odeling
MATHEMATICAL MODELING AND COMPUTING, Vol. 10, No. 1, pp.66-79 (2023) I\/I @P”ti"g

athematical

Study of Hopf bifurcation of delayed tritrophic system:
dinoflagellates, mussels, and crabs

Hafdane M., Agmour I.', El Foutayeni Y.2

L Analysis, Modeling and Simulation Laboratory, Hassan II University, Morocco
2Unit for Mathematical and Computer Modeling of Complex Systems, IRD, France

(Received 14 April 2022; Revised 24 September 2022; Accepted 31 October 2022)

In this paper, we have a discrete delayed dynamic system of three marine species: prey,
predator, and superpredator. In addition to the effect of prey toxicity, we consider the
negative fishing effect of these species. The study of this model consists of the search for
equilibria with eigenvalue analysis, the existence of Hopf bifurcations at interior equilibria,
and the determination of direction and stability analysis of Hopf bifurcation using the
theory of normal form and center manifold. Some examples are given with numerical
simulations to illustrate the results in different cases of delay.
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1. Introduction

The aquatic life remains one of the fundamental biological phenomena that make our planet habitable
since it represents a vital resource manageable for a sustainable future. Morocco, a country bordered
by the Atlantic Ocean in the west and the Mediterranean in the north, embodies both a rich marine
biodiversity and a challenge for the preservation of these resources against human overfishing, but also
from their degradation due to the presence of toxins such as those contained in dinoflagellates used in
pharmacology and cosmetics.

Indeed, the mussels date back 250 million years with an ancient origin in the Moroccan coasts. The
geology demonstrates their resilience to climatic changes, and they feed on these dinoflagellates, while
crabs feed on both of them, forming a food chain of a tritrophic system.

On the one hand, mussels are able to filter out the toxicity of dinoflagellates. Still, this filtration
causes a high concentration of toxins in the body of mussels. Therefore, toxicity can affect crabs
either from mussels or from dinoflagellates directly. On the other hand, following the world health
organization, humans, while consuming crabs and mussels, become affected by this toxicity which can
compromise their nervous system.

For the reasons outlined, this paper proposes a study of a delayed bioeconomic model for three
marine species. The proposed model illustrates the importance of delay in studying mathematical
models as a case study. According to the literature, the theory of delay differential equations has
developed extensively, especially with Belman and Cooke (1963); Hale (1977), which has made it
possible to model some complicated phenomena in a more realistic manner. As part of the study of
bioeconomic models for marine species, reference can be made to [1-8|. In these papers, the authors
studied, constructed and analyzed several bioeconomic models while taking into account the fishing of
the species in question. Their goal was to maximize harvester returns while ensuring the sustainability
of marine resources. They also carried out numerical simulations of the variation of bioeconomic
parameters and number of fishermen.

In the context of delayed biomathematic models one can cite [9-11]. The authors of this paper
studied Hopf bifurcation for a prey—predator model. In the numerical simulation part, they discussed
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only one case. The novelty of this paper remains in the proposal and the study of a delayed model
for marine species of Moroccan coastal zone as an exploitable species with economic importance.
Mathematically, this toxicity is represented by delay. Moreover, in this paper, we give interest to the
study of Hopf bifurcation, since it represents the qualitative change in the state of the system.

The paper is structured as follows: following Introduction, the proposed bioeconomic model is
presented in Section 1. In Section 2, we study the existence, the positivity and the limitations of the
system’s solutions. In Section 3, the stability of the interior equilibrium point is analysed according to
the value of 71 and 79, then the appearance of Hopf bifurcation is discussed. In Section 4, we study the
stability and direction of Hopf bifurcation, the result of the preceding sections. In Section 5, numerical
simulations of theoretical results obtained are presented.

2. Presentation of the model

The following system presents a food chain of three marine species living in the same environment,
the growth of each species is modelled by Verhulst logistic equation and interactions between them by
Lotka Volterra predation version. The variables d, m and ¢ present the densities of toxic dinoflagellates,
mussels and crabs, respectively. The quantities caught for each species are defined by the coefficients
q1F1d, goFEom and q3Esc, where ¢; is the catchability coefficient of fish species and E; is the fishing
effort to exploit the species 1.

