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The fundamental goal of this research is to develop a MAGDM (Multi-Attribute Group De-
cision Making) problem of Medical Consumption Products. We propose TODIM–VIKOR
approach in this paper, which combines the TODIM (an acronym in Portuguese for Inter-
active and Multi-criteria Decision-Making) and VIKOR (Vlsekriterijumska Optimizacija I
Kompromisno Resenje) procedures under Fermatean fuzzy information. A new Fermatean
fuzzy scoring function is presented for dealing with comparison problems. In addition, we
introduce a novel entropy measure for assessing the degree of fuzziness associated with
an FFS. We also offer a Jensen–Shannon divergence measure for the Fermatean Fuzzy set
that can be used to compare the discrimination information of two FFSs. This suggested
measure meets all mathematical standards for being considered a measure. We introduced
entropy and divergence measures to determine the objective weight in the TODIM–VIKOR
approach. Meanwhile, to deal with multiple attribute group decision-making, a new deci-
sion procedure based on the suggested Entropy and Jensen–Shannon divergence measure
was proposed in a Fermatean Fuzzy environment. In this article, TODIM has in view
to find out the overall dominance degree, and VIKOR is to determine the compromise
solution. Finally, we manage a supplier selection problem to verify the performance of the
suggested Fermatean fuzzy TODIM–VIKOR method by comparing the ranking solution
to the rankings of existing methodologies. We investigate the reliability and effectiveness
of our proposed methodology.
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1. Introduction

We cannot continually supply correct and efficient information for the alternatives in genuine MADM
(multi-attribute decision making) difficulties because of the uncertainty/indeterminacy of experts and
decision problems. To overcome this problem [1], unique fuzzy set (FS) used the crisp membership
degree rather than an exact or precise real number, to measure the indeterminacy inherent in estimation
outcomes. Engineering, image processing, medical sciences, social sciences and clustering are just a
few of the fields where fuzzy theory has been applied. Since fuzzy set theory is based solely on
measurement, it is unable to demonstrate intuition. As a result, [2] has established a perspective
on the intuitionistic fuzzy set (IFSs) theory by adding a new dimension to non-membership degree.
Various researchers have looked into the uses of IFSs. As a result, IFS can provide a more accurate
depiction in a variety of domains, but its application is limited in particular instances. In order to deal
with these issues, [3] generalised the IFS theory and introduced the “pythagorean fuzzy set (PyFS)”
as a new set theory. Do the squares of the membership (g) and non-membership (f) grades in PyFSs,
then determine the sum that is lesser or equal to 1. Currently, the PyFS theory has proven to be
a useful tool for dealing with ambiguous data in real-life scenarios. The case cannot be solved using
the IFS theory if a decision maker offers a membership grade of 0.6 and a non-membership grade of
0.7 in their evaluation. Furthermore, in a fuzzy context, the PyFSs are extremely capable of dealing
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with new information. As evidenced by 0.62 + 0.72 6 1. PyFS is more expansive than IFS, to explain
the more decision-making problems. In the previous literature, research on PyFSs has been done very
effectively. MADM difficulties were examined using some new pythagorean fuzzy information metrics
by [4]. In a pythagorean fuzzy environment, [5] investigated cumulative prospect theory. Authors
have begun to examine and solve decision-making problems using the PyFS environment [6–8]. With
the boundary requirement that g2 + f2 6 1, PyFS has a relatively limited range. PyFS was then
expanded to Fermatean fuzzy sets (FFSs) by [9] which is a new type of IFS and FFS in which the sum
of the cubes of membership grade (g) and negative membership (f) grade is 6 1. FFS is similar to
IFS and PyFS in terms of functionality, but it has more flexibility for expressing confusing data. It
means that FFSs are more knowledgeable and assertive in their advocacy for membership grade. For
example, suppose an expert offers a membership grade of 0.8 and a non-membership grade of 0.7 in
their judgement. The usefulness of IFS and PyFS is limited in the current situation since 0.8+ 0.7 > 1
and 0.82 +0.72 > 1, but 0.83+0.73 6 1. Therefore, experts can issue membership and non-membership
grades independently using FFSs. Thus, FFSs are more skilled and adjustable to handle the realistic
information which is vague or uncertain. Various researchers initiated to do the study on FFSs theory
in many areas after the successful development of FFSs.

In the case of MADM and MAGDM, decision makers can provide possible language terms so that
these given numbers can lead to diversity distribution opportunities. The problems of deciding the
status of multiple attributes can often be considered as complete forms of ambiguity and uncertainty.
Over the past few decades, the problems of MADM or MAGDM have become increasingly common in
everyday life problems in many mysterious are as [10–16]. To incorporate [17], theory of TODIM was
proposed, and human bias was considered in multilateral decision-making.

TODIM is a valuable strategy for identifying the dominance of one thing over another in decision-
making situations. [18–21] scholars have successfully employed the TODIM approach. The VIKOR
method provided by [22] has been deemed an effective and logical strategy that may be employed
in decision-making challenges in recent years when considering a compromise option. The VIKOR
approach has several advantages, including providing the most effective level outcomes from a kit
of other feasible choices, as well as unambiguous and contradictory decision-area circumstances. This
method produces the greatest results when the decision maker (DM) wants to maximise revenues while
minimising risk variables that aren’t important to the DM [23]. Because it improves choice quality,
the VIKOR approach a decision-making tool. Despite the fact that TODIM and VIKOR models can
answer challenges for effective decision making. As a result of these approaches, several specialists
have developed enhanced versions of TODIM and VIKOR, which successfully address decision-making
difficulties in ambiguous situations. Literature reviews on VIKOR incomprehensible and TODIM
methods are shown in Table 1 in various uncertain situations.

A divergence measure is widely used in image segmentation, medical diagnosis, pattern recognition
and decision-making challenges because it is better at distinguishing between two items or probability
distributions. [24] presented a divergence metric for FSs based on logarithmic information functions.
Various academics created divergence measures for fuzzy sets as a result [25–29]. The purpose of this
exercise is to create a divergence metric using Jensen inequality and Shannon entropy. FFSs are, as
previously stated, extensions of Atanassov’s intuitionistic fuzzy sets. Divergence metrics for Fermatean
fuzzy sets have been increasingly important in the recent past for reducing uncertainty and supporting
decision-makers in circumstances with limited information. Numerous writers have published a fairly
limited amount of work on divergence measurements for Fermatean fuzzy environments. We construct
a broader version of Jensen–Shannon Fermatean fuzzy divergence in this research using an adjustable
approach that provides the user more power over the choice. Any measure’s quality can be considered
to be determined by its attributes. Some mathematical properties of the new divergence measure
have been established in order to demonstrate its applicability. The new FFS divergence measure not
only meets distance measure’s axiomatic definition, but it significantly improves the discrimination of
differences across FFSs. Then, the new divergence metric can produce more accurate results.

