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In this article, we propose a PEARM mathematical model to depict the dynamic of a
population that reacts in the spread of the gaming disorder with media coverage. The
basic reproduction number and existence of free equilibrium point and endimec equilibrium
point are obtained with same fundamental properties of the model including existence and
positivity as well as boundedness of equilibria are investigated. By using Routh–Hurwitz
criteria, the local stability of free equilibrium point and endimec equilibrium point are
obtained. Also, we propose an optimal strategy to implement the optimal campaigns
through directing children and adolescents to educational and entertaining alternative
means, and creating centers to restore the rehabilitation of addicts to electronic games.
The existence of the optimal control are obtained by Pontryagain’s maximum principle.
Finally, some numerical simulations are also performed to illustrate the theoretical analysis
of our results, using Matlab software. Our results show that media coverage is an effective
measure to quit electronic gaming disorder.
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1. Introduction

In recent years, research on computer and internet gaming has increased considerably [1,2]. However,
the latest (fifth) edition of the Diagnostic and Statistical Manual of Mental Disorders (DSM-5 American
Psychiatric Association, 2013) [3] has reclassified “gaming disorder” as an addictive one. As a result,
people with Internet Gaming Disorder have difficulty controlling or reducing the amount of time they
spend gaming and may experience negative consequences, including loss of control, deception, and
conflict with family members. The problem of addiction to electronic games has been classified as
a major problem that can lead to the destruction of public health. The World Health Organization
has officially classified (International Classification of Diseases ICD-11; WHO, 2018) continuing to
play video or electronic games as an addiction leading to mania and has announced that people with
this mania have certain characteristics, such as the inability to stop gaming on winning. According
to the organization, a person is classified as having this disease if their addictive behaviour persists
for 12 months. However, the diagnosis can be confirmed in a shorter period of time if it is certain
that all symptoms are present, the warning about the severity of electronic gaming addiction is not
new, but the formal classification of this addiction as a pathological obsession with the World Health
Organization can be a major impetus to raise awareness of this disease and take serious action in
families and societies to counter it [4].

Since the emergence and spread of electronic games, research has been conducted to study and
understand the effect of electronic games on children’s behaviour and health, for example, we men-
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tion Jeanne B. Funk et al. (2002) [5], correlations were examined between the preference for violent
electronic gaming and adolescents’ self-perception of emotional behaviours and feelings. In 2007,
L. Rowell Huesmann [6], the impact of media violence was compared to other known threats to soci-
ety in order to estimate the importance of the threat to consider. Tom Baranowski et al. (2012) [7],
this article explains the basic characteristics of a group of different technological methods; It shows
the strengths and weaknesses of each of them in meeting the needs of children of all ages. Leon
Straker et al. (2014) [8], proposes a model for factors affecting children’s interaction with electronic
games and discusses available guidelines and their role in the wise use of electronic games by children.
These guidelines provide an accessible combination of available knowledge and practical evidence-based
guidelines for electronic game and related research. Duven E. C. et al. (2015) [9], diagnostic specificity
to distinguish between gaming addiction and high engagement. Tindele Sosso et al. (2020) [10], this
study was conducted in 2 low-income countries (Rwanda, Gabon), 6 lower-middle income countries
(Cameroon, Nigeria, Morocco, Tunisia, Senegal, Cote d’Ivoire) and 1 upper-middle income country
(South Africa). The nine countries selected in this study were included because their citizens have
better access to gaming devices, they were ranked among the top 20 most developed African countries
in terms of technology use, internet connectivity, and the use of gaming machines.

Mathematical modelling is one of the most necessary functions that contribute to the representation
and simulation of ecological, social, economic phenomena and Epidemics [11–14], and convert them
into mathematical equations formulated, studied, analysed, and interpreted their results. Kada Driss
et al. [15], discussed the spread of addiction to electronic games phenomenon and proposed a discrete
mathematical model with control strategies to limit the spread of gaming addiction. Guo and Li [16],
establish a new online game addiction model with low- and high-risk exposure and use the optimal
control theory to study the optimal solution problem with three kinds of control measures (isolation,
education, and treatment). Kada et al. [17], proposed a mathematical model that describes the dynamic
of a population that reacts in the spread of the E-game infection and study the stability of endemic
equilibrium point of gaming disorder. Zeyang Wang et al. [18], considers and describes the class of
cooperative differential games with non-transferable utilities and the process of construction of the
optimal Pareto strategy with continuous updating. Many studies and research in the social sciences
have focused on this subject [19–24].

The media is today one of the most important means of spreading the addiction to electronic games,
and on the other hand, it can be relied upon to effectively reduce this spread. According to several
studies, the media play an important role in the spread of certain phenomena. Hai-Feng Huo et al. [25],
proposed a new social epidemic model to depict alcoholism with media coverage. Samanta et al. [26],
built a mathematical model to study the impact of awareness programs by media on the emergence of
infectious diseases. Liu and Cui [27], set up a model to investigate the impact of media coverage and
controlling of infectious disease in a given region.

