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An application of fractional Brownian motion (fBm) is considered in stochastic financial
engineering models. For the known Fokker–Planck equation for the fBm case, a solution for
transition probability density for the path integral method was built. It is shown that the
mentioned solution does not result from the Gaussian unit of fBm with precise covariance.
An expression for approximation of fBm covariance was found for which solutions are found
based on the Gaussian measure of fBm and those found based on the known Fokker–Planck
equation match.
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1. Introduction

During the building of many stochastic models of financial engineering, Brownian motion [1–4] plays
a fundamental role. The Brownian motion term was first introduced by L. Bachelier for the modelling
of option price dynamics. Later Einstein applied it to the modelling of physical processes of diffusion.
A mathematical theory of Brownian motion was built by Wiener, which is why it is sometimes called
a Wiener process. The Wiener measure, which is a functional measure, is related to the Brownian
motion. Brownian motion is a part of stochastic differential equations that allow for the modelling
of different Markov processes of diffusion that have a wide variety of applications. In particular, the
important role in financial mathematics plays a geometric Brownian motion, which is used to model
the price evolution of financial assets and derivatives. Geometric Brownian motion was used by Black
and Scholes for the modelling of the option price, which is now known as the Black–Scholes formula.
The theory of stochastic differential equations is developed enough at the moment and is applied to
various problems of financial engineering. Apart from mentioned models of asset pricing, options [5],
and other derivatives are the stochastic models of interest rate [6, 7], models of stochastic volatility,
and others [1, 8].

We also consider stochastic models based on fBm as a base [9, 10]. In comparison to Brownian
motion, for which increments on time intervals that do not intersect do not correlate, whereas, for
fBm, a correlation takes place, which is also called a strong after action. Properties of fBm and its
application to a number of applied problems were researched in many works [11–16]. In particular, in
works [11,12], a generalized Ito formula for fBm is given. Based on it, a Fokker–Planck equation for the
transition probability density of stochastic process based on fBm was received [13–15,17]. In the given
works, solutions were found for the Fokker–Planck equation for transition probability for which option
price was obtained, as well as equations were built for option price dynamics. As a result, generalized
Black–Scholes formulas for option price were received. Stochastic processes based on so-called sub-fBm
and their application to the modelling of asset price dynamics and based derivatives were considered.
Aside from fBm, a generalization of the CEV model for fBm where considered [14, 18].

As it is known, the transition probability density for mentioned stochastic differential equation can
be defined based on the probabilistic measure of the specified process. It is understood that both
approaches must give the same result as it takes place in the case of Brownian motion [19]. In this
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paper, a solution of the Fokker–Planck equation for the transition probability density of fBm in the
form of path integral was obtained. The same solution was received using the Gaussian measure of
fBm, and also the condition where they both match was found. As a result, it was shown that the
Fokker–Planck equation given in [9,15,18,20] corresponds to Gaussian measure with a covariance which
in a certain way approximates a covariance of fBm.

2. Fractional Brownian motion

FBm B(τ) in time interval τ ∈ [0, t] defines Gaussian process with a zero average and covariance [9,
10, 12]: 〈

B(τ)
〉

= 0,
〈
B(τ)B(s)

〉
= RH(τ, s),

RH(τ, s) =
1

2

(
τ2H + s2H − |τ − s|2H

)
, s, τ ∈ [0, t], 0 < H < 1.

(1)

From (1) we obtain for process variation that
〈
B(τ)2

〉
= τ2H . (2)

For H = 1
2 from (1) the covariance of Brownian motion results [2, 4, 8]

R(τ, s) =
1

2

(
τ + s− |τ − s|

)
= min(τ, s). (3)

A distinctive characteristic of fBm for H > 1
2 is a long-term time dependency between increases. This

can be visually shown by splitting the time interval [0, t] into n equal intervals. Then using (1), it is
possible to show that the following applies:

r(m) =
〈
B(1)(B(1 +m)−B(1))

〉
, m ∈ {1, . . . , n − 1}, lim

n→∞

n−1∑

m=1

r(m)→∞. (4)

In case of Brownian motion H = 1
2 , we have that r(m) = 0 for ∀m > 1.

FBm is also determined based on Brownian motion [9, 10] with the help of stochastic integral:

B(τ) =

∫ τ

0
KH(τ, s) dW (s), 0 < s < τ < t. (5)

Based on (2) and (5), we obtain a connection of covariance with the kernel of integral transformation

RH(τ, s) =

∫ min(τ,s)

0
KH(τ, u)KH (s, u) du. (6)

For the kernel KH(τ, s) a number of equivalent representations exist [9, 10], particularly the following

KH(τ, s) = cHs
1
2
−H

∫ τ

s
(u− s)H− 3

2uH− 1
2 du, 0 < s < τ < t, (7)

where cH =

√
H(2H−1)

B(2−2H,H− 1
2
)
, 1
2 < H < 1, and B(x, y) denotes a beta function. In the limit H ↓ 1

2 with

(7) we obtain that KH(τ, s) → 1 (τ > s) and according to (5) fBm matches with Brownian motion.
And based on (6), we obtain a covariance (3) for the Brownian motion.