The most important approaches of domain MAGDM are entropy and divergence measurements.
These can be considered as effective mathematical techniques for determining the objective weights
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of qualities while measuring ambiguous information. Entropy measures are good alternatives to ag-
gregation operators and algebraic operations because they are capable of providing equal smooth
approximations. The distance metrics are based on Hamming distances, which ignore the indepen-
dent effects of membership rate and also non-membership rates. As a result, in order to expand the
distance estimates, we provide a new FFS divergence metric based on the Jensen–Shannon measure.
However, entropy and divergence measurements on FFSs have received little attention inspired by
these principles, based on the entropy rate and the degree of divergence of FFSs handling Fermatean
fuzzy MAGDM within FFSs, we created a Fermatean fuzzy MAGDM technique. In addition, none
of the MAGDM papers use the TODIM–VIKOR integrated strategy instead of FFS. As a result, the
TODIM and VIKOR approaches are extremely useful in dealing with decision-making challenges. The
primary premise of this manuscript is to evaluate a combination of TODIM and VIKOR methods in
an FFs environment with entropy and divergence measurements, where everything is done by FFN and
test information about individual weights is determined using entropy and divergence measures. As a
result, the TODIM model and VIKOR technique under the Fermatean fuzzy set have been improved
in this study in order to get a consistent and trustworthy standard of options.

The present work has a rare contribution in the situations of medical consumption products that
have not been studied previously. Several models were established in a prior study on FSs and their
extensions; some of them are only interested in attribute/criterion entropy information. However
[8] should improve the entropy measure employed in the entropy approach because many decision
outcomes are illogical. This study attempted to fill in the gaps using a new measurement approach
in the literature based on measurement methods of entropy and divergence within Fermatean fuzzy
information. Such integration helps to achieve real-world decision-making standards and to achieve
greater stability in a wide range of responsibilities. However, the combined TODIM–VIKOR model
with unknown Fermatean numbers (FFNs) has not been thoroughly investigated. As a result, the FF–
TODIM–VIKOR model must be considered. The current approach is to develop an integrated model
that uses TODIM and VIKOR methodologies as well as FF knowledge to efficiently set up MAGDM
challenges. Some fundamental definitions, scoring function, accuracy function, entropy, and divergence
measure of FFSs are all included in this article.

The suggested activity’s major goal is to execute computations using a Fermatean fuzzy backdrop
and integrate new formulas to obtain more realistic qualities and decision weights, which will improve
the TODIM–VIKOR approach’s stability. The important aspects of FFS are membership numbers
and degree memberships, as well as precise statistics for non-membership degrees. As a result, paying
particular attention to group decision-making challenges using Fermatean fuzzy knowledge is an en-
couraging topic. In summary, this current paper contains the following: (1) A new Fermatean fuzzy
entropy was introduced on the basis of Shannon entropy and proves its validity; (2) A step of separa-
tion introduced by FFNs and discusses some of the refined features, which are useful for the proposed
scale; (3) The desired mix of entropy and divergence measure to figure out the weight of the attribute;
(4) The new MAGDM method is introduced thus according to the TODIM–VIKOR method of the
Fermatean fuzzy nature. (5) In order to demonstrate the efficacy of the planned strategy, a case of a
medical product is created. It has specified functions that deal with the realities of decision-making
in the real world. Finally, the proposed FF–TODIM–VIKOR methods are compared with existing
methods, intended for the confirmation of result obtained by a particular image.

The paper’s superfluity is classified into the following categories: Section 2 suggests some basic
ideas related to IFS, PyFS, FFS. The new Fermatean fuzzy entropy and its key structures are given
in Section 3 and prove its competence on the basis of language variability. Section 4 established a new
divergence rate and studied its key properties. In order to evaluate a suitable supplier, Section 5 employs
the TODIM–VIKOR new approach based on Fermatean fuzzy measurements. Section 6 includes a
numerical model of the items, as well as a comparison of the proposed approach to existing methods,
to illustrate the new method’s dependability and performance. Section 7 describes conclusion of this
work as well as the supplementary comments.
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Table 1. In many environments, approaches of fuzzy VIKOR and TODIM are used.

Authors Applications Methods
[17] Decision problem Classical TODIM
[16] Project investment Classical TODIM
[18] Investment problem IF–TODIM
[30] Problem of construction Fuzzy TODIM–DELPHI

minerals industry
[31] Site selection problem Interval IF–TODIM
[32] Hotels Selection TODIM for intuitionistic

linguistic numbers
[33] The executive person Shapley function-based

selection problem IF–TODIM
[14] Decision making TODIM
[34] Performance Appraisal interval IF–TODIM
[35] Tourism attraction ANP–TODIM
[36] Service quality assessment interval-valued IF–TODIM
[12] High-tech risk evaluation VIKOR and prospect theory
[8] renewable energy technoloies Classical VIKOR
[37] Green supplier VIKOR

programme
[38] Evaluate the performance of VIKOR and GRA

Emerging eco-industrial
[39] Group decision making VIKOR
[40] Flood control operation Compromise ratio model
[41] Decision making model VIKOR
[42] financing risk assessment VIKOR
[43] Selection of investment problem Interval IF–VIKOR
[44] Selection of a cooperative Hesitant fuzzy (HF) VIKOR

partner
[45] Evaluate and find rank Hesitant fuzzy VIKOR

of the service quality HF–VIKOR
[46] MADM approach Classical VIKOR
[47] Selection of an ERP system HF Linguistic VIKOR

2. Basic notions

We will go through the basics of IFs, PyFSs, and FFSs in this segment.

Definition 1 (Ref. [2]). An Atanassov intuitionistic fuzzy set S on K is explained as

S = {(bi, gS(bi), fS(bi)) : bi ∈ K} ,
where gS : K → [0, 1] is membership function and fS : K → [0, 1] a non-membership function such that
0 6 gS(bi) + fS(bi) 6 1, for all bi ∈ K. Moreover, φS(bi) = 1 − gS(bi) − fS(bi), bi ∈ K is named as
intuitionistic degree.

Definition 2 (Ref. [3]). A pythagorean fuzzy set S on K is explained as

S = {(bi, gS(bi), fS(bi)) : bi ∈ K}
gS : K → [0, 1] is known as membership function and fS : K → [0, 1] is a non membership function

such that g2S(bi) + f2S(bi) 6 1 for all bi ∈ K. Moreover, φS(bi) =
√

1 − g2S(bi) − f2S(bi) is pythagorean

index for each bi ∈ K.
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Definition 3. A Fermatean fuzzy set A on K is explained as

S = {(bi, gS(bi), fS(bi)) : bi ∈ K}

known a membership gS : K → [0, 1] and a non membership function fS : K → [0, 1] with the inequality
0 6 g3S(bi) + f3S(bi) 6 1, for all bi ∈ K. Moreover, for all bi ∈ K, Fermatean fuzzy index is defined as

ΦS(bi) = 3

√
1 − g3S(bi) − f3S(bi).

Definition 4 (Ref. [48]). For any Fermatean fuzzy number, µ = (g, f). The score value and
accuracy value of µ are defined as:

Sco(µ) = g3 − f3,

where Sco(µ) ∈ [−1, 1].
Acu(µ) = g3 + f3,

where Acu(µ) ∈ [0, 1].

Definition 5 (Ref. [48]). For any µ1, µ2 ∈ FFN , we have
• If Sco(µ1) > Sco(µ2), then µ1 > µ2;
• If Sco(µ1) = Sco(µ2), then
• if Acu(µ1) > Acu(µ2), then µ1 > µ2;
• if Acu(µ1) = Acu(µ2), then µ1 = µ2.