In this work, the stability analysis of the model that they proposed to show that the system is
locally asymptotically stable at free equilibrium point when R0 < 1 and the endemic equilibrium
point exists and the system becomes locally asymptotically stable when R0 > 1. Also, we propose an
optimal control strategy to implement the optimal campaigns through prevent the potential gamers
from contacting with the engaged gamers and addicted gamers, for example, the media coverage and
programs of directing children and adolescents to educational alternative means, and creating centers
to restore the rehabilitation of addicts to electronic games. The aim is to reduce the number of the
engaged gamers and addicted gamers. Pontryagin’s maximum principle is used to characterize the
optimal controls and the optimality system is solved by an iterative method.

The paper is organized as follows. In Section 2, we propose a more realistic PEARM mathematical
model with media coverage. Motivated by Hai-Feng Huo et al. [25], and Wang et al. [28], we use
saturation function (Holling type-II) to reflect the influence of media on the gaming disorder. In
Section 3, we give some basic properties of the model. In Section 4, we analyse the local stability of
equilibrium points of the model investigated by using Routh-Hurwitz criteria. In Section 5, we present
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the optimal control problem for the proposed model and we characterize these optimal controls using
Pontryagin’s maximum principle. Some numerical simulations through Matlab software are presented.
Finally, we conclude the paper in Section 6.

2. A mathematical model

2.1. Description of the model

In our model the total population is divided into four compartments, Potential gamers (P) represent
children and youth who are vulnerable to infection or who are more likely to become addicted to
electronic games. Engaged gamers (E) represent children and youth interested in electronic games and
plays more than four hours a day. Addicted gamers (A) represent children and youth who are addicted
to electronic games and who suffer from gaming disorders and who have no control over their gaming
habits, prioritize gaming over other interests and activities, and continue to game despite its negative
consequences. And recovered gamers (R) represent children and youth recovering from their addiction
to electronic games. It is supposed that the cumulative density of potential gamers and recovered
gamers driven by media coverage at time t is M(t).

The total population of individuals, N(t) at time t is given as,

N(t) = P (t) +E(t) +A(t) +R(t).

2.2. Model equations

P E A R

M

Fig. 1. Transfer diagram for gaming disorder
model with media coverage.

The population flow among those
compartments is shown in Figure 1.
The mathematical representation
of the gaming disorder model con-
sists of nonlinear differential equa-
tions using the rate at which pa-
tients change in each compartment
during separate times. Therefore,
we present the model with the fol-
lowing system of differential equa-
tions with five state variables.





dP (t)

dt
= Λ − µP (t) − (β1E(t) + β2A(t))

(
1 − M(t)

K0 +M(t)

)
P (t),

dE(t)

dt
= (β1E(t) + β2A(t))

(
1 − M(t)

K0 +M(t)

)
P (t) − µE(t)

− α1

(
1 − M(t)

K1 +M(t)

)
E(t) − α2

M(t)

K2 +M(t)
E(t),

dA(t)

dt
= α1

(
1 − M(t)

K1 +M(t)

)
E(t) − (µ+ α3)A(t),

dR(t)

dt
= α3A(t) + α2

M(t)

K2 +M(t)
E(t) − µR(t),

dM(t)

dt
= m1E(t) +m2A(t) − γM(t),

(1)

where P (0) > 0, E(0) > 0, A(0) > 0, R(0) > 0 and M(0) > 0 are given initial states.
Λ is the recruitment rate of potential gamers who are more likely to become addicted to electronic

games, µ is the rate of people who are older than the age limit set for people concerned with the study.
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β1 is the rate of patients who become engaged gamers because of the negative contact with the other
engaged gamers, β2 is the rate of patients who become engaged gamers because of the negative contact
with the addicted gamers. α1 is the rate of the engaged gamers who have become addicted gamers,
α2 is the rate of the engaged gamers who have become the recovered gamers, α3 is the rate of the
addicted gamers who have become the recovered gamers. Large numbers of media coverage causes less
interaction between potential, engaged and addicted populations to electronic games, a mathematical
form of this assumption follows the Holling type-II functional form with half-saturating constants K0,
K1 and K2 (see [25, 27]). The half-saturation constants reflects the impact of media coverage on
transmission. m1 and m2 are the implementation rates of media coverage, γ is the depletion rate of
cumulative density of media coverage due to ineffectiveness, social problems and similar factors.

3. The model analysis basic properties

3.1. Positivity of the model solutions

Theorem 1. If P (0) > 0, E(0) > 0, A(0) > 0, R(0) > 0 and M(0) > 0 then solutions P (t), E(t),
A(t), R(t) and M(t) of system (1) are positive for all t > 0.

Proof.
dP (t)

dt
= Λ − µP (t) − (β1E(t) + β2A(t))

(
1 − M(t)

K0 +M(t)

)
P (t)

> −µP (t) − (β1E(t) + β2A(t))

(
1 − M(t)

K0 +M(t)

)
P (t).

Then
dP (t)

dt
+ F (t)P (t) > 0,

where

F (t) = µ+ (β1E(t) + β2A(t))

(
1 − M(t)

K0 +M(t)

)
.

The both sides in the last inequality are multiplied by exp(
∫ t
0 F (s)ds).