Since fBm is a stochastic Gaussian process with covariance (1), it has a respective Gaussian mea-
sure [4]. Let us consider a discrete realization of this process on time interval [0, t]. Let us set the
following time interval breakdown (0 < t1 < t2 < . . . < tn = t). We compare a random vector of
fBm values B = (B1, B2, . . . , Bn) in breakdown points for this breakdown. Then probability density of
distribution n of dimensional random vector B (Gaussian measure) is given by the following expression

µ(B) = (2π)−
n
2

√
det R̂−1 exp

(
− 1

2

∑

i,j

BiR̂
−1
ij Bj

)
. (8)

Here R−1
ij denotes elements of matrix which is inverted covariance matrix R̂

R̂ = ‖Rij‖, Rij = RH(ti, tj), i, j = 1 . . . n.
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It is understood that the Gaussian measure (8) can be also obtained based on Wiener measure and
determining fBm (5). Corresponding calculations are given in Appendix A.

The transition probability density for fBm we will define based on (8) by the following integral

K(B, t) =

∫ ∞

−∞
µ(B)δ(B −Bn)

n∏

i=1

dBi. (9)

Let us perform integral transform for δ of function

δ(B −Bn) =
1

2π

∫ ∞

−∞
e−ix(B−Bn)dx =

1

2π

∫ ∞

−∞
e−ixBeiX0Bdx, (10)

where n denotes a dimensional vector X0 = (0, 0, . . . , x). After substituting (10) into (9) and solving
integrals for dBi (i = 1 . . . n)

∫ ∞

−∞
µ(B)eiX0B

n∏

i=1

dBi = e−1/2X0R̂X0 = e−1/2RH (t)x2

we obtain

K(B, t) =
1

2π

∫ ∞

−∞
e−ixBe−1/2RH (t)x2

dx =
1√

2πRH(t)
e
− 1

2
B2

RH (t) . (11)

Here we introduce notation RH(t) ≡ RH(t, t) = t2H for fBm variation. Transition probability den-
sity (11) satisfies Fokker–Planck equation

∂K(B, t)

∂t
=

1

2
ṘH(t)

∂2K(B, t)

∂B2
. (12)

As we can see, the transition probability density for fBm and the respective Fokker–Planck equation is
determined using fBm variation (equal to RH(t)). We shall point out that mentioned characteristic is
known in many multidimensional independent Gaussian processes with diagonal covariance matrix [9].
Fokker–Planck equation of type (12) and its solutions were obtained for fractional Levy motion with
a bit different approach [21].

Among other properties of fBm, we shall point out that it is not a martingale and Markov pro-
cess [9, 10, 12, 22]. Let us illustrate this an example of dual point transition probability density
K2(B2, t2, B1, t1), which is defined by the following expression

K2(B2, t2, B1, t1) =
P (B2, t2, B1, t1)

K(B1, t1)
, 0 < t1 < t2.

Here P (B2, t2, B1, t1) is a dual point probability density of fBm found using (8). For K2(B2, t2, B1, t1)
none of the martingale condition satisfies∫ ∞

−∞
K2(B2, t2, B1, t1)B2 dB2 6= B1. (13)

Also, the Chapman–Kolmogorov equation is not satisfied

K2(B3, t3, B1, t1) 6=
∫ ∞

−∞
K2(B3, t3, B2, t2)K2(B2, t2, B1, t1) dB2, 0 < t1 < t2 < t3, (14)

meaning that fBm is not a Markov process.

3. Stochastic differential equation based on fBm

For practical application, the Ito formula plays an important role, which in the case of fBm takes the
form of [9, 11, 13, 14, 20, 23]

df(τ,B(τ)) ≈ ∂f(τ,B(τ))

∂τ
dτ +

∂f(τ,B(τ))

∂B(τ)
dB(τ) +

1

2

∂2f(τ,B(τ))

∂B(τ)2
(dB(τ))2

=
(∂f(τ,B(τ))

∂τ
+Hτ2H−1 ∂

2f(τ,B(τ))

∂B(τ)2

)
dτ +

∂f(τ,B(τ))

∂B(τ)
dB(τ),

(15)
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where f(τ,B(τ)) (τ ∈ [0, t]) is a stochastic function which has second order derivatives. In formula (15)
the (dB(τ))2 ≈ Hτ2H−1dτ was used. For the function of stochastic value r(τ), which is given by the
following stochastic equation

dr(τ) = A(r(τ)) dτ + Σ(r(τ)) dB(τ), (16)

the Ito formula has the following form

df(τ, r(τ)) ≈ ∂f(τ, r(τ))

∂τ
dτ +

∂f(τ, r(τ))

∂r(τ)
dr(τ) +

1

2

∂2f(τ, r(τ))

∂r(τ)2
(dr(τ))2

=

(
∂f(τ, r(τ))

∂τ
+Hτ2H−1Σ(r(τ))2

∂2f(τ, r(τ))

∂r(τ)2

)
dτ +

∂f(τ, r(τ))

∂r(τ)
dr(τ).