In the system (1), we have the parameter 7. It represents the delay associated with toxicity.
Biologically, we can explain it by the time necessary for crabs to get affected by toxins when feeding
on mussels or dinoflagellates,

d(t) = T‘ld (1 — d/K) — Oélgdm — Oélgdc — qlEld,
m(t) = Trom (1 — m/K) + Bordm — Pagme — goFom, (1)
é(t) =rsc(l —c¢/K) + As1de + Agame — 61d(t — 11)c — dam(t — m2)c — g3 Esc.

The following table summarizes the different parameters and their explanations.

Table 1. The meaning of biological parameters.

Parameter Meaning
12, 13, 323 Mortality rates due to predation effect
B21, A31, Ag2 | Reproductive rates of predators based on prey encountered
01, 09 Mortality rates by toxicity effect
5 Intrinsic growth rates
K Carrying capacities for the species

3. Existence, positivity and boundedness of solution

In this section, we aim to study the existence, positivity and boundedness of the solution to system (1).

3.1. Positivity of solutions
Theorem 1. The set {(d,m,c) eR3:d,m,c> O} is positively invariant for system.
Proof. Note that the plans x = 0, y = 0 and z = 0 are invariant, indeed

d d d
—d(t)] =0, —m(t =0, —c(t) =0.
i ()d:0 : dtm()m:0 T _

So, if we start with strictly positive initial points, the solutions do not exceed these plans and remain
positive for any ¢ > 0. So the set {(d,m,c) € R: d,m,c > 0} is positively invariant. |
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3.2. Boundedness of solutions

Theorem 2. The solutions of system (1) are bounded.

Proof. (i) We consider the following inequality

d
Ed(t) = rld(l — d/K) — a12dm — Oélgdc — qlEld < rld(l — d/K) .
By integrating, we obtain d(t) < K.
(ii) For m, we have

Em(t) =rom (1 —m/K) + fardm — Bagme — gaEam
<rgm (1 —m/K) + far Km
rom
< (ro + S K 1— .
(r2 + B )m< K(T2+521K)>
So, m is bounded.
(iii) For ¢, we have
d
Ec(t) =r3c(1 —c¢/K) + As1dc + Asgme — §1d(t — 11)c — dam(t — 12)c — q3E3c
<rse(l —c¢/K) + Ag1de + Agame.
We follow the same process to prove that c is bounded. [

3.3. Existence and uniqueness of solution
The system (1) is represented by the following form: & = f(xz(t),z(t — m1),z(t — 7)), with f =
(fb f27 f3)T and

fl = Tld(l — d/K) — algdm — algdc — qlEld,

fo=rom (1 — m/K) + Bordm — Pagme — qoEom,

fs =r3c (1 — C/K) + Ag1dc + Agame — (51d(7f — 7’1)6 - 52m(t — 7’2)6 — q3F5c.

Theorem 3. The system (1) admits a unique solution.

Proof. The function f is continuous and f; satisfy the following condition gg;, i,7 = 1,2,3 are

continuous and bounded.

Since the partial derivatives are continuous and bounded, then f is a Lipschitz function.

The conditions of Cauchy—Lipschitz are satisfied. Therefore, according to the fundamental theorem
of functional differential equations cited in [12], the existence and uniqueness of the system solution
are confirmed. ]

4. Stability analysis

The main objective of this section is to determine the interior equilibria of system (1) and to discuss
its stability according to the delay parameter.

4.1. Search for equilibrium points

Theorem 4. The system (1) admits a unique strictly positive equilibrium point P*(d*, m*, c*).
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Proof. When replacing d(t), m(t) and ¢(t) by 0 and after dividing the equations by d, m and ¢
respectively, we obtain the following linear system

%d* + ajgm® + agsct =V,
Zm* — far1d* + Pazc” = Vs, (2)
Bt + Bid* + Bam* = V3

with ‘/2 =T; — QiEi and Bz = 52 - )\32'.
By resolving the system (2), we obtain the interior equilibrium point P*(d*, m*, c*). [

4.2. Study of local stability
4.2.1. System without delay

Theorem 5. The interior equilibrium point (d*,m*,c*) is locally asymptotically stable if hy > 0,
hi1 >0, hg > 0 and h1hy — hg > 0.

