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An analysis for the numerical computing of the temperature around a solidification point of
liquid steel or melt contained in a mould is performed via the interaction of the conservation
equations of mass, momentum and heat transfer. A cooling process of liquid steel due to
the extraction of heat through the walls of the mould is analyzed using asymptotic methods
and an ordinary differential equation that describes the temperature of interface melt-air
is obtained. Also, the temperature of the melt in the mould around the solidification point
is computed numerically using the OpenFOAM software.
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1. Introduction

In steelmaking industry, ingot casting is a process to produce ingots inside a static mould. In the
process, liquid steel is poured into a mould wherein a cooling process occurs by extracting heat through
the walls of the mould and to obtain the solid steel product. Usually, small indentations are observed
on the surface of the solid steel which is considered a defect and it is referred to as ripple marks [1–4]
and to become interesting to know how this defect can be avoided.

Although the mechanism of formation of ripple marks depends on the properties of the liquid steel,
it is interesting to analyze a cooling process which leads to the solidification of steel [5, 6], and hence
to obtain some insights in how to prevent its formation by avoiding the solidification of the existing
melt in the mould.

Likewise, the mathematical modeling of this cooling process can be regarded as a starting point to
understand the cooling mechanism of more complex models with the purpose to avoid defects in the
steelmaking industry as that found in continuous casting where a combination of cooling of liquid steel
and oscillation of the mould produces a defect on the surface of the final product known as oscillation

marks [6–9].
An alternative to avoid this unwanted defect has been proposed by Vynnycky et al. [1], which is

based on the idea of finding the relation between the casting velocity and casting temperature of the
steel so that the onset of the solidification of the steel inside of the mould is initiated once the mould
is filled up. In this proposal plays a important role the existence of a point referred to as triple point

where three interfaces: mould wall-air, air-melt and melt-mould wall meet and where melt is at its
lowest temperature [1].

In this research, the cooling process around this triple point, also known as solidification point [1] is
investigated through of the temperature of the liquid steel filling a mould according to the configuration
given by Tomono [3] and Schwerdtfeger [8]. Likewise, it is analyzed the temperature on the rising
interface between the melt and the air in the mould referred to as meniscus and whose shape is
consequence of the surface tension [10].
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2. Model equations

In a channel-shaped mould with walls are a distance 2W apart and height is L, liquid steel at cast-
ing temperature Tc enters with casting velocity Vc and forms a meniscus where profile is given by

Fig. 1. Schematic of the meniscus whose profile is given by h = h(x, t),
and initially is y = y0. As the melt enters to the mould with a constant
velocity Vc, a heat flux Q at the wall x = W is released by the mould wall.

y = h(x, t), x, y denote the hor-
izontal and vertical coordinates
respectively and t denotes the
time; initially at t = 0, this pro-
file is given by y = y0. This sit-
uation is depicted in Figure 1
wherein p̃ indicates the solidifi-
cation point and at the mould
wall Q is the heat flux released
in this cooling process.

The horizontal and vertical
components of the fluid flow ve-
locity inside the mould are de-
noted by u and v respectively
and the pressure denoted by p;
also, the density and viscosity
of the melt are denoted by ρ and µ respectively. Thus, the mass and momentum conservation equa-
tions for the fluid flow [11,12] are given by

∂u

∂x
+
∂v

∂y
= 0, (1)

ρ

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y

)
= −∂p

∂x
+ µ

(
∂2u

∂x2
+
∂2u

∂y2

)
, (2)

ρ

(
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y

)
= −∂p

∂y
+ µ

(
∂2v

∂x2
+
∂2v

∂y2

)
− ρ g, (3)

where g is the gravity constant. Likewise, the temperature T of the liquid steel is governed by heat
transfer equation given by

ρ cp

(
∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y

)
= k

(
∂2T

∂x2
+
∂2T

∂y2

)
, (4)

where cp, k are heat capacity and thermal conductivity of the melt respectively.
To prescribe boundary conditions to equations (1)–(4), the symmetry about x = 0 (see Figure 1)

allows to consider only the region where x > 0. Thus, the inlet velocity and temperature at y = 0 are
given by