(17)

For transition probability density for stochastic process (16), taking into account the Ito for-
mula (15), (17) we obtain the Fokker–Planck equation [9, 14, 15, 18]

∂K(r, t)

∂t
=

1

2
ṘH(t)

∂2Σ(r)2K(r, t)

∂r2
− ∂A(r)K(r, t)

∂r
. (18)

In case of A(r(τ)) = 0, Σ(r(τ)) = 1 the given equation matches (12). Also, for H = 1/2 we obtain
that ṘH(t) = 1 and Fokker–Planck equation (18) are transformed into the equation of Brownian
motion [2,4]. The general solution of equation (18) in the form of path integral is given in Appendix C.

Works [9, 13, 20] give a Black-Scholes differential equation for determining option price in case of
“clean” fBm and some generalization based on it. As it is known, the Black–Scholes equation is an
inverse Kolmogorov equation relative to the Fokker–Planck equation (18). Solutions to the Fokker–
Planck equation (18) for transition probability density were researched in [14, 15, 18] for a stochastic
differential equation of geometric Brownian motion with “clean” fBm and it is generalizations and also
for CEV model with fBm. Based on found probability densities, generalized Black–Scholes formulas
for option pricing were obtained. Specifics of Fokker–Planck equations (18) as well as of inverse
Kolmogorov equation in mentioned works is a presence of a multiplier with derivative for fBm variation,
or it is a generalization in a term with second derivative.

As we already noted, the transition probability density of a stochastic process one can obtain
directly by using the measure of the process. It is obvious that the results obtained by the two
approaches must be equal. However, as it will be shown, the transition probability density for stochastic
value r(τ) (16) that is built based on Gaussian measure does not match the solution to the Fokker–
Planck equation (18). Let us illustrate this for the case of stochastic equation (16) with constant
Σ(r(τ)) = σ = const.

Let us consider breakdown of time interval (0 < t1 < t2 . . . tn−1 < tn = t) and write a discrete
realization of stochastic process (16):

dr(ti) = A(r(ti−1)) dti + σ dBi, i ∈ {1, . . . , n}. (19)

The following notations were used:
dti = ti − ti−1, dr(ti) = r(ti)− r(ti−1), dBi = B(ti)−B(ti−1), i ∈ {1, . . . , n}.

We shall find the Gaussian measure for the stochastic process r(τ) based on fBm measure (Appendix B,
formula (55)) by means of variable substitution given by equation (19)

µ(dr) = (2π)−
n
2 J({ri})

√
det(δ2R)−1 exp

(
− 1

2σ2

∑

i,j

(dri −A(ri−1)dti)(δ
2R̂)

−1

ij (drj −A(rj−1)dtj)

)
.

(20)
Here we used the following notations: dri = dr(ti), ri = r(ti), i ∈ {1, . . . , n}, and J({ri}) denotes a
Jacobian of variable substitution according to equation (19). The approach of calculating J({ri}) is
given in works [19, 24, 25]. Transition probability density we obtain according to formula (9)

K(r, t) =

∫ ∞

−∞
µ(dr) δ(r − rn)

n∏

i=1

dri. (21)

It is easy to see that multiple integral in (21) in limit n → ∞, max(dti) → 0, i ∈ {0, . . . , n}, is not
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possible to bring to the form (58), (59) (in mentioned formulas one should use Σ(r) = σ). Indeed, in
exponent (21), we have a double integral sum; as a result, path integral will contain a double integral
over time variable while in formulas (58), (59) in exponent we have only single integrals. It emerges
that Fokker–Planck equation (18) corresponds to some approximation of fBm covariance (1), the form
of which we shall further find out.

4. Approximation of fBm covariance

The approximation of fBm covariance that we look we shall find from the equality condition of found
solutions based on the Fokker–Planck equation with the use of Gaussian measure (55) of fBm with
precise covariance. It is easy to see that Fokker–Planck equation (18) corresponds to Gaussian measure
with diagonal matrix while matrix δ2R̂ (54) is not diagonal.

Let us write covariance (1) in an identical form

RH(t, s) = min(RH(t), RH (s)) +
1

2

(
|RH(t)−RH(s)| −RH(|t− s|)

)
, (22)

where RH(t) = t2H is a fBm variation (see (11)). Let us consider the first term in (22) for covariance

R̃H(t, s) = min(RH(t), RH (s)). (23)

Let us show that the Fokker–Planck equation (18) corresponds to a stochastic process with covari-
ance (23). Let us point out that the transition probability densities for fBm with covariance (22) and
(23) match (formula (11)).