Proof. To linearize the system, the following variable substitutions are made: D = d—d*, M = m—m*
and C' = ¢ — ¢*. We obtain the following system

D = F2d*D — a1d*M — ay3d*C — % D? — a13DM — a13DC,
M = —2m*M + Baym* D — Bozm*C — R M? + By MD — B3 MC,

: 3
C = (/\31D + Azo M — %C) c* + (/\31D + Azo M — %C) C ( )
— [(51D (t —71) + 6o M (t — Tg)] ct— [(51D (t—m71)+ 02 M (t — Tg)] C.
We consider the following equation
det (XI — A — A1€_XT1 — AQG_XTQ) =0 (4)
with
A(] = ,Bglm* —%m* —523771* s A1 = 0 0 0 s A2 = 0 0 0
)\316* /\326* —%36* —516* 0 0 0 —526* 0
By solving the equation (4), we obtain the following equality
X3 + a1X2 + a9 X + ag + (le + bg) e_XTl + (ClX + 62) E_XT2 =0. (5)
The coefficients are represented in Table 2.
Table 2. Expressions for the coefficients in (5).
Coefficient Expression
a Bmt 4 Bt + 7d
as ZEmret + PozAzamct + FRd m* + GeRd et + Pararad m®
+ai3Az1d*c*
as HERd T c* + Tt BagAsad™m* ¢* + angfor Ed*m*c*
+B21a13A32d" m" " —a9Ba3Azid m e’ + ayzAs1 gd m e
b1 —a1351d*c*
b2 510z12523d*m*c* — 51a13%d*m*c*
1 —Bazdam*c”
C2 —a1302821d"m* c¢* — 7 Bazbad m™c*
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By replacing 71 = 0 and 75 = 0, the equation (5) becomes

X3+ hoX?+ X +ho=0
with hg = a1, h1 = ag + by + ¢1 and hg = ag + bs + 2.
We have ho > 0, hy > 0, hg > 0 and if hiho — hg > 0, the Routh—Hurwitz conditions are verified. =

4.2.2. System with a single delay

In the case: 71 > 0 and 75 = 0.

Theorem 6. (i) The positive equilibrium P*(d*,m*,c*) is asymptotically stable for all 7 > 0, if
1 >OandA:s§—332<0.

(ii) The positive equilibrium P*(d*,m*,c*) is asymptotically stable for all Ty € I, if s > 0, A =
82 =359 >0, vf = (—s3+VA)/3 >0 and g(v]) <0, or 51 <0 and ¢'(vy) # 0.

(iii) The system (2) undergoes a Hopf bifurcation at the equilibrium P*(d*,m*,c*) when 11 = Tl(i)
(j =0,1,2,...) if all conditions stated in (ii) hold.

Proof. We replace 15 with 0 in our equation and we obtain
X3+ a1 X2+ (ag+c1) X +ag+co+ (0 X +by)e X =0. (6)

It is assumed that the equation admits a complex solution X = jw (w > 0)

{ w3 — (ag + c1)w = —by sinwry + byw cos wry,

ajw? — (a3 + ca) = by coswry + byw sin wry.
The two equalities are squared to obtain the following system
{ (w3 — (ag + cl)w)2 = (byw cos wry — by sin w7'1)2 ,

(a1w2 — (a3 + 02))2 = (bg cos wty + bywsin w7'1)2 )

By simple calculation we have
w® — 2(ag + c1)w* + (ag + c1)w? = b3w? (cos w7'1)2 + b2 (sin w71)2 — 2b1bow cos wTy Cos WTy,
{ adwt + (az + c2)? — 2(ag + c2)ayjw? = b3w? (sin w7'1)2 + b2 (cos w71)2 + 2b1byw cos wTy oS WTo.
The sum of the first equation with the second one leads to the following equation
w® — 2(ag + c1)w? + (ag + c1)w? + afw* + (a3 + c2)* — 2(az + c2)arw? = biw? + b3.

We simplif
DALY w® 4 szw* 4 syw? 4+ 51 = 0. (7)
The coefficients are represented in Table 3.