(u, v) = (0, Vc), T = Tc, (5)

and at the mould wall x = W ,

k
∂T

∂x
= −Q,

where Q > 0 denotes a constant heat flux. In the axis of symmetry x = 0,
∂T

∂x
= 0

and at the meniscus h = h(x, t) (
∂T

∂x
,
∂T

∂y

)
·
(
−∂h
∂x
, 1

)
= 0. (6)

The initial condition at t = 0 is given by T = Tc.
Likewise, the shape of meniscus is the result of interaction between the pressure differences at the

interface melt-air as mentioned by Bikerman [10], i.e.
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−(p− pa) = γ
∂2h/∂x2

(1 + (∂h/∂x)2)3/2
, (7)

where pa and γ denote the atmospheric pressure and surface tension coefficient between the melt and
the air respectively. Also, the volume of liquid steel filling the mould at time t is given by

W Vc t =

∫ W

0

(
h(x, t) − y0

)
dx. (8)

3. Nondimensionalization

To obtain some key parameters in this cooling process, it is suitable to use the transformation

X =
x

W
, Y =

y

W
, τ =

Vc t

W
, H =

h

W
, Y0 =

y0
W
, θ =

T − Tm
Tc − Tm

, U =
u

Vc
, V =

v

Vc
, P =

p− pa
ρ gW

,

where Tm is the melting temperature, i.e. at which the liquid steel becomes solid. From this, equa-
tions (1)–(3) becomes

∂U

∂X
+
∂V

∂Y
= 0,

∂U

∂τ
+ U

∂U

∂X
+ V

∂U
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= − 1
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∂P
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+

1
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(
∂2U

∂X2
+
∂2U

∂Y 2

)
, (9)
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= − 1
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+

1

Re

(
∂2V

∂X2
+
∂2V
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)
− 1
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and equation (4) becomes
∂θ

∂τ
+ U

∂θ

∂X
+ V

∂θ

∂Y
=

1

Pe

(
∂2θ

∂X2
+
∂2θ

∂Y 2

)
, (11)

where Re, Pe and Fr are the Reynolds, Peclet and Froude numbers given by
Re = ρVcW/µ, Pe = ρ cp VcW/k, Fr = V 2

c /(g W ). (12)

The boundary conditions (5)–(6), now become respectively
(U, V ) = (0, 1), θ = 1, (13)

∂θ

∂X
= −β, (14)

∂θ

∂X
= 0, (15)

(
∂θ

∂X
,
∂θ

∂Y

)
·
(
−∂H
∂X

, 1

)
= 0, (16)

where β = QW
k(Tc−Tm) . The initial condition at τ = 0 is θ = 1. Also, from (7),

Bo(−P ) =
∂2H/∂X2

(
1 + (∂H/∂X)2

)3/2 , (17)

where Bo denotes the Bond number given by

Bo =
ρ gW 2

γ
. (18)

In addition, equation (8), now becomes

τ =

∫ 1

0

(
H(X, τ)− Y0

)
dX. (19)

4. Analysis

From the physical properties shown in Table 1, obtained from [1], the following key parameters are
obtained: Re ≈ 1000, Pe ≈ 200, Fr ≈ 10−4, Bo ≈ 800, according to (12) and (18).
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Table 1. Values and description of parameters from [1].

Symbol Value Units Description
ρ 8000 Kg m−3 Density of liquid steel.
µ 0.0067 N m−2 Viscosity of liquid steel.
cp 500 J kg−1 K−1 Heat capacity of liquid steel.
k 20 W m−1 K−1 Thermal conductivity of liquid steel.
g 9.8 m s−2 Constant of gravity.
Tc 1450 K Casting temperature.
Tm 1400 K Melting temperature.
Vc 0.01 m s−1 Casting velocity.
γ 1880 N m−1 Surface tension melt–air.
W 0.1 m Mould width.
L 0.35 m Mould height.

The parameters Re and Pe allow to determine the thickness of the momentum and thermal boundary
layers: Re−1/2 and Pe−1/2 for the fluid flow and heat transfer respectively. Likewise, the key parameter
Bo indicates that the thickness of the meniscus deviation is Bo−1/2 as shown in Figure 2 and the
solidification point is located at P̃ . In Figure 2, the thermal boundary layer is wider than the region
wherein the meniscus deviates and two regions are determined: 1 − X ∼ O(Pe−1/2) and 1 − X ∼
O(Bo−1/2), also, far away of the thermal boundary layer one region wherein 1−X ∼ O(1) is suitable
to consider and thus, three regions will be analyzed.