Definition 6. With in universe K, any two FFSs S and T are specified by

S = {bi, gS(bi), fS(bi) : bi ∈ K} and T = {bi, gT (bi), fT (bi) : bi ∈ K};

then some mathematical operations are given as below:

1. S ⊆ T ⇔ ∀bi ∈ K, gS(bi) 6 gT (bi) and fS(bi) > fT (bi);
2. S = T ⇔ ∀bi ∈ K, gS(bi) = gT (bi) and fS(bi) = fT (bi);
3. co S = Sc = {bi, fS(bi), gS(bi) : bi ∈ K};
4. S ∪3 T = {〈bi,max(gS(bi), gT (bi)),min(fS(bi), fT (bi))〉 : bi ∈ K};
5. S ∩3 T = {〈bi,min(gS(bi), gT (bi)),max(fS(bi), fT (bi))〉 : bi ∈ K}.
6. S ⊕3 T =

{(
bi,

3

√
g3S + g3T − g3Sg

3
T , g

3
Sg

3
T

)
: bi ∈ K

}
;

7. S ⊕3 T =
{(
bi, f

3
Sf

3
T ,

3

√
f3S + f3T − f3Sg

3
T

)
: bi ∈ K

}
;

8. γ ∗3 S =

{(
bi,

3

√
1 −

(
1 − g3γ(bi)

)3
, gγS(bi)

)}
;

9. S ∧3 γ =
{(
bi, f

γ
S (bi),

3

√
1 −

(
1 − g3γ(bi)

)γ)}
.

2.1. Property

If S in the axiom E4 is crisper than T , then we have
∣∣∣∣g

3
S(bi) −

1
3
√

3

∣∣∣∣+

∣∣∣∣f
3
S(bi) −

1
3
√

3

∣∣∣∣+

∣∣∣∣Φ
3
S(bi) −

1
3
√

3

∣∣∣∣ >
∣∣∣∣g

3
T (bi) −

1
3
√

3

∣∣∣∣+

∣∣∣∣f
3
T (bi) −

1
3
√

3

∣∣∣∣+

∣∣∣∣Φ
3
T (bi) −

1
3
√

3

∣∣∣∣

and

[
gS(bi) −

1
3
√

3

]3
+

[
fS(bi) −

1
3
√

3

]3
+

[
ΦS(bi) −

1
3
√

3

]3

>

[
gT (bi) −

1
3
√

3

]3
+

[
fT (bi) −

1
3
√

3

]3
+

[
ΦT (bi) −

1
3
√

3

]3
.
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3. A new entropy measure for FFSs

Here, we construct a new entropy measure for fermatean fuzzy set based on the probability type. Let

Σn =

{
K = (b1, b2, . . . , bn) :

n∑

i=1

bi = 1, bi > 0

}
, n > 2

be a sequence of discrete probability distributions. For K ∈ Σn, corresponding to the Shannon en-
tropy [49] we define a new fermatean fuzzy entropy measure Mfd(S) for a FFS S given by the following:

Mfd(S) = − 1

n

n∑

i=1

[
g3S(bi) log

(
g3S(bi)

)
+ f3S(bi) log

(
g3S(bi)

)
+ φ3S(bi) log

(
φ3S(bi)

)]
. (1)

Theorem 1. Let K = (b1, b2, . . . , bn) be an universe of discourse (non-empty). The proposed entropy
Mfd(S) for a FFS S satisfies the following conditions.

E1: Let us consider a crisp set S which has membership values either g3S(bi) = 1 and f3S(bi) = Φ3
S(bi) =

0 or f3S(bi) = 1 and g3S(bi) = Φ3
S(bi) = 0 or Φ3

S(bi) = 1 and g3S(bi) = f3S(bi) = 0.
Then easily we can say, Mfd(S) = 0.
Conversely, if Mfd(S) = 0 we have

[
g3S(bi) log

(
g3S(bi)

)
+ f3S(bi) log

(
g3S(bi)

)
+ φ3S(bi) log

(
φ3S(bi)

)]
= 0.

This will be included three possible cases as:

1) either g3S(bi) = 1 and f3S(bi) = Φ3
S(bi) = 0 or

2) f3S(bi) = 1 and g3S(bi) = Φ3
S(bi) = 0 or

3) Φ3
S(bi) = 1 and g3S(bi) = f3S(bi) = 0.

S is a crisp set if and only if Mfd(S) = 0 in the three examples above.
E2: Since g3S(bi) + f3S(bi) + Φ3

S(bi) = 1, in order to calculate the maximum value of fermatean fuzzy
entropy Mfd(S), we compose H(gS , fS,ΦS) = g3S(bi) + f3S(bi) + Φ3

S(bi) − 1 and the following Lagrange
function will be constructed as follows:

G∗(g3S , f
3
S ,Φ

3
S) = Mfd(g

3
S , f

3
S,Φ

3
S) + β1H(g3S , f

3
S ,Φ

3
S), (2)

where β1 is the Lagrange’s multiplier. To get the maximality of Mfd(S), differentiating (2) partly with
regard to g3S , f3S, Φ3

S and β1 and set each of them to 0, we have got g3S(bi) = f3S(bi) = Φ3
S(bi) = 1

3√3
.

The stationary points of Mfd(S) is g3S(bi) = f3S(bi) = Φ3
S(bi) = 1

3√3
. Next, by using Hessian matrix, we

prove that the function Mfd(S) is concave at stationary points.

Definition 7. The Hessian matrix (HM) of any three-variable function S(b1, b2, b3) is given by

⌈HM⌉(S) =




∂2S

∂b21

∂2S

∂b2∂b1

∂2S

∂b3∂b1
∂2S

∂b1∂b2

∂2S

∂b22

∂2S

∂b3∂b2
∂2S

∂b1∂b3

∂2S

∂b2∂b3

∂2S

∂b23




here S is strictly convex in the domain at a point when ⌈HM⌉(S) is defined as positive definite and
its strictly concave if ⌈HM⌉(S) is defined as negative definite.
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The HM of Mfd(S) is stated as follows:

⌈HM⌉(Mfd(S)) = (
3
√

3)




−1 0 0
0 −1 0
0 0 −1
0 0 −1




it is negative definite. As an outcome, Mfd(S) is strictly concave function with a maximum value at
g3S(bi) = f3S(bi) = Φ3

S(bi) = 1
3√3

(stationary points).

E3: Since, Mfd(S) is a concave function of S ∈ FFS(K) having maximum value at stationary points,
then if max {g3S(bi), f

3
S(bi),Φ

3
S(bi)} 6 1

3√3
, then g3S(bi) 6 g3T (bi), f

3
S(bi) 6 f3T (bi) implies Φ3

S(bi) >

Φ3
T (bi) >

1
3√3

. Then, by using property (2.1), we shall see that Mfd(S) proves the condition E3.

Similarly, if min{g3S(bi), f
3
S(bi)} > 1

3√3
, then g3A(bi) > g3T (bi), f

3
Sbi) > f3T (bi). We can show that

Mfd(S) holds the condition E3 by using property (2.1).
E4: For any FFS, Mfd(S) = Mfd(S

c), it is easy to check.

Theorem 2. For any two S, T ∈ FFS(K), such that for all bi ∈ K either S ⊆ T or BT ⊆ S; then,

Mfd(S ∪ T ) +Mfd(S ∩ T ) = Mfd(S) +Mfd(T ).