We obtain

exp

(∫ t

0
F (s)ds

)
dP (t)

dt
+ F (t) exp

(∫ t

0
F (s)ds

)
P (t) > 0,

then
d

dt

(
exp

(∫ t

0
F (s)ds

)
P (t)

)
> 0

integrating this inequality from 0 to t gives:

P (t) > P (0) exp

(
−
∫ t

0

(
µ+ (β1E(t) + β2A(t))

(
1 − M(t)

K0 +M(t)

))
ds

)
.

So, the solution P (t) is positive.
For the positivity of E(t), A(t), R(t) and M(t) we have: if the conclusion dose not satisfy, then at

least one of E(t), A(t), R(t), M(t) is not positive. Thus, we have one of the following four cases.

(1) There exists a first time t1 such that E(t1) = 0, dE(t1)
dt < 0, A(t) > 0, R(t) > 0, M(t) > 0

at 0 6 t 6 t1.
(2) There exists a first time t2 such that A(t2) = 0, dA(t2)dt < 0, E(t) > 0, R(t) > 0, M(t) > 0

at 0 6 t 6 t2.
(3) There exists a first time t3 such that R(t3) = 0, dR(t3)dt < 0, A(t) > 0, E(t) > 0, M(t) > 0

at 0 6 t 6 t3.
(4) There exists a first time t4 such that M(t4) = 0, dM(t4)

dt 〈0, A(t)〉0, E(t)〉0, R(t)〉0 at
0 6 t 6 t4.
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In cases (1), we have dE(t1)
dt = (β2A)(1 − M

K0+M
)P > 0, which is contradiction to dE(t1)

dt < 0.

In cases (2), we have dA(t2)
dt = α1(1 − M

K1+M
)E > 0, which is contradiction to dA(t2)

dt < 0.

In cases (3), we have dR(t3)
dt = α3A+ α2( M

K2+M
)E > 0, which is contradiction to dR(t3)

dt < 0.

In cases (4), we have dM(t4)
dt = m1E +m2A > 0, which is contradiction to dM(t4)

dt < 0.
Thus, the solutions P (t), E(t), A(t), R(t), M(t) of system (1) are positive for all t > 0. �

3.2. Invariant region

It is necessary to prove that all solutions of system (1) with positive initial data will remain positive
for all times t. we obtained the invariant region, in which the model solution is bounded. This will be
established by the following lemma.

Lemma 1. The set defined by

Ω =

{
(P,E,A,R,M) ∈ R5

+; 0 6 P + E +A+R 6
Λ

µ
; 0 6M 6

Λ(m1 +m2)

µγ

}

with initial condition P (0) > 0, E(0) > 0, A(0) > 0, R(0) > 0 and M(0) > 0 are positive invariants
for system (1).

Proof. Using the fact N(t) = P (t) +E(t) +A(t) +R(t), the system (1) reduced to following system:




dN

dt
= Λ − µN,

dM

dt
= m1E +m2A− γM

(2)

implies that N(t) = N0e
−µt + Λ

µ , where N0 = P (0) +E(0) +A(0) +R(0) thus 0 6 lim sup
t−→+∞

N(t) = Λ
µ . �

Furthermore, we have dM
dt = m1E + m2A − γM 6

(m1+m2)Λ
µ − γM it follows that 0 6 M(t) 6

M0e
−γt + (m1+m2)Λ

γµ thus 0 6 lim sup
t−→+∞

M(t) 6 (m1+m2)Λ
γµ .

Then all possible solutions of the system (1) enter the region Ω. It implies that Ω is a positively
invariant set for the system (1). Hence, it is sufficient to study the dynamics of the basic model in Ω.

4. Stability analysis of the model parameters

In this section, we will study the stability behavior of system (1) at an Disease Free Equilibrium
point and an Endemic Equilibrium point. The first three equations and last equation in system (1)
are independent of the variable R. Hence, the dynamics of equation system (1) is equivalent to the
dynamics of the following equation system:





dP (t)

dt
= Λ − µP (t) − (β1E(t) + β2A(t))

(
1 − M(t)

K0 +M(t)

)
P (t),

dE(t)

dt
= (β1E(t) + β2A(t))

(
1 − M(t)

K0 +M(t)

)
P (t) − µE(t)

− α1

(
1 − M(t)

K1 +M(t)

)
E(t) − α2

M(t)

K2 +M(t)
E(t),

dA(t)

dt
= α1

(
1 − M(t)

K1 +M(t)

)
E(t) − (µ+ α3)A(t),

dM(t)

dt
= m1E(t) +m2A(t) − γM(t).

(3)
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4.1. Equilibrium point

The free equilibrium point. To find the free equilibrium point (P0, E0, A0, R0,M0), we equated the
right hand side of model (1) to zero, evaluating it at E = A = 0 and solving for the noninfected and
noncarrier state variables. Therefore, the free equilibrium point (Λµ , 0, 0, 0, 0).

Existence of the endemic equilibrium point. The endemic equilibrium point (P ∗, E∗, A∗, R∗,M∗)
it occurs when the disease persists in the community. To obtain it, we equate all the model equations (3)
to zero. Then we obtain 




P ∗ =
Λ

µ+ (β1E∗ + β2A∗)
(

1 − M∗

K0+M∗

) ,

E∗ =
Λ

µ+ α1

(
1 − M∗

K1+M∗

)
+ α2

M∗

K2+M∗

,

A∗ =
α1

(µ + α3)

(
1 − M∗

K1 +M∗

)
E∗,

m1E
∗ +m2A

∗ − γM∗ = 0.