4.1. 1− X ∼ O(1)

Fig. 2. The shape of the meniscus for X > 0. The flat
shape is given by H = H0 + τ para H0 = Y0 in the
region 1 − X ∼ O(1), far away of the region 1 − X ∼
O(Pe−1/2). The region 1−X ∼ O(Bo−1/2) is where the
meniscus deviates and the solidification point is located

at P̃ . Also, the mould wall is located at X = 1.

Since Re ≫ 1 and Fr ≪ 1, equations of mo-
mentum conservation (9), (10) at leading order
become

∂P

∂X
= 0,

∂P

∂Y
= −1,

hence
P = −Y + f(τ) (20)

with a function f to be determined. On the
meniscus P = 0 and Y = H(X, τ) and from
(20), H(X, τ) = f(τ). Using (19), f(t) = Y0+τ ,
thus

H(X, τ) = Y0 + τ,

which shows that in this region the shape of the
meniscus is flat.

Also, since Re > Pe, the fluid flow is invis-
cid which implies that U ∼ 0, V ∼ 1 [1] and
equation (11) is reduced to

∂θ

∂τ
+
∂θ

∂Y
= 0,

which gives θ = 1 by the initial condition.
Likewise, the meniscus determined by the melt-air interface is a moving boundary which can be fixed

using the Boundary Immobilization Method (BIM) [13] to avoid solving equation (11) in a moving-mesh
domain; thus the transformation

X̂ = 1−X, Ŷ =
Y

Y0 + τ
,

allows to obtain from (11)

∂θ

∂τ
+

(
1− Ŷ
Y0 + τ

)
∂θ

∂Ŷ
=

1

Pe

(
∂2θ

∂X̂2
+

1

(Y0 + τ)2
∂2θ

∂Ŷ 2

)
(21)
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in
R̂ = {(X̂, Ŷ ) / 0 6 X̂ 6 1, 0 6 Ŷ 6 1 },

and the boundary conditions (13)–(16) become
∂θ

∂X̂
= β at X̂ = 0, (22)

∂θ

∂X̂
= 0 at X̂ = 1,

θ = 1 at Ŷ = 0,

∂θ

∂Ŷ
= 0 at Ŷ = 1

and the initial condition is θ = 1 at τ = 0.

4.2. 1− X ∼ O(Pe−1/2)

Using the transformation

X̃ = Pe1/2(1−X), Ỹ =
Y

Y0 + τ
,

equation (11) becomes
∂θ

∂τ
+

1− Ỹ
Y0 + τ

∂θ

∂Ỹ
=

∂2θ

∂X̃2
+

1

Pe(Y0 + τ)2
∂2θ

∂Ỹ 2
(23)

in
R̃ = {(X̃, Ỹ ) / 0 6 X̃ <∞, 0 6 Ỹ 6 1 }.

with boundary conditions, from (13)–(16),
∂θ

∂X̃
= β Pe−1/2 at X̃ = 0, (24)

θ → 1 as X̃ →∞,
θ = 1 at Ỹ = 0,

∂θ

∂Ỹ
= 0 at Ỹ = 1 (25)

and initial condition θ = 1 at τ = 0.
Also, the fraction 1/(Pe(Y0 + τ)2) decreases the second term of the right hand side in equation (23)

at the meniscus Ỹ = 1, equation (23) becomes
∂θ

∂τ
=

∂2θ

∂X̃2
, (26)

in 0 < X̃ <∞, which is subject to the boundary conditions
∂θ

∂X̃
= Q̃ at X̃ = 0,

where Q̃ = β Pe−1/2 and
θ → 1 as X̃ →∞

and initial condition θ = 1 at τ = 0.
Thus, the solution to the equation (26) was obtained by Vynnycky et al. [1] and it can be expressed

by

θ̃(X̃, τ) = 1 + Q̃

(
X̃ erfc

{
X̃

2
√
τ

}
− 2

√
τ

π
exp

{
−X̃

2

4τ

})
. (27)

Now, the temperature at the mould wall is obtained from (27) at X̃ = 0,

θ̃(0, τ) = 1− Q̃2
√
τ√
π
.
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and for the necessary time to fill the mould, t = t∗, L = y0 + Vc t
∗ or τ∗ = L/W − Y0 and the

temperature at the solidification point P̃ is zero, for which,

0 = θ̃(0, τ∗) = 1− Q̃2
√
L/W − Y0√

π
or Q̃ =

√
π

2
√

L
W − Y0

.