Proof. Separate K into two halves, say K1 and K2, to establish the theorem 2

K1 = {bi ∈ K : S ⊆ T}, and K2 = {bi ∈ K : T ⊇ S},

g3S(bi) 6 g3T (bi), f
3
S(bi) 6 f3T (bi) ∀bi ∈ K1,

g3S(bi) > g3T (bi), f
3
S(bi) > f3T (bi) ∀bi ∈ K2,

Mfd(S ∪ T ) = − 1

n

n∑

i=1

[
g3(S∪T )(bi) log

(
g3(S∪T )(bi)

)

+ f3(S∪T )(bi) log
(
f3(S∪T )(bi)

)
+ φ3(S∪T )(bi) log

(
φ3(S∪T )(bi)

)]

= − 1

n

∑

K1

[
g3T (bi) log

(
g3T (bi)

)
+ f3T (bi) log

(
f3T (bi)

)
+ φ3T (bi) log

(
φ3T (bi)

)]

− 1

n

∑

K2

[
g3S(bi) log

(
g3S(bi)

)
+ f3S(bi) log

(
f3S(bi)

)
+ φ3S(bi) log

(
φ3S(bi)

)]
.

Similarly, we get

Mfd(S ∩ T ) = − 1

n

∑

K1

[
g3S(bi) log

(
g3S(bi)

)
+ f3S(bi) log

(
f3S(bi)) + φ3S(bi) log

(
φ3S(bi)

)]

− 1

n

∑

K2

[
g3T (bi) log

(
g3(T (bi)

)
+ f3T (bi) log

(
f3T (bi)

)
+ φ3T (bi) log

(
φ3T (bi)

)]
.

Now, adding above equations, we have

Mfd(S ∪ T ) +Mfd(S ∩ T ) = Mfd(S) +Mfd(T ).

�

As a result, the proposed entropy measure satisfies some effective features, demonstrating its utility
in certain applications.
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4. Divergence measure for FFSs

History: Shannon was a pioneer in the subject of entropy and he proposed the below statement for
a set S:

MF (S) = −
n∑

i=1

(bi) log(bi).

In a mixed distribution, a decomposition of total diversity S+T
2 can be obtained from the concavity

behaviour of M(A) as follows:

Mf

(
S + T

2

)
=

1

2

(
Mf (S) +Mf (T )

)
+

1

2
Jn(S, T ). (3)

The first half of the equation (3) described above, i.e., S+T
2 the average diversity within distributions

is described, where the second part, i.e.,

Jn(S, T ) =
(
−Mf (S) −Mf (T )

)
− 2

(
−Mf

(
S + T

2

))
(4)

is called Jensen difference that raises due to the convexity of M(S) which is > 0 (i.e., non-negative) and
vanishes if and only if S = T . Also, between two finite probability distributions S and T it computes
a unique divergence measure.

We assume that equation (4) originates as a result of the generalised technique of entropy functions,
which incorporates the entropy investigated by [49] and referred to as a Jensen–Shannon divergence,
and that it has the convex property. According to the well-known Shannon entropy, the property of
convex for Jensen divergence equation (4) is straightforward to understand. Jensen–Shannon diver-
gence measure defined by [50] for two finite probability distributions S and T , corresponding to the
weight vectors σ1 + σ2 = 1, is simple to understand, as per the well-known Shannon entropy.

For two finite probability distributions S and T , corresponding to the coefficient weight vectors
σ1 + σ2 = 1,

JS(S, T ) = Mf (σ1S + σ2T ) − σ1Mf (S) − σ2Mf (T ).

The Jensen–Shannon divergence measure has a critical property that different weights can be allocated
for each probability distribution. Such characteristic are appropriate to study the various decision
problems emerge, whenever weights are prior probabilities. For two probability distributions, the
majority of divergence measure has been built Jensen-Shannon divergence was the inspiration for
this piece. We build a new Jensen–Shannon divergence measures for FFSs which is advanced stage
of Jenson–Shannon divergence measure for IFSs and recall some particular cases, which shows its
validation. In particular, several aspects of the constructed measure are discussed.

4.1. Proposed divergence measure for FFSs

Definition 8. Let S, T ∈ FFSs(K). Now we represent

Ωi
MF (S, T ) =

(
g3S(bi) + g3T (bi)

)
log

g3S(bi) + g3T (bi)

2
− g3S(bi) log

(
g3S(bi)

)
− g3T (bi) log

(
g3T (bi)

)
,

Ωi
NMF (S, T ) =

(
f3S(bi) + f3T (bi)

)
log

f3S(bi) + f3T (bi)

2
− f3S(bi) log

(
f3S(bi)

)
− f3T (bi) log

(
f3T (bi)

)
,

Ωi
II(S, T ) = (φ3S(bi) + φ3T (bi)) log

(φ3S(bi) + φ3T (bi))

2
− φ3S(bi) log

(
φ3S(bi)

)
− φ3T (bi) log

(
φ3T (bi)

)
.

Now by using above three equations we explain the Jensen–Shannon fermatean fuzzy divergence mea-
sure as below:

Ωff (S, T ) = − 1

n

n∑

i=1

(
Ωi
MF (S, T ) +Ωi

NMF (S, T ) +Ωi
II(S, T )

)
. (5)
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Definition 9. Let S, T ∈ FFSs(K). A real-valued function Ωff : FFSs(K)×FFSs(K) → Re it is
known as the FFS divergence measure, if it meets the following criteria:

1) Ωff (S, T ) > 0, and Ωff (S, T ) = 0 iff S = T ;
2) Ωff (S, T ) = Ωff (T, S);
3) Ωff (S, T ) 6 Ωff (S,R) and Ωff (T,R) 6 Ωff (S,R).

Properties of proposed divergence measure

1. Ωff (S, S ∪ T ) = Ωff (S ∩ T, T ) = Ωff (S, T ).
2. Ωff (S ∪ T, S ∩ T ) = Ωff (S ∩ T, S ∪ T ) = Ωff (S, T ).
3. Ωff (S, S ∪ T ) +Ωff (S, S ∩ T ) = 2Ωff (S, T ).
4. Ωff (T, S ∪ T ) +Ωff (T, S ∩ T ) = 2Ωff (S, T ).
5. Ωff (S ∪ T,R) 6 Ωff (S,R) +Ωff (T,R).
6. Ωff (S ∩ T,R) 6 Ωff (S,R) +Ωff (T,R).
7. Ωff (S ∪ T,R) +Ωff (S ∩ T,R) = Ωff (S,R) +Ωff (T,R).
8. Ωff (S, T ) = Ωff (Sc, T c).
9. Ωff (S, T c) = Ωff (Sc, T ).

10. Ωff (S, T c) +Ωff (Sc, T ) = Ωff (Sc, T c) +Ωff (S, T c).

Proof. First, we will separate set K into two subsets K1 and K2, such that

K1 = {bi ∈ K : S ⊂ T} and K2 = {bi ∈ K : S ⊃ T} (6)

From Equation (6), for all bi ∈ K1,

g3S 6 g3T and f3S > f3T ;

for all bi ∈ K2,
g3S > g3T and f3S 6 f3T .

1. Property 1 as follows. Since

Ωff (S, S ∪ T ) = − 1

n

n∑

i=1

(Ωi
MF (S, S ∪ T ) +Ωi

NMF (S, S ∪ T ) +Ωi
II(S, S ∪ T ))

= − 1

n

n∑

i=1

[(
g3S(bi) + g3S∪T (bi)

)
log

g3S(bi) + g3S∪T (bi)

2

+
(
f3S(bi) + f3S∪T (bi)

)
log

f3S(bi) + f3S∪T (bi)

2
+
(
φ3S(bi) + φ3S∪T (bi)

)
log

φ3S(bi) + φ3S∪T (bi)

2

−
(
g3S(bi) log

(
g3S(bi)

)
+ f3S(bi) log

(
f3S(bi)

)
+ φ3S(bi) log

(
φ3S(bi)

))

−
(
g3S∪T (bi) log

(
g3S∪T (bi)

)
+ f3S∪T (bi) log

(
f3S∪T (bi)

)
+ φ3S∪T (bi) log

(
φ3S∪T (bi)

)) ]
.

