dt
= −µdF1,

dF2

dt
= −µdF2,

(11)

and on (T2, 1),




dL

dt
= λ1F1 + λ2F2 − rL− µLL,

dF1

dt
= γ1L(t− τ) − µF1F1 − δF1,

dF2

dt
= γ2L(t− τ) − µF2F2.

(12)

Let P (t) be the solution of the linearized system (10)–(12). Let R be the spectral radius of
the Poincaré map P (1), then we have the threshold type result on the global dynamics of the pest
population.

Theorem 3. The following statements hold for system (5)–(7).
i) if R 6 1, then 0 is globally asymptotically stable in R3

+.
ii) if R > 1, then there exists a unique positive 1-periodic solution u∗(t) which is globally asymptotically
stable in R3

+\{0}.

Proof. Suppose that the derivative Dφ1 exists at (0, 0, 0). Let r(Dφ1(0)) be the spectral radius of the
operator Dφ1(0), then r(Dφ1(0)) = R, and Theorem 2.3 in [22] gives
i) if r(Dφ1(0)) 6 1, then 0 is globally asymptotically stable for system (5)–(7) in R3

+.
ii) if r(Dφ1(0)) > 1, then there exists a unique positive 1-periodic solution u∗(t) for system (5)–(7),
which is globally asymptotically stable in R3

+\{0}. �

6. Numerical simulations

In this section, we illustrate our theoretical results with numerical simulations. The population param-
eters are summarized in Table 1. We discuss the biological meaning of some figures. All parameters
are positive, and measured per day, except the time of the diapause, which is given in months.

Remark 3. Figures 3 and 5 show that the vulnerable females die out and the resistant females very
rapidly take over.
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Table 1. Parameters of the model (5)–(7).

Parameter Definition Values Source
λ1 birth rate of vulnerable 0.02 − 4.5 [1, 2]
λ2 birth rate of resistant 0.02 − 4.5 [1, 2]
r rate at which juvenils develop into adult 0.01 − 0.8 [1, 2]
c juvenile competition rate 0 − 0.02 given
µL juvenile mortality rate 0.1 − 0.85 [2]
µF1

vulnerable mortality rate 0.1 − 0.87 [2]
µF2

resistant mortality rate 0.1 − 0.87 [2]
(1 − ρ) the ratio of mutation to resistant moth 0 − 1 given
γ1 rate of vunerables coming from larvae with diapause 0.1 − 0.9 [2]
γ2 rate of resistants coming from larvae with diapause 0.1 − 0.9 [2]
δ insect mortality induced by insecticides [0, 0.5] [12]
τ diapause duration 4 − 8 [4]
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Fig. 2. Pest population abundance for the parameters λ1 = 4.5, λ2 = 4.5, r = 0.8, µL = 0.4, c = 0.00001,
ρ = 0.5, µF1

= 0.02, δ = 0.4, µF2
= 0.02, µd = 2.81, γ1 = 0.05, γ2 = 0.8, τ = 4.8. This figure shows that the

population persists and the solution tends to an oscillatory solution.
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Fig. 3. Phase portrait corresponding to the persistence case.
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Fig. 4. Pest population abundance for the parameters λ1 = 1, λ2 = 1, r = 0.8, µL = 0.4, c = 0.00001, ρ = 0.5,
µF1

= 0.02, δ = 0.4, µF2
= 0.02, µd = 2.81, γ1 = 0.05, γ2 = 0.8, τ = 4.8. This figure shows that the population

goes to extinction.
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Fig. 5. Phase portrait corresponding to the extinction case.

7. Concluding remarks

To control the pest, modern vineyards rely mainly on insecticides. This causes insecticide resistance.
Despite the dramatic impact of resistance to insecticides and diapause on Agriculture, few works are
devoted to them. To better understand these traits, we have discussed a structured model with two
life stages, juveniles and reproducing adults.

The life cycle of the population is divided in three periods: pre-diapause, diapause, and post-
diapause stage. The overlapping generations is described by delay differential equations. The com-
petition term in the model may be explained by non-native individuals colonizing new habitats. The
model (5)–(7) is not autonomous. We present a systematic study using monotone systems theory. The
present study provides insights on the possibility of estimating for a given date and stage the density
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of individuals. The dynamics is described in terms of an index R obtained by the spectral radius of the
Poincaré operator of the linearized problem around the extinction equilibrium. Numerical simulations
confirm the obtained theoretical results.

Although the model is reasonably simplified, it can be modified to take into account other stages,
such as the equation of eggs, and pupae. Hence, the method used can be adapted to cover a wide set
of systems provided they are quasi-monotone in each period.

It is clear from the monotony of the flow that the quantity of larvae which undergoes diapause
contributes favorably in the persistence of the pest. If diapause is long, few larvae survive the next
season. Unfortunately, with global warming, the diapause is getting shorter and, this means that the
pest becomes more persistent.

The model contains several biological factors, in the absence of an explicit expression of the index
R, we could not study analytically the sensitivity of R with respect to the various parameters, and it
is very interesting to numerically study the sensitivity with respect to each parameter.

From Figures 2–5, we see the influence of parameters λ1, λ2 on population dynamics. The study
allows us to conclude that an efficient way to control the pest is to reduce the birth rates. An adequate
technique is to combine the sterile male approach, see [23] with insecticides. Knowledge of the spatial
distribution is important for developing efficient control of the pest. We did not consider spatial
structure, and this will be the subject of the next step. To facilitate the analysis we have supposed
that the diapause duration is constant. This duration may vary according to individuals and exposure
to insecticides. This aspect can make the model difficult to analyze.