(4)

From the system (4), we have an equation of M∗ as follows:

a1(M
∗)3 + a2(M∗)2 + a3M

∗ + a4 = 0, (5)

where 



a1 = γ(µ+ α2),

a2 = γµ(K1 +K2) + (α1 + α2)γK1 −m1Λ,

a3 = γ(µ+ α1)K1K2 −m1Λ(K1 +K2) − α2m2ΛK1

(µ + α3)
,

a4 = −(µm1 + α3m1 + α2m2)ΛK1K2

(µ+ α3)
.

(6)

It is easy to see that a1 is always positive and a4 is always negative. Hence equation (6) has an
positive root M∗.

4.2. The basic reproductive number

In our work, the basic reproduction number R0 is defined as the average number of secondary infections
produced by an infected individual in a completely potential gamers. To obtain the basic reproduction
number, we used the next-generation matrix method formulated in [29, 30].

Through the model equations system (3), then by the principle of next generation matrix, we
obtained:

f(x) =




(β1E(t) + β2A(t))

(
1 − M(t)

K0 +M(t)

)
P (t)

0
0
Λ



,

v(x) =




µE(t) + α1

(
1 − M(t)

K1 +M(t)

)
E(t) + α2

M(t)

K2 +M(t)
E(t)

(µ+ α3)A(t) − α1

(
1 − M(t)

K1 +M(t)

)
E(t)

γM(t) −m1E(t) −m2A(t)

µP (t) + (β1E(t) + β2A(t))

(
1 − M(t)

K0 +M(t)

)
P (t)




.
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The Jacobian matrices of f and v at the free equilibrium point are, respectively,

F =




β1
Λ
µ β2

Λ
µ 0 0

0 0 0 0
0 0 0 0
0 0 0 0


 , V =




µ+ α1 0 0 0
−α1 µ+ α3 0 0
−m1 −m2 γ 0

0 β2
Λ
µ 0 µ


 .

The inverse of V is given by

V −1 =




1

µ+ α1
0 0 0

0
1

µ+ α3
0 0

0 0
1

γ
0

0 0 0
1

µ




then

FV −1 =




β1Λ

µ(µ+ α1)

β2Λ

µ(µ+ α3)
0 0

0 0 0 0
0 0 0 0
0 0 0 0



.

Finally, the basic reproduction number is

R0 = ρ(FV −1) =
β1Λ

µ(µ + α1)
.

4.3. Local stability of disease free equilibrium point

Theorem 2. The disease free equilibrium point is locally asymptotically stable if R0 < 1−Θ, where
0 < Θ < 1.

Proof. The Jacobian matrix of system (1) at the disease free equilibrium point as follows:

J0 =




−µ −β1
Λ

µ
−β2

Λ

µ
0 0

0 −(µ+ α1 − β1
Λ

µ
) β2

Λ

µ
0 0

0 α1 −(µ+ α3) 0 0
0 0 α3 −µ 0
0 m1 m2 0 −γ




.

From the jacobian matrix J0 we obtained a characteristic polynomial:

p(λ) = (γ + λ)(µ + λ)2(λ2 + aλ+ b) = 0

with

a = µ+ α3 + (µ+ α1)(1 −R0), b = (µ+ α1)(µ + α3)(1 −R0) − α1β2
Λ

µ

we see that the characteristic equation p(λ) of J0 has an eigenvalues λ1 = −µ and λ2 = −γ are
negatives. So, in order to determine the stability of the disease free equilibrium point, we discuss the
roots of the following equation:

λ2 + aλ+ b = 0.
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By Routh–Hurwitz criterion, system (1) is locally asymptotically stable if a > 0 and b > 0.
Obviously we see that a and b to be positive, (1−R0) must be positive, with the appropriate choice

of transactions parameters. So, the disease free equilibrium point is locally asymptotically stable if
R0 < 1 − Θ, with Θ = α1β2Λ

µ(µ+α1)(µ+α3)
. �

4.4. Local stability of the endemic equilibrium point

Theorem 3. The endemic equilibrium point is locally asymptotically stable if R0 > 1.

Proof. The Jacobian matrix of system (1) at the endemic equilibrium point as follows:

J∗ =




J∗
11 J∗

12 J∗
13 0 J∗

15

J∗
21 J∗

22 J∗
23 0 J∗

25

0 J∗
32 J∗

33 0 J∗
35

0 J∗
42 J∗

43 J∗
44 J∗

45

0 J∗
52 J∗

53 0 J∗
55



,

where

J∗
11 = −µ− (β1E

∗ + β2A
∗)

(
1 − M∗

K0 +M∗

)
, J∗

12 = −β1
(

1 − M∗

K0 +M∗

)
P ∗,

J∗
13 = −β2

(
1 − M∗

K0 +M∗

)
P ∗, J∗

14 = 0, J∗
15 = (β1E

∗ + β2A
∗)P ∗ K0

(K0 +M∗)2
,

J∗
21 = (β1E

∗ + β2A
∗)