This implies

Ωff (S, S ∪ T ) = − 1

n

∑

k1

[(
g3S(bi) + g3T (bi)

)
log

g3S(bi) + g3T (bi)

2

+
(
f3S(bi) + f3T (bi)

)
log

f3S(bi) + f3T (bi)

2
+
(
φ3S(bi) + φ3T (bi)

)
log

φ3S(bi) + φ3T (bi)

2

−
(
g3S(bi) log

(
g3S(bi)

)
+ f3S(bi) log

(
f3S(bi)

)
+ φ3S(bi) log

(
φ3S(bi)

))

−
(
g3T (bi) log

(
g3T (bi)

)
+ f3T (bi) log

(
f3T (bi)

)
+ φ3T (bi) log

(
φ3T (bi)

))]

− 1

n

∑

k2

[(
g3S(bi) + g3S(bi)

)
log

g3S(bi) + g3S(bi)

2

+ (f3S(bi) + f3S(bi)) log
f3S(bi) + f3S(bi)

2
+
(
φ3S(bi) + φ3S(bi)

)
log

φ3S(bi) + φ3S(bi)

2
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−
(
g3S(bi) log

(
g3S(bi)

)
+ f3S(bi) log

(
f3S(bi)

)
+ φ3S(bi) log

(
φ3S(bi)

))

−
(
g3S(bi) log

(
g3S(bi)

)
+ f3S(bi) log

(
f3S(bi)

)
+ φ3S(bi) log

(
φ3S(bi)

))]

6 − 1

n

n∑

i=1

[(
g3S(bi) + g3T (bi)

)
log

g3S(bi) + g3T (bi)

2

+
(
f3S(bi) + f3T (bi)

)
log

f3S(bi) + f3T (bi)

2
+
(
φ3S(bi) + φ3T (bi)

)
log

φ3S(bi) + φ3T (bi)

2
−
(
g3S(bi) log

(
g3S(bi)

)
+ f3S(bi) log

(
f3S(bi)

)
+ φ3S(bi) log

(
φ3S(bi)

))

−
(
g3T (bi) log

(
g3T (bi)

)
+ f3T (bi) log

(
f3T (bi)

)
+ φ3T (bi) log

(
φ3T (bi)

))]

= Ωff (S, T ).

Similarly, Ωff (S ∩ T, T ) 6 Ωβ(S, T ) can be proved. From property (1) we get,

Ωff (S ∪ T, S ∩ T ) =
∑

K1

Ωff (T, S) +
∑

K2

Ωff (S, T ) = Ωff (S, T ).

Similarly, we obtain

Ωff (S ∩ T, S ∪ T ) =
∑

k1

Ωff (T, S) +
∑

k2

Ωff (S, T ) = Ωff (S, T ).

2. Proof of the property (3)

Ωff (S, S ∪ T ) +Ωff (S, S ∩ T ) =
∑

K1

Ωff (S, T ) +
∑

K2

Ωff (S, S) +
∑

K1

Ωff (S, S) +
∑

K2

Ωff (S, T )

= 2Ωff (S, T ).

3. The proof of property (4) comes directly from the proof of property (3).
4. To prove the property (5), consider

Ωff (S,R) +Ωff (T,R) −Ωff (S ∪ T,R) = − 1

n

n∑

i=1

[(
g3S(bi) + g3R(bi)

)
log

g3S(bi) + g3R(bi)

2

+
(
f3S(bi) + f3R(bi)

)
log

f3S(bi) + f3R(bi)

2
+
(
φ3S(bi) + φ3R(bi)

)
log

φ3S(bi) + φ3R(bi)

2

−
(
g3S(bi) log

(
g3S(bi)

)
+ f3S(bi) log

(
f3S(bi)

)
+ φ3S(bi) log

(
φ3S(bi)

))

−
(
g3R(bi) log

(
g3R(bi)

)
+ f3R(bi) log

(
f3R(bi)

)
+ φ3R(bi) log

(
φ3R(bi)

))]

− 1

n

n∑

i=1

[(
g3T (bi) + g3R(bi)

)
log

g3T (bi) + g3R(bi)

2

+
(
f3T (bi) + f3R(bi)

)
log

f3T (bi) + f3R(bi)

2
+
(
φ3T (bi) + φ3R(bi)

)
log

φ3T (bi) + φ3R(bi)

2

−
(
gT (bi) log

(
g3T (bi)

)
+ f3T (bi) log

(
f3T (bi)

)
+ φ3T (bi) log

(
φ3T (bi)

))

−
(
g3R(bi) log

(
g3R(bi)

)
+ f3R(bi) log

(
f3R(bi)

)
+ φ3R(bi) log

(
φ3R(bi)

))]

+
1

n

∑

K1

[(
g3T (bi) + g3R(bi)

)
log

g3T (bi) + g3R(bi)

2

+
(
f3T (bi) + f3R(bi)

)
log

f3T (bi) + f3R(bi)

2
+
(
φ3T (bi) + φ3R(bi)

)
log

φ3T (bi) + φ3R(bi)

2
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−
(
g3T (bi) log

(
g3T (bi)

)
+ f3T (bi) log

(
f3T (bi)

)
+ φ3T (bi) log

(
φ3T (bi)

))

−
(
g3R(bi) log

(
g3R(bi)

)
+ f3R(bi) log

(
f3R(bi)

)
+ φ3R(bi) log

(
φ3R(bi)

))]

+
1

n

∑

K2

[(
g3S(bi) + g3R(bi)

)
log

g3S(bi) + g3R(bi)

2

+
(
f3S(bi) + f3R(bi)

)
log

f3S(bi) + f3R(bi)

2
+
(
φ3S(bi) + φ3R(bi)

)
log

φ3S(bi) + φ3R(bi)

2

−
(
gS(li) log

(
g3S(bi)

)
+ f3S(bi) log

(
f3S(bi)

)
+ φ3S(bi) log

(
φ3S(bi)

))

−
(
g3R(bi) log

(
g3R(bi)

)
+ f3R(bi) log

(
f3R(bi)

)
+ φ3R(bi) log

(
φ3R(bi)

))]
> 0.

Therefore Ωff (S,R) +Ωff (T,R) > Ωff (S ∪ T,R).
We can also prove properties (6) and (7) in same way. Properties (8), (9) and (10) are also easily

can be prove. �

5. MAGDM approach using the TODIM–VIKOR Method based on specified measures

TODIM and VIKOR approaches are integrated in this part to address the MAGDM problem in Fer-
matean fuzzy settings. Figure 1 shows the proposed integrated TODIM–VIKOR technique’s schematic
framework. We can see that there are four stages here. The FFNs are utilised in stage 1 to display the
original decision-making data, after which the decision matrix is normalised. The objective criteria
weights are determined in step 2 by combining the entropy weights model and the divergence measure.
The method TODIM is used to prepare the dominance matrix in stage 3. In stage 4, the VIKOR
approach is chosen to more efficiently resolve the ranking order of the possibilities.

Stage 1: Obtain decision-making data

A matrix can be used to illustrate multi-attribute decision-making situations. Alternatives and at-
tributes are represented in the decision matrix’s rows and columns, respectively. Experts / DMs’ first
Fermatean fuzzy information is acquired and described as FFNs or performance values. The concept
of benefit and cost type attributes is used to create a normalisation matrix.