Let us consider breakdown of time interval (0 < t1 < t2, . . . , tn−1 < tn = t), then Gaussian measure
of stochastic process is given by formula (8) with covariance matrix

R̃ij = R̃H(ti, tj), (i, j) ∈ {1, . . . , n}.
Let us use the Gaussian measure given by fBm increments (55). Based on formula (54) for matrix δ2R̃
we obtain that:

(δ2R̃)ij = ṘH(ti−1)dtiδij , (i, j) ∈ {1, . . . , n}.
As a result, the Gaussian measure for stochastic process with covariance (23) we write in the form

µ̃(dB) =

n∏

i=1

dBi√
2πṘH(ti−1)dti

exp

(
− 1

2

n∑

i=1

dB2
i

ṘH(ti−1)dti

)
. (24)

In continuous case, in the limit n→∞, max(dti)→ 0, i ∈ {0, . . . , n} for measure (24) we obtain that:

dµ̃(B) = DHB(τ) exp

(
− 1

2

∫ t

0

Ḃ(τ)2

ṘH(τ)
dτ

)
, DHB(τ) =

∏

τ

dB(τ)√
2πṘH(τ)dτ

. (25)

It is obvious that in the case of H = 1
2 , the measure (25) matches with the Wiener measure for

Brownian motion.
Hence, covariance (23) determines a stochastic process with the following properties:

〈
B(τ)

〉
= 0,

〈
B(τ)B(s)

〉
= min(RH(τ), RH (s)),

〈
B(τ)2

〉
= RH(τ).

Increments of stochastic on-time intervals that do not intersect are independent:
〈
(B(s2)−B(s1))(B(t2)−B(t1))

〉
= 0, s1 < s2 < t1 < t2,

we also obtain that 〈
dB(τ)2

〉
= ṘH(τ) dτ. (26)

The stochastic process with covariance (23) is also a Markov and martingale (following conditions are
satisfied (13), (14)).

Based on measure (25), let us build a measure for stochastic process r(τ) that is given by a stochastic
equation (16). For this, we shall use the approach for Brownian motion given in [19,25]. In particular,
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equation (16) we shall write in an integral form

B(τ) =

∫ τ

0

dr(τ ′)
Σ(r(τ ′))

−
∫ τ

0

A(r(τ ′))
Σ(r(τ ′))

dτ ′. (27)

The first term in the right part (27) determines a stochastic integral, which we consider in the Ito
sense. For this we introduce the following stochastic variable

x(τ)− x(0) =

∫ τ

0

dr(τ ′)
Σ(r(τ ′))

= ϕ(r(τ)) − ϕ(r(0)). (28)

Let us use the Ito formula (17) for increment x(τ). We obtain the following stochastic differential
equation

dx(τ) = ϕ′(r(τ))dr(τ) +
1

2
ϕ′′(r(τ))dr(τ)2 =

(
A(r(τ))

Σ(r(τ))
− 1

2
Σ′(r(τ))ṘH (τ)

)
dτ + dB(τ). (29)

In formula (29) it is taken into account that dr(τ)2 ≈ Σ(r(τ))2ṘH(τ) dτ . As a result, the stochastic
variable x(τ) satisfies the stochastic differential equation with constant volatility. This approach of
transforming to stochastic value with constant volatility was proposed in [25]. In this case, we have a
known solution for transition probability density in the form of path integral [19,24,25]. Let us rewrite
equation (29) by defining stochastic variable r(τ) through x(τ)

dx(τ) = Aeff (x(τ), τ) dτ + dB(τ), (30)

where Aeff (x(τ), τ) = A(ϕ−1(x(τ)))
Σ(ϕ−1(x(τ)))

− 1
2Σ′(ϕ−1(x(τ))

)
ṘH(τ).

As a result of stochastic equation (30) based on measure (25), we obtain a path integral for transition
probability density

K̃(x, x0, t) =

∫ x

x0

DHx(τ) exp

{
− 1

2

∫ t

0

(ẋ(τ)−Aeff (x(τ)))2

ṘH(τ)
dτ − 1

2

∫ t

0
A′

eff (x(τ), τ) dτ

}
. (31)

Here A′
eff (x(τ), τ) denotes a derivative over argument x(τ), and also

DHx(τ) =
∏

τ

dx(τ)√
2πṘH(τ)dτ

. (32)

A term from A′
eff (x(τ), τ) in exponent (31) is caused by Jacobian during variable substitution, after

a transition from B(τ) to x(τ) [19, 24, 25].
Expression (31) gives transition probability density for the supplementary stochastic process

dx(τ) (30). In order to obtain transition probability density K(r, r0, t) of stochastic process dr(τ) (16)
let us use connections between them

K(r, r0, t) =
1

Σ(r)
K̃(ϕ(r), ϕ(r0), t).

Next, let us perform variable substitution according to (28) (x(τ) = φ(r(τ))) in path integral (31). In
particular, for expressions in (31) we obtain:

ẋ(τ) =
1

Σ(r(τ))
ṙ(τ), Aeff (x(τ), τ) =

A(r(τ))

Σ(r(τ))
− 1

2
Σ′(r(τ))ṘH (τ),

A′
eff (x(τ)) = A′(r(τ)) −A(r(τ))

Σ′(r(τ))

Σ(r(τ))
− 1

2
Σ(r(τ))Σ′′(r(τ))ṘH(τ) .