(
1 − M∗

K0 +M∗

)
,

J∗
22 = β1

(
1 − M∗

K0 +M∗

)
P ∗ − µ− α1

(
1 − M∗

K1 +M∗

)
− α2

M∗

K2 +M∗ ,

J∗
23 = β2

(
1 − M∗

K0 +M∗

)
P ∗, J∗

24 = 0,

J∗
25 = −(β1E

∗ + β2A
∗)

K0

(K0 +M∗)2
+

(
K1α1

(K1 +M∗)2
− K2α2

(K2 +M∗)2

)
E∗

J∗
31 = 0, J∗

32 = α1

(
1 − M∗

K1 +M∗

)
, J∗

33 = −µ− α3,

J∗
34 = 0, J∗

35 = − α1K1E
∗

(K1 +M∗)2
,

J∗
41 = 0, J∗

42 = α2
M∗

K2 +M∗ , J∗
43 = α3, J∗

44 = −µ,

J∗
45 =

α2K2E
∗

(K2 +M∗)2
, J∗

51 = 0, J∗
52 = m1,

J∗
53 = m2, J∗

54 = 0, J∗
55 = −γ.

From the jacobian matrix J∗ we obtained a characteristic polynomial:

p(λ) = (µ+ λ)(λ4 + a1λ
3 + a2λ

2 + a3λ+ a4)

with

a1 = −(J∗
11 + J∗

22 + J∗
33 + J∗

55),

a2 = J∗
33J

∗
55 + J∗

11J
∗
22 + (J∗

11 + J∗
22)(J∗

33 + J∗
55) − J∗

35J
∗
53 − J∗

32J
∗
23 − J∗

52J
∗
25 − J∗

21J
∗
12,

a3 = (J∗
11 + J∗

22)(J∗
35J

∗
53 − J∗

33J
∗
55) + (J∗

33 + J∗
55)(J∗

21J
∗
12 − J∗

11J
∗
22) + J∗

32J
∗
23(J∗

11 + J∗
55)
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+ J∗
52J

∗
25(J∗

11 + J∗
33) − J∗

32J
∗
53J

∗
25 − J∗

52J
∗
23J

∗
35 − J∗

21J
∗
32J

∗
13 − J∗

21J
∗
52J

∗
15,

a4 = (J∗
11J

∗
22 − J∗

21J
∗
12)(J∗

33J
∗
55 − J∗

35J
∗
53) + J∗

21J
∗
52(J∗

15J
∗
33 − J∗

13J
∗
35) + J∗

11J
∗
52(J∗

23J
∗
35 − J∗

25J
∗
33)

+ J∗
32J

∗
11(J∗

53J
∗
25 − J∗

23J
∗
55) + J∗

21J
∗
32(J∗

13J
∗
55 − J∗

53J
∗
15).

We see that the characteristic equation p(λ) of J∗ has an eigenvalue λ1 = −µ is negative. So, in
order to determine the stability of the endemic equilibrium point, we discuss the roots of the following
equation:

λ4 + a1λ
3 + a2λ

2 + a3λ+ a4.

By Routh–Hurwitz criterion [31], system (1) is locally asymptotically stable if a1 > 0, a2 > 0, a3 > 0,
a4 > 0, a1a2 − a3 > 0 and (a1a2 − a3)a3 − a21a4 > 0.

If R0 > 1, it’s obvious that J∗
ii (i = 1, 2, 3, 4), J∗

12, J
∗
13, J

∗
25, J

∗
35, all are negative and J∗

15, J
∗
21, J

∗
23,

J∗
32, J

∗
42, J

∗
43, J

∗
45, all are positive. We can easily get the coefficients ai (i = 1, 2, 3, 4), all are positive

and we can get that the eigenvalues of the above characteristic equation have negative real parts under
the conditions

a1a2 − a3 > 0, and (a1a2 − a3)a3 − a21a4 > 0.

So, the endemic equilibrium point is locally asymptotically stable if R0 > 1. �

5. The optimal control problem

5.1. Problem statement

In this section, in order to reduce the spread of the addiction of electronic games among children and
adolescents, we reconsider model (1) and formulate an optimal control problem (7). Our goal is to
minimize the number of engaged gamers and addicted gamers. To achieve this, we use two control
variables. The control u1 represents efforts intended to prevent the potential gamers from contacting
with the engaged gamers and addicted gamers, for example, the media coverage and programs of
directing children and adolescents to educational alternative means. The control u2 represents efforts
to establish rehabilitation centers of addicts to electronic games.

Thus, the controlled mathematical system is given by the following system of differential equations:




dP (t)

dt
= Λ − µP (t) − (1 − u1(t))(β1E(t) + β2A(t))

(
1 − M(t)

K0 +M(t)

)
P (t),

dE(t)

dt
= (1 − u1(t))(β1E(t) + β2A(t))

(
1 − M(t)

K0 +M(t)

)
P (t) − µE(t),

− α1(1 − u1(t))

(
1 − M(t)

K1 +M(t)

)
E(t) − α2

M(t)

K2 +M(t)
E(t),

dA(t)

dt
= α1(1 − u1(t))

(
1 − M(t)

K1 +M(t)

)
E(t) − (µ+ α3 + u2(t))A(t),

dR(t)

dt
= (α3 + u2(t))A(t) + α2

M(t)