Appendix A

Comparison principle, see [24].

Theorem 4. Suppose u(t) and v(t) are continuous in the interval [a, b] of the real line R, and differ-
entiable on (a, b], f is a continuous mapping from R×R to R, and

u(a) < v(a),
du

dt
− f(t, u) <

dv

dt
− f(t, v) on (a, b].

Then u < v on (a, b].

Appendix B: Proof of Lemma 3

Proof. i) is trivial.
ii) Note that φt+1(u0) is the solution v(t) of system (5)–(7) satisfying v(0) = φ1(u0). Let w(t) =

φt(φ1(u0)), then v(t), and w(t) are solutions of the same system (5)–(7) verifying the same initial value

v(0) = w(0) = φ1(u0).

By uniqueness, we obtain that u = v.
iii) Using ideas as in [25], let

φt =
(
φ1t , φ

2
t , φ

3
t

)
,

be the semi-flow corresponding to system (5)–(7). By the continuity of the semiflow on post-diapause
period, see [18] we obtain that for any ε > 0, there exists δ1 > 0, such that

sup
T2−τ6s6T2

{∥∥φ1s(u0) − φ1s (u∗0)
∥∥ ,
∥∥φ2T2(u0) − φ2T2 (u∗0)

∥∥ ,
∥∥φ3T2(u0) − φ3T2 (u∗0)

∥∥} < δ1

⇒ ‖φt(u0) − φt (u∗0)‖ < ε, T2 6 t 6 1.

Similarly, from the continuity property of the semi-flow in diapause period, we have that there exists
δ2 > 0, such that

‖φT1(u0) − φT1(u∗0)‖ < δ2 ⇒ ‖φt(u0) − φt (u∗0)‖ < δ1, T1 6 t 6 T2.
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In a similar manner, from continuity property of the semi-flow in the normal period, we have there
exists δ3 > 0, such that

‖u0 − u∗0‖ < δ3 ⇒ ‖φt(u0) − φt (u∗0)‖ < δ2, 0 6 t 6 T1.

It follows that ‖u0 − u∗0‖ < δ3 ⇒ ‖φt(u0) − φt (u∗0)‖ < ε, T2 6 t 6 1.

Similarly, from continuity property of the semi-flow is diapause period, for any ε > 0, there exists
ρ1 > 0, such that

‖φT1(u0) − φT1 (u∗0)‖ < ρ1 ⇒ ‖φt(u0) − φt (u∗0)‖ < ε, T1 6 t 6 T2,

and from continuity property of the semi-flow in the normal period, we obtain that there exists ρ2 > 0,
such that

‖u0 − u∗0‖ < ρ2 ⇒ ‖φt(u0) − φt (u∗0)‖ < ρ1, 0 6 t 6 T1.

It follows that
‖u0 − u∗0‖ < ρ2 ⇒ ‖φt(u0) − φt (u∗0)‖ < ε, T1 6 t 6 T2.

The continuity of the semi-flow in the normal period implies that there exists η1 > 0 such that

‖u0 − u∗0‖ < η1 ⇒ ‖φt(u0) − φt (u∗0)‖ < ε, 0 6 t 6 T1.

We conclude that for any ε > 0, there exits δ = min(η1, ρ1, δ3) > 0, such that

‖u0 − u∗0‖ < δ ⇒ ‖φt(u0) − φt (u∗0)‖ < ε, 0 6 t 6 1. �
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Моделювання адаптивної поведiнки популяцiї шкiдникiв
сiльського господарства

Айнсеба Б.1, Бугiма С. М.2, Када К. А.2

1Унiверситет Бордо, IMB, UMR CNRS, 5251, Таланс, Францiя
2Лабораторiя: Динамiчнi системи та застосування,
Факультет природничих наук, кафедра математики,

Унiверситет Тлемсена, Алжир

У цiй роботi формулюється модель, що описує рiст популяцiї шкiдника зi сезонною
дiапаузою на стадiї личинки. Модель включає стiйкiсть комах до хiмiчних обробок
та їх адаптацiю до агресивного середовища. Вона складається з опису трьох класiв:
незрiлої стадiї, яка включає яйця, личинки та лялечки, i двох зрiлих стадiй, що вiдпо-
вiдають уразливiй дорослiй стадiї та стiйкiй до iнсектицидiв дорослiй стадiї. Основ-
ний результат полягає в аналiтичному пiдходi до iснування невiд’ємного перiодичного
розв’язку. Доведення використовує результати порiвняння та теорему Камке для ко-
оперативних систем. Як важливу iлюстрацiю, наведено результат порогового типу
щодо глобальної динамiки популяцiї шкiдникiв у термiнах iндексу R. Якщо R 6 1,
то тривiальний розв’язок є глобально асимптотично стабiльним. Якщо R > 1, то
додатний перiодичний розв’язок є глобально асимптотично стiйким. Чисельне моде-
лювання пiдтверджує аналiтичнi результати.

Ключовi слова: сезонна дiапауза; стiйкiсть до iнсектицидiв; монотоннi системи;
глобальне притягування; чисельне моделювання.
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