The measure term (32) is replaced by

DHr(τ) =
∏

τ

dr(τ)√
2πΣ2(r(τ))ṘH(τ)dτ

.

Performing required calculations (see for details in [19]) for transition probability density, we obtain
a path integral form given in formulas (58), (59), (60). This way, the Fokker–Planck equation (18)
corresponds to approximation (23) for covariance matrix fo fBm.
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As it can be seen, for approximation of covariance (23), the problem of finding the measure of
stochastic process solves analytically. In the case of fBm covariance (1), (22), with non-diagonal
matrix, the difficulties of finding Gaussian measure are related to obtaining an inverse matrix (8), (20),
(55). Let us note that the stochastic process with covariance (23) sets independent increases unlike
the fBm (4) which has a long-term time dependency between increases (4). The main difference of
stochastic process with covariance (23) from Brownian motions is that the average value of (26) contains
an additional multiplier that depends on time. It is easy to show that the stochastic equation (16) is

effectively equivalent to the Brownian motion equation with the substitution dB(τ)→
√
ṘH(τ)dW (τ)

(we consider the case H > 1
2).

From formula (22) results that covariance are slightly different RH(τ, s) ≈ R̃H(τ, s) for close times
τ ≈ s. Meaning that the second term in (22) one can consider as a perturbation and build an
approximation for inverse matrix (54) and for the measure of the process (55).

5. Examples of solving some of the fBm stochastic models

In many financial engineering problems, finding a transition probability density given by a stochastic
differential equation is important. Let us bring up some of the solutions to known models, generalized
for the case of fBm in the path integral method.

Geometric fractional Brownian motion. This model is a generalization for the known model
of geometric Brownian motion and was considered in [9, 13, 18, 20]

dS(τ) = rS(τ) + σS(τ) dB(τ). (33)

Here S(τ) is value of option price, r is interest rate, σ is price volatility, dB(τ) is fBm variable.
The transition probability density for stochastic equation (33) is given by path integral (58). Let us
substitute respective values from (33). We obtain the following

K(S, S0, t) =

√
S0
σ2S3

∫ S

S0

DS(τ) exp

(
− 1

2

∫ t

t0

(
Ṡ(τ)− rS(τ)

)2

σ2S(τ)2ṘH(τ)
dτ +

1

2

∫ t

t0

(
r − 1

4
σ2ṘH(τ)

)
dτ

)
,

where the measuring element of integral is denoted as

DS(τ) =
∏

τ

dS(τ)√
2πσ2S(τ)2ṘH(τ)dτ

. (34)

By variable substitution S(τ) → exp(x(τ)) and x(τ) → x(τ) + rτ the path integral is transformed in
the following way

∫ S

S0

DS(τ) exp

(
− 1

2

∫ t

t0

(
Ṡ(τ)− rS(τ)

)2

σ2S(τ)2ṘH(τ)
dτ

)
=

∫ x

x0

Dx(τ) exp

(
− 1

2

∫ t

t0

ẋ(τ)2

σ2ṘH(τ)
dτ

)
. (35)

In formula (35) the following measure element is denoted

Dx(τ) =
∏

τ

dx(τ)√
2πσ2ṘH(τ) dτ

. (36)

For the path integral in the right part of (35), we shall use the known solution [26]; as a result, we
obtain the following for transition probability density

K(S, S0, t) =
exp

(
r
2(t− t0)− σ2

8

(
RH(t)−RH(t0)

))

√
2πσ2

(
RH(t)−RH(t0)

)
√
S0
S3

exp

(
− 1

2σ2

(
r(t− t0)− ln S

S0

)2
(
RH(t)−RH(t0)

)
)
. (37)

The formula for the European Call option we obtain is based on (37) by integrating over pay function

C(S0, t) =

∫ ∞

K
K(S, S0, t)(S −K)dS,

and K is the strike price.
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After calculations, we obtain the Black–Scholes formula in the case of fBm, which is given in [18].
CEV model. The CEV model introduces a more complicated dependency of volatility on price

magnitude in a model of geometric Brownian motion. For fBm it was considered in [14, 15]

dS(τ) = rS(τ) + σS(τ)αdB(τ).

Name of the model is related to the fact that d ln(S(τ)α)
d lnS(τ) = α is a constant (volatility elasticity) 0 < α < 2

and also r > 0, σ > 0. Based on (58) we shall find for transition probability density that

K(S, S0, t) = exp
(r

2
(2α − 1)

)√ S0
σ2S3

∫ S

S0

DS(τ) exp

(
− 1

2σ2

∫ t

t0

(
Ṡ(τ)− rS(τ)

)2

S(τ)2αṘH(τ)
dτ

)

× exp

(
− 1

8
(2− α)ασ2

∫ t

t0

ṘH(τ)

S2−2α
dτ

)
.