4.3. 1− X ∼ O(Bo−1/2)

Using the transformation

X̄ = Bo1/2(1−X), Ȳ = Bo1/2(Y0 + τ − Y ), (28)

the region to obtain θ is defined by

R̄ = {(X̄, Ȳ ) / 0 6 X̄ <∞, H̄(X̄, τ) 6 Ȳ <∞},
where H̄ can be obtained from (28) to satisfy

Y0 + τ −H = Bo−1/2H̄,

and from equation (17),

H̄ =
∂2H̄/∂X̄2

(
1 + (∂2H̄/∂X̄2)2

)3/2 ,

which was solved by Vynnycky et al. in [1] with the shape of meniscus, given by

X̄ = X̄0 −
[√

4− H̄2 − ln
2 +
√

4− H̄2

H̄

]
, (29)

0 2 4 6 8 10

0

0.5

1

1.5

2

Fig. 3. Shape of the meniscus adjacent to the mould
wall in X̄ − Ȳ coordinates; the solidification point is

located wherein the triple point is pointed out.

where X̄0 =
√

2− ln (1 +
√

2).
On the other hand, equation (11) using (28)

becomes
∂θ

∂τ
=

Bo

Pe

(
∂2θ

∂X̄2
+
∂2θ

∂Ȳ 2

)
(30)

for (X̄, Ȳ ) ∈ R̄ and subject to boundary condi-
tions, from (13)–(16)

∂θ

∂X̄
= β Bo−1/2 at X̄ = 0, (31)

θ → 1 as X̄ →∞,
θ → 1 as Ȳ →∞,

θ = θ̃(X̃, τ) at Ȳ = H̄(X̄, τ).

and the initial condition θ = 1 at τ = 0.
Figure 3 shows the shape of meniscus adjacent to the mould wall given by equation (29) in X̄ − Ȳ

coordinates; the solidification point is pointed out as triple point in figure and is located at Ȳ = H̄ =
√

2
wherein three interfaces are present melt-air, solid wall-melt and solid wall-air [1].

5. Numerics

Equations (21), (23) and (30) were solved in three regions: R̂, R̃ and R̄ respectively using the C++
solver OpenFOAM [14]. OpenFOAM, using the finite volume method (FVM) [15] obtains the numerical
solution of equations (21), (23) and (30) but beforehand, it builds a discretization via a meshing of the
regions R̂, R̃ and R̄ using an utility contained in OpenFOAM called blockMesh, designed to carry out
this task.
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5.1. In the region R̂ = [0, 1] × [0, 1]

The utility blockMesh built the mesh for the region R̂, which is shown in Figure 4, in this case the
solidification point is located at (X̂, Ŷ ) = (0, 1) and the temperature at this point will be denoted by

Fig. 4. Mesh for the region R̂. The solidification
point is located (X̂, Ŷ ) = (0, 1).

θR̂. Also, the mould wall is located at X̂ = 0. The
mesh built is formed by NX̂×NŶ = 50×50 = 2500
blocks, where NX̂ , NŶ denote the number of blocks
in X̂- and Ŷ -axis respectively.

5.2. In the region R̃

The mesh for this region was built by the utility
blockMesh as shown in Figure 5. To represent the
boundary condition θ → 1 as X̃ →∞, it was nec-
essary to set X̃∞ as a large number and thus, θ → 1
as X̃ → X̃∞. Likewise, the solidification point is
located at (X̃, Ỹ ) = (0, 1) and the temperature at
this point will be denoted by θR̃.

The mesh built is formed by NX̃ × NỸ =
180 × 20 = 1600 blocks, where NX̃ , NỸ denote

the number of blocks in X̃- and Ỹ -axis respectively. Also, the setting X̄∞ ∼ 9 was large enough
because in the X̃-axis, the erf-function decays exponentially.