Consider Y = {Y1, Y2, . . . , Yp} is a set of traits and δ = {θ1, θ2, . . . , θn} are alternatives. Let the
matrix W = [wij]p×n = (gij , fij)p×n; 1 6 i 6 p, 1 6 j 6 n represented Fermatean fuzzy information.
The matrix form for the MAGDM problem with FFNs is as follows:

W = [wij]p×n =

θ1 θ2 . . . θn





Y1 (g11, f11) (g12, f12) · · · (g1n, f1n)
Y2 (g21, f21) (g22, f22) · · · (g2n, f2n)

...
...

. . .
...

Yp (gp1, fp1) (gp2, fp2) · · · (gpn, fpn)

.

Step 1: We constructed the following normalise algorithm for each attribute to make it dimensionless
and easier to use. The normalised FFS decision matrix is displayed by oij as follows:

oij =

{
neg(wij), when cost attribute,

wij, when benefit attribute,

where neg(wij) = (fij , gij).
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Fig. 1. TODIM–VIKOR technique’s schematic framework

Stage 2: Obtain the attribute’s goal weights

Step 2: The following method, as a result of proposed divergence measure (5) and entropy measure (1),
can be used to compute the attribute’s objective weights:

uobjj =

∑p
i=1

[
1
p−1

∑p
t=1Ωff (oij , otj) +Mfd(oij)

]

∑n
j=1

∑p
i=1

[
1
p−1

∑p
t=1Ωff (oij , otj) +Mfd(oij)

] .

The relative weights for each attribute are then calculated as follows:

ujr =
uobjj
ur

, j, r = 1, 2, . . . , n, (7)

here uobjj describes the weight of the attribute, ur is the maximum of {u1, u2, . . . , un} such that 0 6

ujr 6 1.
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Stage 3: Using TODIM, create a dominance matrix

Step 3: The computation of dominance degree matrix (DDM) for alternatives Yj concerning each
attribute θj is determined by the following expression using relative weights acquired from (7):

Cj(Yi, Yt) =





√
ujrΩff (oij ,otj)

∑n
j=1 ujr

, if oij − otj > 0;

0, if oij − otj = 0;

− 1
γ

√
(
∑n

j=1 ujr)Ωff (oij ,otj)

ujr
if oij − otj < 0,

(8)

where Ωff (oij , otj) is the divergence between the two FFNs. oij , otj and the parameter γ > 0 define
as the attenuation term of the losses.

Step 4: Calculate the DDM for every alternative Yi, in relation to each attribute θj is shown below:

Cj = [Cj(Yi, Yt)]p×p =

Y1 Y2 . . . Yp





Y1 0 Cj(Y1, Y2) · · · Cj(Y1, Yp)
Y2 Cj(Y2, Y1) 0 · · · Cj(Y2, Yp)

...
...

. . .
...

Yp Cj(Yp, Y1) Cj(Yp, Y2) · · · 0

.

Compute the final DDM of alternatives Yi under attributes θj in relation to another alternatives
Yt (t = 1, 2, . . . , p) as given below:

∆j(Yj , Yt) =

p∑

t=1

Cj(Yi, Yt).

Stage 4: For all alternatives acquire the ranking orders with VIKOR

Step 5: To build up the best L+ and poorest L− solution for each attribute the continuing to follow:

L+ = (L+
1 , L

+
2 , . . . , L

+
n ) =

(
max

p∑

t=1

C1(Yi, Yt),max

p∑

t=1

C2(Yi, Yt), . . . ,max

p∑

t=1

Cn(Yi, Yt)

)

and

L− = (L−
1 , L

−
2 , . . . , L

−
n ) =

(
min

p∑

t=1

C1(Yi, Yt),min

p∑

t=1

C2(Yi, Yt), . . . ,min

p∑

t=1

Cn(Yi, Yt)

)
.

Step 6: Calculate utility measure (UMi) and regret measure (RMi) for each alternatives as:

UMi =
∑

16j6n

uobjj ×
d(L+

j , tij)

d(L+
j , L

−
j )
,

RMi = max
j

(
uobjj ×

d(L+
j , tij)

d(L+
j , L

−
j )

)
,

where

d(L+
j , tij) = max

16i6n

m∑

t=1

Cj(Yi, Yt) −
p∑

t=1

Cj(Yi, Yt),

d(L+
j , tij) = max

16i6n

p∑

t=1

Cj(Yi, Yt) − min
16i6n

p∑

t=1

Cj(Yi, Yt).

Step 7: Calculate ¯UM , UM−, ¯RM , RM− values and VIKOR index V Ii based on Equations (9) and
(10), respectively,
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¯UM = max(UMi), UM− = min(UMi), ¯RM = max(RMi), RM− = min(RMi), (9)

V Ii = e
UMi − UM−

¯UM − UM− + (1 − e)
RMi −RM−

¯RM −RM− . (10)

Coefficients e, 1−e are proposed as a weights for “maximum group utility” UMi and “individual regret”
(RMi), respectively.
Step 8: With the minimum of (UMi), (RMi) and (V Ii) determine best alternative in decreasing order.
Step 9: for offering the optimal compromise solution, taking the following two conditions into consid-
eration:

C1: If V I(Y (2)) − V I(Y (1)) > 1
R−1 , where Y (1) and Y (2) will be taken at primary and secondary

places in the rank list of V Ii and R stands for the number of alternatives.
C2: The alternative Y (1) must be rated first in the list of UMi or/and RMi to be ideal. If from

C1 and C2 no condition is satisfied, then solutions set is proposed as below:
(a) Adequate advantage Y (1) and Y (2) are compromise Alternatives when only C2 does not hold.
(b) Adequate stability When C1 fails to hold, we attempt to discover the greatest value P by

the following inequality:

V I(Y (M)) − V I(Y (1)) <
1

R− 1
. (11)

It also establishes that the compromised solution is the collection of alternatives Y (i) (i = 1(1)P ).

6. An illustration

By planning, regulating, and coordinating capital flow and logistical information across manufacturers,
distributors, suppliers, and retailers. Supply chain management allows both internal and external
resources to be integrated (SCM). Supplier-traditional enterprise relationships are evolving beyond
conventional commerce relationships; suppliers are increasingly becoming tactical partner companies.
Because Supplier selection is a significant problem in SCM since it creates a win scenario. The basic
notion of SCM has been applied to the problem of medical supply supplier selection [7, 14, 34, 51–53].
The difficulty of selecting a supplier to supply the medical products is a classic MAGDM problem.
As a result, this part uses FFS data to illustrate the technique presented in this study by providing a
numerical example of a supplier problem in medical supply items. A collection of five possible medical
consumption product vendors is shown as Y1, Y2, Y3, Y4, Y5. For evaluating the five potential suppliers
of medicinal consumption items, the experts chose five attributes given by (θ1) quality of environmental
improvement, (θ2) cost of transportation suppliers, (θ3) green image, (θ4) environmental competencies,
(θ5) financial conditions. Only transportation costs are included in cost type attribute, whereas the
rest four are benefit attributes.
Step 1: The initial FFS matrix shown in Table 2 displays the normalised matrix obtained from the
original choice matrix, as the above described application has one cost attribute (θ2), Table 3 shows
the normalised matrix produced from the original decision matrix.

Table 2. Original decision matrix.