K2 +M(t)
E(t) − µR(t),

dM(t)

dt
= m1E(t) +m2A(t) − γM(t),

(7)

where P (0) > 0, E(0) > 0, A(0) > 0, R(0) > 0 and M(0) > 0 are given initial states. Then, the
problem is to minimize the objective functional:

J(u1, u2) = E(T ) +A(T ) +

∫ T

0

(
E(t) +A(t) +

F

2
u21(t) +

G

2
u22(t)

)
dt, (8)
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where the parameters F > 0 and G > 0 are the cost coefficients. They are selected to weigh the
relative importance of u1 and u2 at time t. T is the final time. In other words, we seek the optimal
controls u∗1 and u∗2 such that:

J(u∗1, u
∗
2) = min

(u1,u2)∈Uad

J(u1, u2),

where Uad is the set of admissible control defined by Uad = {(u, v) : 0 6 u(t) 6 1; 0 6 v(t) 6 1, t ∈
[0, T ]}.

5.2. Existence of optimal control

We first show the existence of solutions of the system (7) thereafter we will prove the existence of
optimal control, we use the result of Fleming and Rishel [32].

Theorem 4. Consider the control problem with the system (7). There exists an optimal controls u∗1,
u∗2 such that

J(u∗1, u
∗
2) = min

(u1,u2)∈Uad

J(u1, u2) (9)

subject to the controls system (7) with initial conditions.

Proof. To prove the existence of an optimal control the following conditions must be satisfied:
(1) It follows that the set of controls and corresponding state variables is nonempty.
(2) The control set Uad = {(u, v) : 0 6 u(t) 6 1; 0 6 v(t) 6 1, t ∈ [0, T ]}, is convex and closed by

definition. Take any controls (u1, v1) and (u2, v2) ∈ Uad and λ ∈ [0, 1]. Then 0 6 λu1 + (1 − λ)u2
additionally, we observe that λu1 6 λ and (1 − λ)u2 6 (1 − λ) then λu1 + (1 − λ)u2 6 1, hence,
0 6 λu1 + (1−λ)u2 6 1. Similary we prove that 0 6 λv1 + (1−λ)v2 6 1 for all (u1, v1), (u2, v2) ∈ Uad
and λ ∈ [0, 1].

(3) All the right hand sides of equations of system (7) are continuous, bounded above by a sum
of bounded control and state, and can be written as a linear function of u1 and u2 with coefficients
depending on time and state.

(4) The integrand in the objective functional

J(u1, u2) = E(T ) +A(T ) +

∫ T

0

(
E(t) +A(t) +

F

2
u21(t) +

G

2
u22(t)

)
dt

is clearly convex in Uad.
(5) It rest to show that there exists constants κ1, κ2, κ3 such that

E(t) +A(t) +
F

2
u21(t) +

G

2
u22(t) > κ1 + κ2|u1|2 + κ3|u2|2.

The state variables being bounded, let κ1 = inft∈[0,T ](E(t) + A(t)), κ2 = F
2 and κ3 = G

2 . Then from
Fleming and Rishel [32] we conclude that there exists an optimal control. �

5.3. Characterization of optimal control

In order to derive the necessary condition for optimal control, we apply Pontryagin’s maximum prin-
ciple [33]. The idea is introducing the adjoint function to attach the system of differential equations
to the objective functional resulting in the formation of a function called the Hamiltonian.

This principle converts into a problem of minizing Hamiltonian H(t) at time t defined by

H(t) = E(t) +A(t) +
F

2
u21(t) +

G

2
u22(t) +

5∑

i=1

λi(t)fi(P,E,A,R,M), (10)

where fi is the right side of the system of differenciel equations (7) of the ith state variable at time t.

Mathematical Modeling and Computing, Vol. 10, No. 1, pp. 245–260 (2023)



Mathematical modeling of the gaming disorder model with media coverage: optimal control . . . 255

Theorem 5. Given the optimal controls u∗1, u
∗
2 and the solutions P ∗, E∗, A∗, R∗ and M∗ of the

corresponding state system (7) there exists adjoint variables λ1, λ2, λ3, λ4 and λ5 satisfying





λ′1 = λ1µ+ (λ1 − λ2)(1 − u1(t))(β1E(t) + β2A(t))

(
1 − M(t)

K0 +M(t)

)
,

λ′2 = 1 + (λ1 − λ2)β1(1 − u1(t))

(
1 − M(t)

K0 +M(t)

)
P (t) + λ2µ− λ5m1

+ (λ2 − λ3)α1(1 − u1(t))

(
1 − M(t)

K1 +M(t)

)
+ (λ2 − λ4)α2

M(t)

K2 +M(t)
,

λ′3 = 1 + (λ1 − λ2)β2(1 − u1(t))

(
1 − M(t)

K0 +M(t)

)
P (t) + λ3µ

+ (λ3 − λ4)(α3 + u2(t)) − λ5m2,

λ′4 = λ4µ,

λ′5 = (λ2 − λ1)(1 − u1(t))(β1E(t) + β2A(t))
K0P (t)

(K0 +M(t))2
+ λ5γ

+ (λ3 − λ2)(1 − u1(t))α1
K1E(t)

(K1 +M(t))2
+ (λ2 − λ4)α2

K2E(t)

(K2 +M(t))2
.