Fig. 5. Mesh for the region R̃. The solidification point is located at (X̃, Ỹ ) = (0, 1).

5.3. In the region R̄

Fig. 6. Mesh built by blockMesh utility to
solve equation (30) using the volume-finite

method.

In Figure 6 is shown the mesh for the region R̄ built by
blockMesh. As shown, blockMesh is capable to construct
meshes wherein there exists a curve-shaped boundary as
it was obtained by the meniscus near to the mould wall.
Likewise, in this region, the solidification point is located
at (X̄, Ȳ ) = (0,

√
2) and the temperature at this point will

be denoted by θR̄. The mesh built is formed by NX̄×NȲ =
40× 40 = 1600 blocks, where NX̄ , NȲ denote the number
of blocks in X̄- and Ȳ -axis respectively. Also, the setting
X̄∞ ∼ 9 and Ȳ∞ ∼ 12 was enough due to that the erf-
function decays exponentially.

6. Results

To perform computations to obtain the numerical solution
of the equations (21), (23) and (30), it is necessary to
define the boundary conditions that must be prescribed
at the mould wall. Hence, from equation (22), Q̂ = β is
prescribed with Q̂ = −6.7090. Figures 7 and 8 show the

θ−values by solving equation (21). In Figure 7 the region of the liquid steel at τ = 0.5 and τ = 1.0
show a narrow region where θ-value has changed, whereas in Figure 8 the θ-values at τ = 2.0 and
τ = 3.5 show lower θ-values and the onset of the solidification emerges at τ = τ∗ = 3.5, thus, by
setting θR̂(τ) = θ(0, 1, τ), it is clear that lim

τ→τ∗
θR̂(τ) = 0.
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Fig. 7. θ-values at τ = 0.5 (left) and τ = 1.0 (right) obtained by solving equation (21).
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Fig. 8. θ−values at τ = 2.0 (left) and τ = 3.5 (right) obtained by solving equation (21).

0.0 1.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.0 1.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Fig. 9. θ-values at τ = 0.5 (up), τ = 1.0 (down) obtained by solving equation (23).
0.0 1.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.0 1.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Fig. 10. θ-values at τ = 2.0 (up), τ = 3.5 (down) obtained by solving equation (23).

Also, for equation (23), the boundary condition (24) is set for Q̃ = β Pe−1/2 with Q̃ = −0.4744 and
the θ-values were obtained by solving numerically equation (23) and are shown in Figures 9 and 10. In
Figure 9 are shown the θ-values at τ = 0.5 and τ = 1.0 whereas in Figure 10 are shown the θ-values at
τ = 2.0 and τ = τ∗ = 3.5, and again, by setting θR̃ = θ(0, 1, τ) it is clear that lim

τ→τ∗
θR̃(τ) = 0, which

indicates the onset of the solidification once τ = τ∗.
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The numerical solution for equations (21) and (23) converges to θ = 0 as τ → τ∗ at (X̂, Ŷ ) = (0, 1)
and (X̃, Ỹ ) = (0, 1) respectively. These points in the regions R̂ and R̃ correspond to the solidification
point beforehand mentioned.

For the solution of equation (30), the boundary condition (31) is prescribed by setting Q̄ = β Bo−1/2

with Q̄ = −0.23719 and hence by solving equation (30), the θ-values were obtained numerically and
these are shown in Figures 11 and 12.
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Fig. 11. θ-values at τ = 0.5 (left), τ = 1.0 (right) obtained by solving equation (30).
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Fig. 12. θ-values at τ = 2.0 (left), τ = 3.5 (right) obtained by solving equation (30).
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Fig. 13. θ-values for regions R̂, R̃ and R̄ at the
solidification point.

In Figure 11, the θ-values are shown at τ = 0.5
and τ = 1.0 wherein the region of the liquid steel
adjacent to the mould wall starts the cooling pro-
cess and only a narrow region shows differences in
the θ-values, whereas in Figure 12 are shown the
θ−values at τ = 2.0 and τ = τ∗ = 3.5 for which
this cooling process is more evident. Hence, at
τ = τ∗ the onset of solidification begins at the so-
lidification point (X̄, Ȳ ) = (0,

√
2) and by setting

θR̄(τ) = θ(0,
√

2, τ), the solution obtained shows
that

lim
τ→τ∗

θR̄(τ) = 0.