Decision value θ1 θ2 θ3 θ4 θ5
Y1 (0.8,0.1) (0.4,0.6) (0.4,0.7) (0.3,0.4) (0.6,0.5)
Y2 (0.6,0.7) (0.5,0.3) (0.5,0.2,) (0.9,0.4) (0.7,0.4)
Y3 (0.7,0.5) (0.2,0.4) (0.4,0.8) (0.7,0.7) (0.4,0.8)
Y4 (0.6,0.5) (0.2,0.7) (0.8,0.6) (0.2,0.6) (0.4,0.1)
Y5 (0.4,0.3) (0.6,0.5) (0.4,0.3) (0.2,0.9) (0.3,0.5)

Step 2: The divergence, values of entropy and weights vector are shown for each property in Table 4.
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Table 3. Normalized decision matrix.

Decision value θ1 θ2 θ3 θ4 θ5
Y1 (0.8,0.1) (0.6,0.4) (0.4,0.7) (0.3,0.4) (0.6,0.5)
Y2 (0.6,0.7) (0.3,0.5) (0.5,0.2,) (0.9,0.4) (0.7,0.4)
Y3 (0.7,0.5) (0.4,0.2) (0.4,0.8) (0.7,0.7) (0.4,0.8)
Y4 (0.6,0.5) (0.7,0.2) (0.8,0.6) (0.2,0.6) (0.4,0.1)
Y5 (0.4,0.3) (0.5,0.6) (0.4,0.3) (0.2,0.9) (0.3,0.5)

Table 4. Values are weighted dependent on entropy measure and divergence measure.

Alternatives values of Divergence Entropy values Objective weights
Y1 0.7542 3.9734 0.2398
Y2 0.2538 2.9433 0.1733
Y3 0.6727 3.2832 0.1989
Y4 1.4902 3.1142 0.2009
Y5 0.4246 3.1401 0.1871

Step 3: Estimated dominance degree matrices for alternatives Yi using Eq. (8) are follows from Table 5
to Table 10.

Table 5. Dominance degree under attribute θ1.

Attribute (δ1) Y2 Y2 Y3 Y4 Y5
Y1 0.0000 0.2536 0.1473 0.1848 0.4252
Y2 −0.4229 0.0000 −0.2086 −0.2127 −0.4316
Y3 −0.2456 0.1249 0.0000 0.0686 0.2032
Y4 −0.3082 0.1275 −0.11385 0.0000 0.1536
Y5 −0.4110 0.2499 −0.3390 −0.2438 0.0000

Table 6. Dominance degree under attribute θ2.

Attribute (θ2) Y1 Y2 Y3 Y4 Y5
Y1 0.0000 0.1249 0.1134 −0.0926 0.0959
Y2 −0.2863 0.0000 −0.2451 −0.4443 −0.2216
Y3 −0.2617 0.1062 0.0000 −0.3303 0.1557
Y4 0.08 0.1925 0.1446 0.0000 0.1655
Y5 −0.2193 −0.096 −0.3594 −0.3819 0.0000

Table 7. Dominance degree under attribute θ3.

Attribute (θ3) Y1 Y2 Y3 Y4 Y5
Y1 0.0000 −0.4201 0.0747 −0.4478 −0.3762
Y2 0.242 0.0000 0.2713 −0.5481 0.0538
Y3 −0.1504 −0.545798 0.0000 −0.4503 −0.511
Y4 0.2227 0.2726 0.2238 0.0000 0.2897
Y5 0.1870 −0.1080 0.2542 −0.5824 0.0000

Table 8. Dominance degree under attribute θ4.

Attribute (θ4) Y1 Y2 Y3 Y4 Y5
Y1 0.0000 −0.6842 −0.5491 0.0995 0.3087
Y2 0.3437 0.0000 −0.3684 0.3541 0.3818
Y3 0.2759 −0.3684 0.0000 0.2423 0.2256
Y4 −0.19842 −0.7030 −0.4822 0.0000 0.2261
Y5 −0.6146 −0.7602 −0.4493 −0.4500 0.0000
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Table 9. Dominance degree under attribute θ5.

Attribute (θ5) Y1 Y2 Y3 Y4 Y5
Y1 0.0000 −0.1429 0.1845 0.1594 0.1277
Y2 0.0671 0.0000 0.2326 0.1760 0.1811
Y3 −0.3901 −0.4971 0.0000 −0.5898 −0.4004
Y4 −0.3407 −0.3729 0.2759 0.0000 0.1249
Y5 −0.2727 −0.3869 0.1873 −0.2676 0.0000

Table 10. Total dominance degree.

Y1 Y2 Y3 Y4 Y5
Y1 1.0109 0.2416 −1.1694 −0.8251 0.3267
Y2 −1.2758 1.1993 0.017 0.7112 0.6574
Y3 0.1511 −0.3301 −1.6651 0.37542 −1.8694
Y4 −0.1409 0.5826 1.0088 −1.1595 −0.3128
Y5 −0.7439 −1.0566 −0.2492 −2.2741 −0.7483

Step 4: The best solution L+ and the poorest L− are displayed in Table 11 and score function is
calculated in Table 12.

Table 11. Best and worst solutions.

Alternatives Y1 Y2 Y3 Y4 Y5
L+ 1.0109 1.1993 1.0088 0.7112 0.6574
L− −1.2758 −1.0566 −1.66518 −2.2741 −1.8694

Table 12. Scores of uinte
j × d(L+

j
,tij)

d(L+

j
,L

−

j
)
.

Alternatives θ1 θ2 θ3 θ4 θ5
Y1 0.0000 0.0736 0.1620 0.1034 0.0245
Y2 0.2398 0.0000 0.0738 0.0000 0.0000
Y3 0.0901 0.1175 0.1989 0.0226 0.1871
Y4 0.1012 0.04743 0.0000 0.1259 0.0718
Y5 0.1840 0.1733 0.0936 0.2009 0.1041

Step 5 and 6: The UMi and RMi are identified in a decreasing order. Table 13 and Table 14 explain
results.

Table 13. Calculated values of UMi, RMi, V Ii.

Alternatives UMi RMi V Ii (e = 0.5)
Y1 0.3635 0.1620 0.2149
Y2 0.3136 0.2398 0.5
Y3 0.6162 0.1989 0.6626
Y4 0.3463 0.1259 0.0370
Y5 0.7559 0.2009 0.8292

Table 14. By UMi, RMi, and V Ii, Yi (alternatives) are ranked.

Alternatives By UMi By RMi By V Ii (e = 0.5)
Y1 3 2 2
Y2 1 5 3
Y3 4 3 4
Y4 2 1 1
Y5 5 4 5

Pref. Sequence Y2 ≻ Y4 ≻ Y1 ≻ Y3 ≻ Y5 Y4 ≻ Y1 ≻ Y3 ≻ Y5 ≻ Y2 Y4 ≻ Y1 ≻ Y2 ≻ Y3 ≻ Y5
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Step 7: We may find the values of V I based on UMi, RMi and VMi in Table 15 and determine
the ranking of alternatives and the results are presented numerically in Table 16 and graphically in
Figure 3.
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Fig. 2. Different values of e are represented by a line
graph.

Fig. 3. Ranking of Vi for various weights.

Table 15. The UMi, RMi, VMi weight e modifica-
tions yielded results, as well as a compromise solution.

Table 16. The ranking order of Vi for weight
0 6 e 6 1.