(11)

With the transversality conditions at time T : λ1(T ) = 0; λ2(T ) = 1; λ3(T ) = 1; λ4(T ) = 0 and
λ5(T ) = 0.

Furthermore for t ∈ [0, T ], the optimal controls u∗1 and u∗2 are given by

u∗1 = min(u2max; max(u2min, u1(t))) (12)

with

u1(t) =
1

F
(λ2 − λ1)(β1E(t) + β2A(t))(1 − M(t)

K0 +M(t)
)P (t) + (λ3 − λ2)α1(1 − M(t)

K1 +M(t)
)E(t),

u∗2 = min
(
u3max; max

(
u3min,

(λ3−λ4)A(t)
G

))
. (13)

Proof. The hamiltonian at time t is given by

H(t) = E(t) +A(t) +
F

2
u21(t) +

G

2
u22(t) +

5∑

i=1

λi(t)fi(P,E,A,R,M),

where

f1(P,E,A,R,M) = Λ − µP (t) − (1 − u1(t))(β1E(t) + β2A(t))

(
1 − M(t)

K0 +M(t)

)
P (t),

f2(P,E,A,R,M) = (1 − u1(t))(β1E(t) + β2A(t))

(
1 − M(t)

K0 +M(t)

)
P (t)

− µE(t) − α1(1 − u1(t))

(
1 − M(t)

K1 +M(t)

)
E(t) − α2

M(t)

K2 +M(t)
E(t),

f3(P,E,A,R,M)) = α1(1 − u1(t))(1 − M(t)

K1 +M(t)
)E(t) − (µ+ α3 + u2(t))A(t),

f4(P,E,A,R,M) = (α3 + u2(t))A(t) + α2
M(t)

K2 +M(t)
E(t) − µR(t),

f5(P,E,A,R,M) = m1E(t) +m2A(t) − γM(t)

for t ∈ [0, T ], the adjoint equations and transversality conditions can be obtained by using Pontryagin’s
Maximum principle, such that
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λ′1 = −dH
dP

= λ1µ+ (λ1 − λ2)(1 − u1(t))(β1E(t) + β2A(t))

(
1 − M(t)

K0 +M(t)

)
,

λ′2 = −dH
dE

= 1 + (λ1 − λ2)β1(1 − u1(t))

(
1 − M(t)

K0 +M(t)

)
P (t) + λ2µ− λ5m1

+ (λ2 − λ3)α1(1 − u1(t))

(
1 − M(t)

K1 +M(t)

)
+ (λ2 − λ4)α2

M(t)

K2 +M(t)
,

λ′3 = −dH
dA

= 1 + (λ1 − λ2)β2(1 − u1(t))

(
1 − M(t)

K0 +M(t)

)
P (t) + λ3µ

+ (λ3 − λ4)(α3 + u2(t)) − λ5m2,

λ′4 = −dH
dR

= λ4µ,

λ′5 = − dH

dM
= (λ2 − λ1)(1 − u1(t))(β1E(t) + β2A(t))

K0P (t)

(K0 +M(t))2
+ λ5γ

+ (λ3 − λ2)(1 − u1(t))α1
K1E(t)

(K1 +M(t))2
+ (λ2 − λ4)α2

K2E(t)

(K2 +M(t))2

(14)

with the tranversality conditions at time T : λ1(T ) = 0, λ2(T ) = 1, λ3(T ) = 1, λ4(T ) = 0, and
λ5(T ) = 0.

For t ∈ [0, T ], the optimal controls u∗1 and u∗2 can be solved from the optimality condition: dH
du1

= 0

and dH
du2

= 0 that is

dH

du1
= Fu1(t) + (λ1 − λ2)(β1E(t) + β2A(t))

(
1 − M(t)

K0 +M(t)

)
P (t)

+ (λ2 − λ3)α1

(
1 − M(t)

K1 +M(t)

)
E(t) = 0,

dH

du2
= Gu2(t) + (λ4 − λ3)A(t) = 0,

so, we have

u1(t) =
(λ2 − λ1)(β1E(t) + β2A(t))

(
1 − M(t)

K0+M(t)

)
P (t) + (λ3 − λ2)α1

(
1 − M(t)

K1+M(t)

)
E(t)

F
,

u2(t) =
(λ3 − λ4)A(t)

G

by the bounds in Uad of the controls, it easy to obtain u∗1 and u∗2 in the form (12), (13). �

5.4. Numerical simulations and discussions

The optimality system is a two-point boundary value problem with separated boundary conditions at
times step t = 0 and t = T . We solve the optimality system by an iterative method with forward
solving of the state system followed by backward solving of the adjoint system. We start with an initial
guess for the controls at the first iteration and then before the next iteration we update the controls
by using the characterization. We continue until convergence of successive iterates is achieved. A code
is written and compiled in Matlab software using the data of Table 1.

In this section, to demonstrate the analytic results we have obtained, different simulations can be
carried out using various values of parameters as shown in Table 1.

We assume that the initial condition of system (1) is P (0) = 0.6, E(0) = 0.2, A(0) = 0.1, R(0) =
0.08 and M(0) = 0.02.