Finally, as τ → τ∗, θR̂, θR̃ and θR̄ converges
to zero at the solidification point as shown in Fig-

ure 13, thus at this point can be observed that θ(τ1) > θ(τ2) when τ1 < τ2 with τi > 0 for i = 1, 2.
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7. Discussion and conclusion

In this article, it was studied the temperature of the melt at the solidification point in ingot casting
processes that has determined the onset of the solidification process as shown in Figures 8, 10 and 12.
At this solidification point there exists the lowest θ-value in regions in the regions R̂, R̃ and R̄ and
this fact was verified by obtaining the numerical solution of equations (21), (23) and (30).

Using asymptotic techniques enables to reduce systematically equation (11) to obtain an ordinary
differential equation (26) with solution determined the profile of the temperature of the meniscus,
starting at the solidification point adjacent to the mould wall wherein the onset of the solidification
for the steel begins. Thus, this profile allowed to compute the heat flux Q̃ necessary to fill the mould
with liquid steel before it solidifies.

Likewise, to split the whole domain in which the liquid steel occupies in the mould into three
regions: R̂, R̃ and R̄ wherein equations (21), (23) and (30) rule the heat transfer and allowed to
obtain several features of the cooling process of the melt via the analysis given for 1 − X ∼ O(1),
1−X ∼ O(Pe−1/2) and 1−X ∼ O(Bo−1/2) respectively.

In this research, a technique known as Boundary Immobilization Method (BIM) was used to set the
upper boundary of the regions R̂ and R̃ to a fixed position due to the rising level of meniscus by the
incoming liquid steel in the mould. Hence, for equations (21) and (23), the upper boundaries at Ŷ = 1
and Ỹ = 1 respectively were considered. This method (BIM) also was applied in problems related to
free and moving boundary problems wherein there exist two phases solid and liquid steel [13, 16] or
one-phase problems with solidification or melting [13, 17].

Around the solidification point the shape of the meniscus is not flat as pointed out in [2, 4, 5] and
is similar to that found in continuous casting processes wherein a combination of moving mould wall
and heat transfer determine the solidification point of the steel [6, 7, 9].

Although inside of the mould from τ = 0 upto τ = τ∗ there exist two fluids (melt and air) and the
problem can be treated using the techniques used for multiphase flows as described by Prosperetti et
al. [18], in this article, the BIM technique allowed to consider only one region and from this the problem
can be treated using several techniques as the finite differences method [19,20] in regions R̂ and R̃ or
the finite volume method [15] for the regions R̂, R̃ and R̄ as was done in this research.

Finally, the OpenFOAM software was employed to obtain the numerical solution of equations (21),
(23) and (30) using pre-existing solvers as laplacianFoam [14, 21] but it is suitable to mention that
equations wherein there exist a free or a moving boundary problem as emerges when the liquid steel
becomes solid can be treated to obtain the numerical solution using either the OpenFOAM software
or GNU-Octave [22] with an algorithm based on the finite difference method as described in [23–25].

[1] Vynnycky M., Zambrano M., Cuminato J. A. On the avoidance of ripple-marks on cast metal surfaces.
International Journal of Heat and Mass Transfer. 86, 43–54 (2015).

[2] Wray P. J. Geometric features of chill-cast surfaces. Metallurgical Transactions B. 12, 167–176 (1981).

[3] Tomono H., Kurz W., Heinemann W. The liquid steel meniscus in molds and its relevance to the surface
quality of casting. Metallurgical Transactions B. 12, 409–411 (1981).

[4] Jacobi H., Schwerdfeger K. Ripple marks on cast steel surfaces. ISIJ International. 53 (7), 1180–1196
(2013).

[5] Fredriksson H., Elfsberg J. Thoughts about the initial solidification process during continuous casting of
steel. Scandinavian Journal of Metallurgy. 31 (5), 292–297 (2002).

[6] Takeuchi E., Brimacombe J. K. The formation of oscillation marks in the continuous casting of steel slabs.
Metallurgical Transactions B. 15, 493–509 (1984).