In order to simplify the calculations, we put

Table 3. Expressions for the parameters in (7). v =w?,
3 2 _
Parameter Expression V7 4 8307 + 520 + 51 = 0. (8)
$3 a% —2(a2 + 1) Let
2 2 g(v) = v + 5302 + 590 + s
S9 ((Iz + Cl) — 2&1((13 + 62) — bl 3 2 1
51 (a3 + c2)* — b3 We have g(0) = s, limy—00 g(v) = 00 and

g (v) = 3v? + 2530 + s9.
To discuss about the roots of the equation (8), we use the following lemma [11].
Lemma 1. For the polynomial Eq. (8), we have the following results

— Equation (8) has at least one positive root if s; < 0.
— Equation (8) has no positive roots if s1 > 0, and A = s3 — 3s9 < 0.
— Equation (8) has positive roots if s; >0, A = s2—3sy > 0, v} = (—s3+VA)/3 > 0 and g(v§) < 0.
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Without loss of generality, we suppose that Eq. (8) has three positive roots, denoted as vy, vy and

vs, respectively. Therefore, Eq. (7) has three positive roots wy = \/vk, k = 1,2,3. The corresponding
().

critical value of time delay 7},

G 1 blwﬁ + (a1by — (ag + ¢1)b1) w,% — (ag + c2)be 2]77
T)% = — arccos 5
w blwk + b3 wk
Then +iwy is a pair of purely imaginary roots of Eq.(6) with 7, = ’7’1(?3, 79 = 0. Following Hopf
bifurcation theorem [13]|, we must verify the transversality condition. Differentiating Eq. (6) with
respect to 71, and noticing that X is a function of 7, it follows that

dX\ 7' BX2 4 a1 X +ag + )’ by m
dm N X(le + b2) X(le + bg) A

(9)
Thus

Re <dX> ~ Re (BX% + a1 X +as +cp)eX™ +b1
dm X(b1 X +b9)

—1
Notice that sign {dReX} = sign { Re <d ) } . Then
X:iwk 71 X=i Wi

. dRe X . dX
sign 77 = sign ¢ Re T
! X=iwy L X =iwy,

= sign { (3w2 + 2r3wi + rgw,%) J (3w} + b2wk)}
— sign {g/(ui)ow/ (B30f + B3ug) }
Therefore, {dReX} # 0 if ¢'(vg) # 0. [ ]

Remark 1. If we have 3 =0 and 75 > 0, or 7y = 79 = 7 # 0, we follow the same reasoning and we
obtain the same results in the case of 71 > 0 and 75 = 0.

4.2.3. System with two delays

In the case: 0 >0, 71 € [ and 71 # T
Theorem 7. (i) The positive equilibrium P*(d*, m*, ¢*) is asymptotically stable for all 71 € I.

-1
(ii) If Eq. (10) has at least finite positive root and {Re (dn) })\ ~ # 0, then system (2)

undergoes a Hopf bifurcation at the equilibrium P*(d*,m*,c*), when 19 = Tg.

Proof. We suppose that iw (w > 0) is the root of Eq. (5), then we obtain
{ —w3 + agw + biw cos wT] — by sinwT = ¢ SinwWTs — ¢1w Cos Wy,

a1w? — ag — by cos wT] — bjwsin wr = cjw sin wre + €9 COS WTy.

After explicit calculations, we have Table 4. Expressions for the parameters in (10).

WO+t w3+ [m1w3 + mow] sinwry Parameter Expression
+ [n1w4 + now? + ng] coswty = 0. (10) L af — 2ap
Iy a3 — 2aza; + b7 — c7
We suppose that Eq. (10) has at least one positive fi- 7 2 Taoa L
nite root. Without loss of generality, it is assumed 3 ;Z Cgb %
that Eq.(10) has N positive roots, noted by w;, m 2b2 — 12(21
(1 = 1,2,...,N). Note that with Eq.(10) we ob- 2 193 — 29202
tain 7). Let 70 = 7 min{r. (0)} = w; d f —201
2i - 2 = T4y = » Wo = Wip, an n 2bjas — 2bsa
A(T ) = a(72)+iw(m2) be the roots of Eq. (3) satisfying 2 172 271
(4) ns3 2(13[)2

(T2z ) 0, w (T22 ) = Wi
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Table 5. Expressions for the parameters in (11). By calculating, we have
Parameter Expression {R A\ L A
1 coby + cobomi + c1byTiw? € <_> } = 2 1. 2 2
gg 2(1162 — C1 (—3’(02 + CLQ) dT2 4 Kt * Kt
Q3 biTicy — c1bom — b1y where
Q4 2a1c1w® — cow (—3w? + ay) A = Qrwsinwy (17 + 739) 4+ Qow? cos weTy

+ Q3w? coswo(T] + 79) + Qusinwery — crwi.  (11)

If 71 >0, 9 € I and 71 # 7o, we have the same result. [ ]

5. Stability and direction of Hopf bifurcation

In the previous section, we found that our system is going through a Hopf bifurcation when 75 = 73,
the purpose of this section is to study the direction of this bifurcation and the stability of the periodic
solutions of our system using the theory of normal form and the center manifold theorem [13].