Y1 Y2 Y3 Y4 Y5
0 0.3169 1.0000 0.6409 0.0000 0.6585

0.1 0.2965 0.9 0.6452 0.0074 0.6926
0.20 0.2761 0.8 0.6496 0.0148 0.7268
0.30 0.2557 0.7 0.65391 0.0222 0.7609
0.40 0.2353 0.6 0.6582 0.0296 0.7951
0.50 0.2149 0.5 0.6625 0.0370 0.8292
0.60 0.1945 0.4 0.6669 0.0444 0.8634
0.70 0.1741 0.3 0.6712 0.0518 0.8975
0.80 0.1536 0.2 0.6755 0.0591 0.9317
0.90 0.1332 0.1 0.6798 0.0665 0.9658
1.00 0.1128 0.0000 0.6842 0.0739 1

Y1 Y2 Y3 Y4 Y5
0 4 1 3 5 2

0.1 4 1 3 5 2
0.20 4 1 3 5 2
0.30 ;4 2 3 5 1
0.40 4 3 2 5 1
0.50 4 3 2 5 1
0.60 4 3 2 5 1
0.70 4 3 2 5 1
0.80 4 3 2 5 1
0.90 3 4 2 5 1
1.00 3 5 2 4 1

In Table 16, the best alternative is Y2 for 0 6 e 6 0.2 and Y5 for 0.3 6 e 6 1.
Step 8 and 9: As well from the Table 16, the alternative Y4 is readily apparent has been placed

first and Y1 has been placed second in the V Ii ranking. We also have V I(Y (1))−V I(Y (4)) = 0.2149−
0.0370 = 0.1779 < 0.25 and as a result, the condition C1 is not checked. Then there is a list of choices
{Y1, Y2, . . . , YR} is consider a compromise solution and YR is depicted by Equation (11). But

V I(Y (2)) − V I(Y (1)) = 0.5 − 0.2149 = 0.2851 >
1

5 − 1
= 0.25,

where Y (2) has been placed third in the order of V I. As just a result, the combination (Y (1), Y (4))
might be thought of as a compromise solution.

Comparative study

We conduct a comparison study by handling the decision problem using the three FFS MADM ap-
proaches that are currently available [54–56]. The method [54] is totally reliant on Hamacher Interactive
Geometric Operators and [56] approach is entirely dependent on the aggregate operator. To obtain the
best ranking order, [55] use the TOPSIS approach in an FFS environment. The proposed FF–TODIM–
VIKOR approach is an outranking method that disregards whether the qualities are interconnected
or independent. The intensity of liking for the four approaches is, however, determined by the dis-
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tance between FFNs. When comparing two FFNs, the divergence is preferable to the distance between
them. To characterise the following comparative analysis, the quality weights are based on the above-
mentioned computation result. The order of ranking of the alternatives can then be obtained by using
these four distinct operators for FFS, as shown in Table 17.

Table 17. Results of other methods of ranking are compared in this study.

Researchers Method approach Best value Optimize ranking
[54] Hamacher Interactive

Geometric Operators Y4 Y4 ≻ Y2 ≻ Y1 = Y3 ≻ Y5
[55] Aggregation operator Y 4 Y4 ≻ Y1 ≻ Y2 ≻ Y5 ≻ Y3
[56] TOPSIS Y4 Y4 ≻ Y2 ≻ Y3 ≻ Y1 ≻ Y4

Proposed method TODIM VIKOR Y4 Y4 ≻ Y1 ≻ Y2 ≻ Y3 ≻ Y5

In Table 17, we verify that results of ranking generated using four approaches that existing are
differ minutely from those obtained using the suggested method. These five methods will assist you in
determining the best alternative, Y4.

7. Conclusion

This paper has conducted extensive research on the mechanisms of entropy and FFS differentiation.
A new degree of entropy is proposed and by extending the idea of Shannon entropy from the theory
of chance to the ambiguous set of Fermatean, a few favourable areas are also being investigated.
Also defined and confirmed is a novel measure of variation between FFSs. In addition, the proposed
divergence measure’s requirements are discussed. The unique model to discover the vector weight of
characteristics was then detailed utilising the supplied entropy and severity values. Following that,
the classic VIKOR based on Fermatean fuzzy entropy and separation measures was combined with the
ancient TODIM approach. With significant weight information, we have presented a new technique
for dealing with MAGDM difficulties. Finally, we used the supply chain management challenge to
evaluate the current decision-making process’s feasibility and efficacy. Sensitivity analysis tests were
carried out to determine the extent of influence of the parameters on the final outcomes. The advantages
of the suggested integrated method are also weighed against a variety of alternatives. Furthermore,
the TODIM–VIKOR integrated strategy is straightforward, versatile, and simple to implement. The
newly created ambiguous MAGDM approach solves uncertainty decision-making challenges coming
from community risk, provider selection, medical diagnosis, cluster analysis, and other factors. As a
result, the proposed technique in this study, which is very near to actual decision-making, can represent
a wide range of uncertainties and imprecise information. This aids us in dealing with MAGDM issues
and correctly drawing realities. The final results indicate the proposed technique is more dependable
and resilient than the alternatives.

In the future, we will try to analyse alternative FFS structures utilising information levels and
dimension similarities and differences in blurred photo sets and use them in various settings, including
the financial market, pattern recognition, emergency management, and decision-making under multiple
circumstances.
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Багатоатрибутна групова задача прийняття рiшень щодо
продуктiв медичного призначення на основi розширеного пiдходу
TODIM–VIKOR з ферматiвською нечiткою iнформацiйною мiрою

Сетi Т., Кумар С.

Математично-гуманiтарний факультет, Iнженерний коледж М.М.,
Махарiшi Маркандешварський унiверситет, Муллана-Амбала 133207, Iндiя

Фундаментальною метою цього дослiдження є розробка MAGDM (багатоатрибутне
групове прийняття рiшень) проблеми продуктiв медичного споживання. У цiй стат-
тi пропонується пiдхiд TODIM–VIKOR, який поєднує в собi процедури TODIM (iн-
терактивне та багатокритерiальне прийняття рiшень) i VIKOR (оптимiзацiя за всiма
критерiями та компромiсне рiшення) у межах ферматiвської нечiткої iнформацiї. Для
роботи зi задачами порiвняння подано нову ферматiвську функцiю нечiткого скорин-
гу. Крiм того, введено нову мiру ентропiї для оцiнки ступеня нечiткостi, яка пов’язана
з ферматiвською нечiткою множиною (ФНМ). Також запропоновано мiру розбiжностi
Дженсена–Шеннона для ферматiвської нечiткої множини, яку можна використову-
вати для порiвняння iнформацiї про вiдмiнностi двох ФНМ. Ця запропонована мiра
вiдповiдає всiм математичним вимогам, щоб вважатися мiрою. Введено мiри ентро-
пiї та розбiжностi для визначення об’єктивної ваги в пiдходi TODIM–VIKOR. Тим
часом, щоб мати справу з прийняттям рiшень щодо кiлькох груп атрибутiв, була
запропонована нова процедура прийняття рiшень на основi запропонованої ентропiї
та мiри розбiжностi Дженсена–Шеннона в ферматiвському нечiткому середовищi. У
цiй статтi TODIM має на метi з’ясувати загальний ступiнь домiнування, а VIKOR
— визначити компромiсне рiшення. Врештi, вирiшено задачу вибору постачальни-
ка, щоб перевiрити ефективнiсть запропонованого ферматiвського нечiткого методу
TODIM–VIKOR шляхом порiвняння рiшення ранжування з ранжуванням iснуючих
методологiй.

Ключовi слова: ентропiя, мiра розбiжностi, ферматiвська нечiтка множина,
MAGDM.
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