[7] Steinrück H., Rudisher C., Schneider W. Modelling of continuous casting process. Nonlinear Analysis:
Theory, Methods & Applications. 30 (8), 4915–4925 (1997).

[8] Schwerdtfeger K., Sha H. Depth of oscillation marks forming in continuous casting of steel. Metallurgical
and Materials Transactions B. 31, 813–826 (2000).

Mathematical Modeling and Computing, Vol. 10, No. 2, pp. 410–420 (2023)



420 Zambrano M.

[9] Vynnycky M., Zambrano M. Towards a “moving-point” formulation for the modelling of oscillation-mark
formation in the continuous casting of steel. Applied Mathematical Modelling. 63, 243–265 (2018).

[10] Bikerman J. Physical Surfaces. Elsevier Science (2012).

[11] Pletcher R. Computational Fluid Mechanics and Heat Transfer. CRC Press (1997).

[12] Dantzig J., Tucker C. Modeling in Material Processing. Cambridge University Press (2012).

[13] Crank J. Free and Moving Boundary Problems. Oxford University Press (1975).

[14] Elsevier Science. OpenFOAM — Field Operation and Manipulation. OpenFOAM foundation (2012).

[15] Leveque J. R. Finite Volume Methods for Hyperbolic Problems. Cambridge University Press (2002).

[16] Mitchell S. L., Vynnycky M. On the numerical solution of two-phase Stefan problems with heat-flux bound-
ary conditions. Journal of Computational and Applied Mathematics. 264, 49–64 (2014).

[17] Mitchell S. L., Vynnycky M. Finite-difference methods with increased accuracy and correct initialization
for one-dimensional Stefan problems. Applied Mathematics and Computation. 215 (4), 1609–1621 (2009).

[18] Prosperetti A., Tryggvason G. Computational Methods in Multiphase Flow. Cambridge University Press
(2009).

[19] Burden R., Faires J. Numerical Analysis. Brooks/Cole (2012).

[20] Leveque R. J. Finite Difference Methods for Ordinary and Partial Differential Equations. Society for
Industrial and Applied Mathematics (SIAM) (2007).

[21] Chen G., Xiong Q., Morris P., Paterson E., Sergeev A., Wang Y. OpenFOAM for Computational Fluid
Dynamics. Notices of the AMS. 61 (4), 354–363 (2014).

[22] Eaton J., Bateman D., Hauberg S., Wehbring R. GNU Octave, version 5.2.0 manual: a high-level interactive
language for numerical computations. https://www.gnu.org/software/octave/doc/v5.2.0 (2020).

[23] Caldwell J., Kwan Y. Y. Numerical methods for one-dimensional Stefan problems. Communications in
Numerical Methods in Engineering. 20 (7), 535–545 (2004).

[24] Voller V. R. Fast Implicit Finite-Difference Method for the Analysis of Phase Change Problems. Numerical
Heat Transfer, Part B: Fundamentals. 17 (2), 155–169 (1990).

[25] Voller V. R., Prakash C. A fixed grid numerical modelling methodology for convection-diffusion mushy
region phase-change problems. International Journal of Heat and Mass Transfer. 30 (8), 1709–1719
(1987).

Чисельна оцiнка температури точки затвердiння
в процесах лиття зливкiв

Замбрано М.

Нацiональний унiверситет Барранки, Барранка, 15169, Лiма, Перу

Аналiз для чисельного обчислення температури бiля точки затвердiння рiдкої сталi
або розплаву, що мiститься у формi, здiйснюється через взаємодiю рiвнянь збережен-
ня маси, iмпульсу та теплопередачi. За допомогою асимптотичних методiв проаналi-
зовано процес охолодження рiдкої сталi за рахунок вiдведення тепла через стiнки
форми та отримано звичайне диференцiальне рiвняння, яке описує температуру межi
розплав–повiтря. Крiм того, температура розплаву у формi навколо точки затвердiн-
ня обчислюється чисельно за допомогою програмного забезпечення OpenFOAM.

Ключовi слова: точка затвердiння; процес охолодження; асимптотичнi методи;
звичайне диференцiальне рiвняння.
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