Theorem 8. For system (3), under loss of generalities, we assume that 79 > 7 and we have the
following results:

— The direction of Hopf bifurcation is determined by the sign of ng; if o > 0 (n2 < 0), then the Hopf
bifurcation is supercritical (subcritical) and the periodic solutions exist for 7o > 73 (T2 < 73).

— The stability of the periodic solution is determined by the sign of (5: the bifurcations periodic
solutions are orbitally asymptotically stable (unstable) if 75 > 79 (1o < 73). The period of the
periodic solutions is determined by the sign of Ty: if Ty > 0 (Ty < 0), the periodic solutions
increase (decrease).

Proof. Under loss of generalities, we assume that 75 > 77.
We put 75 =73 + 1, p1(0) = p(t +6) € C, L,: C = R3>and F: R x C — R>.
We can express the system (3) as the following functional differential system in C([—7,0], R3)

(p(t) = Ln((ﬂt) + f(777 Cpt)v (12)
where
Lyx = Aox(0) + A1x(—77) + Aax(—79)

and

2x3(0) — a12x1(0)x2(0) — a13x1(0)x3(0)
Fmx) = | —%x3(0) + B21x1(0)x2(0) — B23x2(0)x3(0)
[—2x3(0) + A31x1(0) + Az2x2(0) — d1x1(—=77) — daxa(—75)] x3(0)

By the representation of Riesz, we have the existence of a matrix of order 3 g(6,7) of bounded variation
for 0 € [—7,0], which verifies

0
Lyx =/ dg(0,m) x(0), VxeC.
-7

This matrix is written in the following form

9(0,m) = AgS(0) + A15(0 + 71) + A28(0 + 73),

0, 640,
5(9):{1 eio.

where
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For x € CY([—7f,0], R3), we have
ohe 0 € [~71,0)
do > 1Y) 0
M(n)x = R(n)x = { ) =

So, we can write the system in the following form

pr = M(n)er + R(n)g:
For x € C([0,1], (R3)*), the adjoint operator M* of M(0) is written as follows

—axls), s € (0,77],

fBTl* dgT(tv 9) X(_t)7 s =0.

For x € CY([—71,0],R3) and ¢ € C1([0, 1], (R3)*), we use the bilinear form
0

0
(6, x) = BT (0)x(0) — / 7 (¢ — 6) dg(6) x(€) dt.

—77 J£=0

M*y =

According to Section 3, M (0) admits +iwy as eigenvalues, so they are also eigenvalues of M*. In order
to search for the expression of M(0), it is assumed that p(f) = p(0)e™? is its eigenvector associated
with the eigenvalue iwg. Therefore M (0) is written as M (0) = iwgp(0).

When 6 = 0, we have the following equation

0
[mo[— / dg(9) e"w] p(0) =0,

_Ti“

which yields p(0) = (1, p1, p2)T, where

. (’iWQK + Tld*)ﬁggm* + Bora13 Kd*m*

(inK + T‘gm*)algd* — o803 Kd*m
. —algﬂgled*m* — (iwoK + Tld*)(Tgm* + inK)
P2 = (iwoK + Tgm*)angd* — 0412523K2d*m
Similarly, it can be verified that p*(s) = D(1, p¥, p5)e’°® is the eigenvector of M* corresponding

to —iwg, with

(—inK + rld*)ﬁ23m* + Borars Kd*m*
(—’iWQK + ’r'Qm*)Oélgd* — a1ofo3 Kd*m

. —0412521K2d*m* + (inK — T‘ld*)(T‘gm* — ’iWQK)
P2 = (—iWQK + rgm*)angd* - a12523K2d*m