(38)

Here measure element DS(τ) is given by expression (34) with substitution under square root S(τ)2 →
S(τ)2α. The calculation of path integral is performed in two steps. First we perform varialbe substi-

tution S(τ) → ((1 − α)σx(τ))
1

1−α (we consider the case 0 < α < 1). The path integral in (38) will
convert to ∫ x

x0

Dx(τ) exp

(
− 1

2

∫ t

t0

(ẋ(τ) + (α− 1)rx(τ))2

ṘH(τ)
dτ − (2− α)α

8(α− 1)2

∫ t

t0

ṘH(τ)

x(τ)2
dτ

)
, (39)

where measure element Dx(τ) is defined in formula (36). Next step let us perform variable substitution
x(τ)→ x1(τ)e−r(α−1)τ in integral (39). As a result we obtain

e−
r
2
(1−α)(t+t0)

∫ x1

x10

Dx1(τ) exp

(
− 1

2

∫ t

t0

ẋ1(τ)2

Ḋ(τ)
dτ − (λ2 − 1

4)

2

∫ t

t0

Ḋ(τ)

x1(τ)2
dτ

)
. (40)

In formula (40) following notations were introduced λ2 = 1
4(α−1)2

, Ḋ(τ) = e2(α−1)rτ ṘH(τ). Measure

element Dx1(τ) defined as in formula (36) with substitution ṘH(τ) → Ḋ(τ) and also integral (40) is

considered in bounds x10 = e−(1−α)rt0

σ(1−α) S1−α
0 , x1 = e−(1−α)rt

σ(1−α) S
1−α.

Next, we will change the parametrization of “trajectories” in integral (40) by time variable substi-
tution η1 =

∫
Ḋ(τ)dτ = D(τ) and will introduce new variable x1(τ) = ξ(η1) (τ ∈ [t0, t], η1 ∈ [η0, η]).

Since for Ḋ(τ) > 0 an unequivocal transform of interval [t0, t] into [η0, η] exists. As a result of the
mentioned transformation, we obtain path integral with a known value [26]
∫ ξ

ξ0

Dξ(η) exp

(
− 1

2

∫ η

η0

ξ̇(η1)2dη1 −
(λ2 − 1

4)

2

∫ η

η0

dη1
ξ(η1)2

)
=

√
ξξ0

η − η0
exp

(
− ξ2 + ξ20

2(η − η0)

)
Iλ

(
ξξ0

η − η0

)
,

where Iλ(x) is a modified Bessel function. We also take into account that η = D(t), η0 = D(t0),
x1 = ξ, x10 = ξ0.

To sum up, given transformations for transition probability density, we obtain the following expres-
sion

K(S, S0, t) =
e−

1
2
r(t0+(3−4α)t)S−2α

√
SS0

(1− α)σ2(D(t)−D(t0))
exp

(
− S2−2αe−2(1−α)rt + S2−2α

0 e−2(1−α)rt0

2(1− α)2σ2(D(t)−D(t0))

)

× Iλ
(

e−(1−α)r(t+t0)(SS0)
1−α

(α− 1)2σ2(D(t)−D(t0))

)
.

(41)

After calculations we obtain that D(t)−D(t0) = 2H
(2r(1−α))2H

(
Γ(2H, 2r(1−α)t0)−Γ(2H, 2r(1−α)t)

)
,

Γ(ν, x) is a partial Gamma function. Transition probability density (41) was obtained in [14] by a
slightly different approach.

Vasicek model. The stochastic differential equation of the Vasicek model is the following
dr(τ) = β(µ − r(τ)) + σdB(τ), (42)

were β, µ, σ > 0 are model parameters. The stochastic equation is used in modelling the time structure
of interest rate [1]. Besides that, (42) is known as Ornstein–Uhlenbeck equation [22,27] and has a wide
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range of applications. For transition probability density after substituting respective values of the
model into formula (58), we obtain

K(r, r0, t) = exp

(
1

2
β(t− t0)

)∫ r

r0

Dr(τ) exp

(
− (ṙ(τ) + βr(τ)− βµ)2

2σ2ṘH(τ)

)
. (43)

Here measure element Dr(τ) is given by formula (36). In the path integral inside (43), we shall perform
a variable substitution r(τ)→ r1(τ) exp(−βτ) + µ. As a result we obtain
∫ r

r0

Dr(τ) exp

(
− (ṙ(τ) + βr(τ)− βµ)2

2σ2ṘH(τ)

)
= e

1
2
β(t+t0)

∫ r1

r10

Dr1(τ) exp

(
− 1

2

∫ t

t0

ṙ1(τ)2

σ2Ḋ(τ)
dτ

)
. (44)

In formula (44) the following notation was introduced Ḋ(τ) = e2βτ ṘH(τ), r10 = eβt0(r0 − µ), r1 =
eβt(r − µ), where measure element Dr(τ) is given by formula (36) with substitution ṘH(τ) → Ḋ(τ).
For path integral in the right part (44), we shall use a known value as in (35). As a result, we obtain

K(r, r0, t) =
eβt√

2πσ2(D(t)−D(t0))
exp

(
− 1

2

(
(r − µ)eβt + (µ − r0)eβt0

)2

σ2(D(t)−D(t0))

)
. (45)

Here we need to take into account that D(t)−D(t0) =
∫ t
t0

exp(2βτ)ṘH(τ)dτ .
By direct verification, one can validate that given solutions (37), (41), (45) satisfy Fokker–Planck

equation (18).