In order to evaluate the effect of media coverage on the dynamics of gaming desorder, we choose
different values of m1, m2 and γ (see Figures 2, 3 and 4).
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Table 1. The description of parameters data used for systems (1).

Parameter Description Estimated value Source
Λ Constant recruitment rate 0.05 Assumed
µ natural older rate 0.0035 [34]
α1 rate of engaged gamers become addicted gamers 0.76 [14]
α2 rate of engaged gamers become recovered gamers 0.3 Assumed
α3 rate of addicted gamers become recovered gamers 0.1 Assumed
β1 rate of P became E by contact with E 0.46 [14]
β2 rate of P became E by contact with A 0.26 [14]
m1 The implementation rate of media coverage 0.1 Assumed
m2 The implementation rate of media coverage 0.1 Assumed
k0 Half-saturating constant 100 Assumed
k1 Half-saturating constant 80 Assumed
k2 Half-saturating constant 80 Assumed
γ The depletion rate of media coverage 0.02 Assumed

=0
=0.8
=0.4

=0
=0.8
=0.4

Fig. 2. The influence of different values of m1 on the
addicted gamers.

Fig. 3. The influence of different values of m2 on the
addicted gamers.

=0.02

=1
=0.3

Fig. 4. The influence of different values of gamma
(γ) on the addicted gamers.

Fig. 5. Variations of addicted gamers density with
different control u = u1 and v = u2.

In Figure 2, we note a decrease in the final density of addicts to electronic games, when the higher
the rate of implementation of media coverage among engaged gamers.
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In Figure 3, we note a decrease in the final density of addicts to electronic games, when the higher
the rate of implementation of media coverage among addicts to these games.

Quite the opposite, in Figure 4, the more the depletion rate of media coverage, the higher the final
addicts to electronic games density. From the above it can be said that media coverage plays a major
role in reducing the spread of addiction to electronic games.

Now, we explore numerically an optimal control for the system (7).
Figure 5 indicates that the changes of addicted gamers density with the different valus of u1 and

u2. Also shows that the best result obtained when we use u1 = 0.3 and u2 = 0.3.

Fig. 6. Variations of engaged gamers density with dif-
ferent control u = u1 and v = u2.

Figure 6 indicates that the changes of en-
gaged gamers density with the different valus
of u1 and u2. Also shows that the best result
obtained when we use u1 = 0.3 and u2 = 0.3.

Through an analytical study of the results
obtained in Figures 5 and 6, we conclude that
the combined two controls u1 (efforts intended
to prevent the potential gamers from contacting
with the engaged gamers and addicted gamers,
for example, the media coverage and programs
of directing children and adolescents to educa-
tional alternative means) and u2 (efforts to es-
tablish rehabilitation centers of addicts to elec-
tronic games) gives impressive results in reduc-
ing the spread of addiction to electronic games.

6. Conclusion

In this research, we proposed a gaming disorder epidemic mathematical model for the human population
with media coverage. We form a mathematical model that describes the dynamics of gaming disorder.
The qualitative analysis of the model shows that the solution of the model is bounded and positive.
In addition, by using the Routh–Hurwitz criterion, the local stability of the free equilibrium point
and endemic equilibrium point are obtained. Next, we establish the optimality system, including two
controls: the first represents efforts intended to prevent potential gamers from contact with engaged
gamers and addicted gamers (for example, the media coverage and programs directing children and
adolescents to educational alternative means), and the second represents creating centers to restore the
rehabilitation of addicts to electronic games. Pontryagin’s maximum principle was used to characterize
the optimal controls, and the optimality system was solved by an iterative method. The numerical
simulation was carried out using Matlab software to simulate outcomes which we have proved. Our
results show that media coverage has a substantial influence on the dynamics of gaming disorder and
greatly influences the spread of addiction to electronic games.
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У цiй статтi запропоновано математичну модель PEARM для зображення динамiки
населення, яка реагує на поширення геймiнгового розладу висвiтленням у ЗМI. Ба-
зове число вiдтворення та iснування точки вiльної рiвноваги та ендемiчної точки рiв-
новаги отримано за однакових фундаментальних властивостей моделi, включаючи
iснування та додатнiсть, а також дослiджено обмеженiсть рiвноваги. Використовую-
чи критерiї Рауса–Гурвiца, отримано локальну стiйкiсть точки вiльної рiвноваги та
ендемiчної точки рiвноваги. Також запропоновано оптимальну стратегiю реалiзацiї
оптимальних кампанiй через спрямування дiтей та пiдлiткiв на освiтнi та розважаль-
нi альтернативнi засоби та створення центрiв вiдновлення реабiлiтацiї залежних вiд
електронних iгор. Iснування оптимального керування визначається принципом мак-
симуму Понтрягiна. Накiнець деякi чисельнi моделювання виконанi для iлюстрацiї
теоретичного аналiзу отриманих результатiв за допомогою програмного забезпечення
Matlab. Отриманi результати показують, що висвiтлення в засобах масової iнформацiї
є ефективним заходом для виходу з розладу електронних iгор.

Ключовi слова: геймiнговий розлад; математична модель; висвiтлення в ЗМI;
оптимальне керування; локальна стiйкiсть.
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