*

P1 =

Using previous results, we have

(5 (5),p(0)) = D(1, 5% 35) (1, p1. p2)” / /5 (17 )e g B) 1. pr. o) g

=1+ p1p] + p2ps — / (1,77, p5)0€“dg(6)(1, pr, p2)"
—7f

0
I / (L, 5% 55)0¢“dg(8) (L, pr, pa) T

*
-7

—iwo TS

= 1+ p17} + paps + Tr01p5c e 0T + 7961 pipycte

By the fact that (p*,p) = 1, D is written in the following form

1

E = y * . .
L5 17 + pas + O 3C e T+ 9011 e 0TS

Mathematical Modeling and Computing, Vol. 10, No. 1, pp. 66-79 (2023)



74 Hafdane M., Agmour |., El Foutayeni VY.

To determine the direction of Hopf bifurcation and the stability of the periodical solutions, the Hassard
algorithm is used [13| and the same calculation steps in [9], and we get the following coefficients

Table 6. Expressions for the parameters in (13).

Parameter Expression
o11 T — Q12p1 — Q13p2
021 201 + Barpr — Basprpa
031 —"3 2 + A31p2 + Aa2p1p2 — G1pae 0T — Gapy poeioT
o12 =2 — oz (p1+ p1) — a3 (p2 + p2)
0922 —22 0191 + Bo1 (p1 + p1) — Bz (p1p2 + p2pr)
32 2T3 70202 + Ast (p2 + p2) + As2 (prp2 + pzpl)
—51 (P2e™ ™01 4 poei0Ti) — &, (Plpze iwory 4 P_lpzei“mg)
013 — 7 — Q1201 — Q13P2
023 2D+ Bapr — Basprpe
033 — 1352 1 A1z + Aa2p1p2 — 012€ 0T — 8oy pae’0Ts
o14 = (2w11(0) + W20(0))
—anp (wf;(0) + wzo L 4y w2°2( L 1 prwh (0)
—aiz (Wi (0) + wQO L 1 5o 202( L 1 pawl (0)

(

o2 2 (P1w3y(0) + 2/71%011(0))
+ﬁ 0 20(0 %o(o) 1

o1 (wi (0) + + 1=~ + prwi; (0)

3 ’LU2

~Bas (o1 (0) + 71 B2 + 52250 4 pyut (0))
034 7 (202w (0) + paw3y(0))
g (1w (0) + 250 4 5,500 ot (0))
© ) +P2w11(0))

—01 (wi”l(o)e—iwon + —w2°(0) ot 4 wio(~1i) Tl)ﬂ2 + w11 (-7 )P2)

+/\32 (plwil’»l(o) + p1 wzo + P2 w20(0

2
—52(p1w?1(0) zw07-2 +p 20() 2w07-2 +P 20( )+p2w11( Tik)>

Therefore, we use this table to calculate the coefficients g;;,

920 = 2D (011 + pio2 + p3031) 5
g11 = D (012 + piose + p5032) ,

go2 = 2D (013 + pio2s + p3033) ,
g21 = 2D (014 + pio2a + p3034) .

(13)

However

Wy (0) = Ziﬁp(e)eiwoe + @ﬁ(g)e—iwoe + A162m007

0 3wo
Win(6) =~ p(B)e " + TLp(0) 0 4 Ao,
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where A1 and A, are constant vectors and they are determined by the following equations

i + 4 aqad” ap3d” - o1
A =2 —fa1m* 2iwg + 22 Bazm* o2 |
A1t + 510*6—2iwo7'1* —Agoc* + 526*6_2iw()TS 2iwq + % 031
* _1
nd aiad” azd” 012
Ay = —Baam* - Bazm™ 022
(01 — Az1)c™ (02 — Az2)c™ 5= 032
One can see that each g;; can be expressed by the parameters. Thus we can compute the following
results . ooal?
¢ go2 921
Ch(0) = — -2 2 + =
1(0) 5n <911920 11 3 ) 5
Re(C1(0))
= = 2Re(C1(0)), 14
2 Re(/\’(7'20)) B2 e( 1( )) ( )
Im(C1(0)) + p2 Im(XN'(73))

Ty = — .
wo

6. Discussion

This section presents the results of the carried out simulations, and deals with a concrete example to
illustrate the theoretical results obtained in the previous sections.
The figures included below show the variation

of Dinoflagellates, Mussels and Crabs over time in Table 7. Bioeconomic parameters and their values.