6. Conclusions

This work considers some specifics of fBm application to models of financial engineering. A known
Fokker–Planck equation is researched for stochastic differential equations based on fBm. For the
specified equation, a solution was built for transition probability density in the form of the path integral.
The measure of the fBm stochastic process was researched. It was shown that transition probability
density determined based on process measure and based on mentioned Fokker–Planck equation do
not match. It emerges that the Fokker–Planck equation corresponds to a measure with different
covariance. A form of mentioned covariance and its respective measure were found, and the transition
probability density of the stochastic process in the form of path integral was determined. Path integral
found with the two approaches match. Characteristics of a stochastic process given by fBm covariance
approximation were found. An approach of specification of approximation by perturbation series for
inverse covariance matrix is shown. Examples of solutions for transition probability density for known
models generalized for the fBm case in the method of path integral are given.

Appendix A

Let us consider some fBm implementation on time interval τ ∈ [0, t]. Then equation (5) for a discrete
case will have the form

B(ti) =

n∑

j<i

KH(ti, tj) dWj .

Here time moments ti, i ∈ {1, . . . , n} are ordered on an interval (0 < t1 < t2 < . . . tn−1 < tn = t),
dWi = Wi −Wi−1, i ∈ {1, . . . , n} are values of variables of Brownian motion on that interval. The
Gaussian measure of fBm we shall determine by averaging the Wiener measure

µ(B) =
〈 n∏

i=1

δ
(
Bi −B(ti)

)〉
W
. (46)

The following is denoted:
〈(
. . .
)〉

W
=

∫ ∞

−∞
exp

(
− 1

2

n∑

i=1

dW 2
i

dti

)(
. . .
) n∏

i=1

dWi√
2πdti

, dti = ti − ti−1, i ∈ {1, . . . , n}. (47)

Using integral representations for δ-functions in (46)
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µ(B) =

∫ ∞

−∞

n∏

i=1

dXi

2π
ei

∑n
i=1 XiBi

〈
e−i

∑n
i=1 XiB(ti)

〉
W
, (48)

and also transformation in a term in exponent (48)
n∑

i=1

XiB(ti) =

n∑

i=1

Xi

n∑

j<i

KH(ti, tj)dWj =

n∑

j=1

( n∑

i>j

XiKH(ti, tj)

)
dWj,

after averaging over Wiener measure for the multiplier in (48), we obtain〈
e−i

∑n
i=1 XiB(ti)

〉
W

= e−
1
2

∑n
j=1

(
∑n

i>j XiKH(ti,tj)
)2

dtj . (49)

Expression in exponent (49) we shall transform in the following way
n∑

j=1

( n∑

i>j

XiKH(ti, tj)

)2

dtj =

n∑

i=1

n∑

l=1

( i∑

j=1

KH(ti, tj)KH(tl, tj)θ(l − j)dtj
)
XiXl. (50)

Here we use the Heaviside function θ(l − j) that selects elements from l > j.
Expression in the right side of equation (50) one should consider for l > i and l < i. It is then

easy to see according to (6) that specified expression is an integral sum for RH(ti, tj) for n → ∞,
max(dti)→ 0, i ∈ {1, . . . , n}. As a result we obtain

i∑

j=1

KH(ti, tj)KH(tl, tj)θ(l − j)dtj → RH(ti, tl). (51)

Substituting (51) into (50) and accordingly into (49) after integrating over variables Xi, i ∈ {1, . . . , n}
transition probability fBm (46), we obtain expression (8).

Appendix B

As before let us set the time interval breakdown {0 < t1 < t2 < . . . < tn = t}, value of conditional
quantity of fBm B = {B1, B2, . . . , Bn} at certain moments of time and their increments dB = {B1, B2−
B1, . . . , Bn − Bn−1}. To set the transition probability density (8) based on increments dB, it is
convenient to convert to matrix transformation. Obviously, the following equation is valid

B = L̂ dB, (52)

where L̂ is a lower triangular matrix with all elements equal to zero,

L =




1 0 0 0
1 1 0 0
. . . 0
1 1 1 1


 ,

vectors B, dB are considered as vector columns. Quadratic form in the exponent of formula (8) we
shall write down in matrix form

BT R̂−1B = dBT L̂T R̂−1L̂ dB = dBT (δ2R̂)
−1
dB.