order to analyse the stability of these species in Parameter | Value Parameter | Value
the presence of the fishing and toxicity effect. The " 0.73 12 0.03
values of the parameters used in the relevant bioe- "2 0.65 A3 0.5
: r3 0.39 B21 0.01
conomic model are affected as follows, the values 5 10 3 045
of these parameters are based on INRH report. E; 10 /\2? O:l 5
The system studied admits a point of interior Bs 100 Xao 0.18

equilibrium P* = (9.6202,11.2368,9.6561), here T 0.0002 51 0.0023

we vary the delays and we observe the stability g2 0.0001 o 0.0016
of the system. To do this, we have discussed the q3 0.015 K 30

predefined four cases in ten scenarios.

The first case, presented in Figs.la and 1b, indicates that the affectation by toxicity is instan-
taneous, namely 71 = 75 = (0. Indeed, the simulations performed demonstrate the verification of
the stability condition concerning the system through the selected parameters. In fact, we have
hy = 6.0313 > 0, hy = 68.6426 > 0, hg = 148.0407 > 0 and hiho — hg = 265.9602 > 0, then
the conditions of Routh—Hurwitz hold. We have showed that the point P* is locally asymptotic stable
in Fig. 1a by using as initial value the point (9,11,9). In these graphs, we have unsaturated any initial
points. Subsequently we noticed that the curve converges towards the equilibrium point of the P*
system, a point which is represented as a global attractor in Fig. 15.

In the second case, we consider the system with one delay, and we discuss the stability of the
equilibrium point in four scenarios. In the first one, we have i = 43156 > 0 and A = —7.103 < 0,
then the conditions (i) mentioned in Theorem 6 are satisfied, which gives the stability of P* for all
71 = 0 and 5 = 0 with K = 30. Also, we obtain the same result if 71 = 0 and 7 > 0. However,
when the value of carrying capacity is changed, then the system loses its stability since the theorem
condition () are not satisfied in this scenario. To prove that graphically, we choose K = 100 with
71 =0.05, » =0 and 71 = 0.5, » =0.
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Fig.1. Phase portrait of system solution without delay.

From the outset, the second case consists of two Figs.2a and 2b in which the condition (i) in
Theorem 6 is verified, for Fig.2a it is assumed that 71 = 0.5 > 0 and 79 = 0, while in Fig.2b 7, =0
and 9 = 0.5 > 0 are set. After the simulations, it is attested that for any initial point, the system
tends towards the equilibrium point P*. Thus, the system maintains its stability.

25 30
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crabs

5 10 15 20 »

mussels 0
dinoflagellates dinoflagellates

a (11 =0.5>0and 2 =0) b (11 =0and 2 =0.5>0)

Fig. 2. Phase portrait of system solution when 71 > 0 and 72 = 0 or 7y = 0 and 7» > 0.
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Fig. 3. Phase portrait of system solution when 7 > 0, 75 = 0 and K = 100.

In fact, when the K value is changed from 30 to 100, the condition (i) in Theorem6 is no longer
checked except for the others. However, the condition (ii) holds. Indeed, s; = 4341 > 0, A =
8150.4 > 0, v; = 88.31 > 0 and g(v;) = —1111.5 < 0. Then, Eq. (8) has two positive roots which

give us the following critical values 7'1({) = 0.409 4 0.6475 and 7'1(%) = 0.684 + 0.7515 for (j =0,1,...).
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With o (7'1({)) > 0 and o/ (7'1(%)) < 0. So, we have the following stability interval 71 € [0,0.409) U
(0.684,1.056) U (1.435,1.757) U (2.186,2.35) U (2.937,2.997). However, when we choose 7 = 0.05
belonging to the stability interval, we observe that the system converges towards a new equilibrium
point P* = (7.8209, 12.2596, 13.1213). However, for 71 = 0.5 not belonging to the stability interval, we
note the loss of stability and the appearance of periodic solutions.

In the third case, we assume that 7 = 75 = 7, and we notice the stability of P* when 7 is in the
interval of stability; in other words, if the condition of Theorem 6 does not hold, the system undergoes
a Hopf bifurcation.

For the third case, two Figs. 4a and 4b illustrate the results of the simulations and we first consider
that 71 = 7o = 7. For graph (f) we set 7 = 0.3 and we end up concluding the stability of the system,
while in graph (g) we choose 7 = 0.5, in other words, 7 exceeds the critical time of the bifurcation of
Hopf, then the system loses its stability. Therefore, the appearance of periodic solutions around the
equilibrium point P* is asserted.

20

10
20 0 15 20
dinoflagellates mussels dinoflagellates

a (7'1:7'2:0.3) b (7’1:7'2:0.5)

Fig. 4. Phase portrait of system solution when 71 = 7% = 0.3 and 7y, = 75 = 0.5.
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dinoflagellates dinoflagellates

a (T1=O.7 and T2=O.5) b (71:8and T2=0.5)

Fig. 5. Phase portrait of system solution when 7 = 0.7 and 72 = 0.5 or 77, = 8 and 7 = 0.5.

In the last case, we consider the system with two different delays. As a main result, we found the
appearance of periodic solutions when 7 or 79 are outside the stability interval, in other words if the
conditions mentioned in Theorem 7 are not satisfied.

Admittedly, in the fourth case we have 74 > 0 and 79 > 0 such as 7y # 79 and two Figs.5a and
5b. Figureba starts from 75 = 0.5 and 7 = 0.7, i.e., they belong to the stability interval. After the
simulations, it is claimed that the curve showing the evolution of the biomass of the species converges
towards the equilibrium point. In other words, the result is the stability of the system. However,
Fig.5b poses 7 = 8 and 7 = 0.5 that are outside the stability interval. As a result, for 75 = 0.5, we
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have 70 = 1.0573, 2 < 0 and 72 > 0. Then, when 71 > 70 it is observed that the system loses its
stability and stable periodic solutions appear.

7. Conclusion

In this study, the focus is on modeling the interaction between dinoflagellates, mussels, and crabs
through a delayed dynamic system. Thus, an analysis of the system is performed to identify its
bifurcations. In the end, we find that the stability of the system is directly related to the delay
designating the allocation time by the toxins and its belonging to the stability interval. When it is
lost, periodic solutions appear. Research avenues appeared to consider a rate of delay not constant
and dependent on the biomass of species or to study bifurcations related to other parameters for the
preservation of species and all marine biodiversity.
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Hocnip>xeHHs b6icpypkauii Xondga ana ynosinbHeHO! TPUTPOdHOT
cuctemu: amHodpnarenaTu, migii Ta Kkpabwm

Xadmane M.', Armyp 1.1, Enp @yraeni FO.12

L Tabopamopia ananizy, modemosanna ma cumymosanna, Yuisepcumem Xacana II, Mapoxko
2 Biddin MamemMamuur020 ma KOMN 10MepHo20 Mo0ea06aHta ckiadnux cucmem, IRD, Pparyis

Y cTaTTi pO3IIAHYTO AUCKPETHY JUHAMIUHY CHCTEMY 31 3aTPUMKOIO 3 TPHOMa MOPCHKU-
MU BHJAME: JKEPTBa, XMXKAK Ta Cylepxmkak. BpaxoBano He Jmiie e(eKT TOKCHIHOCTI
3/100mdi, ajte i HeraTuBHUN edeKT HAIMIPHOTO JOBIHHS Tepesidennx BUMAiB. JloctimKerHs
MO/IeJII TIOJIATAE B MONIYKY PIBHOBArdW 3a JIOIIOMOIOIO aHAJI3Y BJIACHUX 3HAYEHb, ICHYBaHHSHA
6idypkarmiit Xomda y BHyTpImHIX piBHOBArax, BU3HAYEHHsI HAIPSIMKY Ta AHAJIZY CTiii-
kocri 6idypxrarii Xomnda 3 BUKOPUCTAHHAM TeOpil HOPMAJIBHOI (DOPME Ta IIEHTPAJIHHOTO
muoroBuay. HaBeseHo mekiibKa MPUKJIA/IIB 13 YUCEeTbHUM MOJETIOBAHHSM, SKi LITIOCTPYIOTH
pe3yJIbTaTH JJIsg PI3HUX 3HAYEeHb 3aTPUMKHU.

Kntouosi cnosa: zusicak—3006uy; ananiz cmitixoemi; oigyprayis Xonga; duckpemma
3ampumKa; pubasbcoke 3YCUALA.
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