Here the following matrix is denoted
δ2R̂ = L̂−1R̂(L̂−1)T , (53)

where symbol T denotes matrix transpose. Inverse matrix L̂−1 is easy to find based on correlation (52).
As a result L̂−1 is a lower triangular matrix for which L̂−1

ii = 1, L̂−1
i+1,i = −1, i ∈ {1, . . . , n},

L−1 =




1 0 0 0
−1 1 0 0
. . . 0
0 0 −1 1


 .

This way for the matrix elements (δ2R̂)ij we obtain

(δ2R̂)ij = R̂ij − R̂i−1,j − R̂i,j−1 + R̂i−1,j−1. (54)
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To sum up, for probability density (8) we obtain

µ(dB) = (2π)−
n
2

√
det(δ2R)−1 exp

(
− 1

2

∑

i,j

dBi(δ
2R̂)

−1

ij dBj

)
. (55)

From formula (53) it results that det δ2R̂ = det R̂.
We shall note that for Brownian motion (H = 1

2) we have

R̂0
ij = R 1

2
(ti, tj) = min(ti, tj).

It is easy to show then that for δR̂0
ij using formula (54) we obtain

(δ2R̂0)ij = dtiδij ; (δ2R̂0)−1
ij =

1

dti
δij ; dti = ti − ti−1, (i, j) ∈ {1, . . . , n}.

It is obvious that after substituting matrix elements δR̂0−1
ij into (8) we obtain Wiener measure that is

used in formula (47).

Appendix C

Equation (18) we shall rewrite using time variable substitution τ = RH(t). For “time” variable τ we
obtain the following Fokker–Planck equation

∂K̃(r, τ)

∂τ
=

1

2

∂2Σ(r)2K̃(r, τ)

∂r2
− ∂Ã(r, τ)K̃(r, τ)

∂r
, (56)

where K̃(r, τ) = K(r, t), Ã(r, τ) = A(r)

2Hτ1−
1

2H
. Let us consider solution to equation (56) on “time”

interval [0, τ ] that corresponds to interval [0, t] (we consider case when 1
2 < H < 1). In work, [19]

solution to transition probability density for an equation of type (56) in the form of path integral is
given

K̃(r, r0, τ) =

√
Σ(r0)

Σ(r)3

∫ r

r0

D̃r(τ1) exp

(
− 1

2

∫ τ

0

( ṙ(τ1)− Ã(r(τ1), τ1)

Σ(r(τ1))

)2
dτ1 −

∫ τ

0
u0(r(τ1)) dτ1

)
(57)

with the following notations

u0(r(τ)) =
1

2
Ã′

r(r(τ), τ) − Ã(r(τ), τ)
Σ′(r(τ))

Σ(r(τ))
+

1

8
Σ′(r(τ))2 − 1

4
Σ(r(τ))Σ′′(r(τ)) .

A measure element (57) becomes the following

D̃r(τ) =
∏

τ

dr(τ)√
2πΣ(r(τ))2dτ

.

Inversing in formula (57) to time variable t we obtain solution to the Fokker–Planck equation (18) in
path integral form

K(r, r0, t) =

√
Σ(r0)

Σ(r)3

∫ r

r0

Dr(τ) exp

(
− 1

2

∫ t

0

(
ṙ(τ)−A(r(τ))

)2

ṘH(τ)Σ(r(τ))2
dτ −

∫ t

0
u(r(τ))dτ

)
, (58)

where

u(r(τ)) =
1

2
A′(r(τ))−A(r(τ))

Σ′(r(τ))

Σ(r(τ))
+ ṘH(τ)

1

8

(
Σ′(r(τ))2 − 2Σ(r(τ))Σ′′(r(τ))

)
(59)

and also measure element (58) is equal to

D̃r(τ) =
∏

τ

dr(τ)√
2πṘH(τ)Σ(r(τ))2dτ

. (60)
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Фрактальний броунiвський рух в моделях фiнансової iнженерiї

Янiшевський В. С., Ноджак Л. С.

Нацiональний унiверситет “Львiвська полiтехнiка”,
вул. С. Бандери, 12, 79013, Львiв, Україна

Розглянуто застосування фрактального броунiвського руху (ФБР) в стохастичних мо-
делях фiнансової iнженерiї. Для вiдомого з лiтературних джерел рiвняння Фоккера–
Планка для випадку ФБР побудовано розв’язок для густини умовної ймовiрностi у
методi функцiонального iнтегрування. Показано, що зазначений розв’язок не випли-
ває з гаусової мiри ФБР з точною коварiацiєю. Знайдено вигляд апроксимацiї коварiа-
цiї ФБР, для якої розв’язки знайденi на основi гаусової мiри ФБР i вiдомого рiвняння
Фоккера–Планка спiвпадають.

Ключовi слова: фрактальний броунiвський рух; стохастичне рiвняння; густина
умовної ймовiрностi; рiвняння Фоккера–Планка; функцiональний iнтеграл.
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