odeling
MATHEMATICAL MODELING AND COMPUTING, Vol. 10, No. 2, pp. 474-486 (2023) I\/I @P”ti"g

athematical

Guaranteed root mean square estimates of linear matrix equations
solutions under conditions of uncertainty

Nakonechnyi O. G.', Kudin G. I.!, Zinko P. M.!, Zinko T. P.!, Shusharin Y. V.2

! Taras Shevchenko National University of Kyiv,
60 Volodymyrska Str., 01033, Kyiv, Ukraine
2 Kyiv National Economic University named after Vadym Hetman,
54/1 Prospect Peremogy, 03057, Kyiv, Ukraine

(Received 12 October 2022; Revised 20 April 2023; Accepted 2 May 2023)

The article focuses on the linear estimation problems of unknown rectangular matrices,
which are solutions of linear matrix equations with the right-hand sides belonging to
bounded sets. The random errors of the observation vector have zero mathematical ex-
pectation, and the correlation matrix is unknown and belongs to one of two bounded sets.
Explicit expressions of the guaranteed root mean square errors of estimates for linear op-
erators acting from the space of rectangular matrices into some vector space are given.
Guaranteed quasi-minimax root mean square errors of linear estimates are obtained. As
the test examples, two options for solving the problem are considered, taking into account
small perturbations of known observation matrices.

Keywords: linear estimation; guaranteed RMS estimates; guaranteed rms errors; linear
and conjugate operators; small parameter; quasiminimaxr RMS estimates.

2010 MSC: 97N20 DOI: 10.23939/mmc2023.02.474

1. Introduction

Problems of coefficient estimation in multiple regression have been studied by many authors (see, for
example, [1-10] and the bibliography therein). For practical purposes, studies of matrix parameter esti-
mates based on observations of some elements with errors are of interest. A number of matrix evaluation
problems under conditions of statistical uncertainty were investigated in the authors’ works [11-13].
Also, in publications [14-16], the problems of estimating matrices with a small parameter are solved.

In this article, for the problem of linear estimation of unknown rectangular matrices based on
observations, the guaranteed root mean square error of linear operators is obtained under the assump-
tion that the unknown matrix is a solution of a matrix linear equation with an undefined right-hand
side, and the unknown matrix is an implementation of a random matrix with a correlation operator
defined by from a special operator relation and belongs to some limited set. The observation model
matrix depends on a small parameter. The guaranteed root mean square (RMS) error of the estimate
represented by the vector is given. Two examples of implementation of the algorithm for solving the
evaluation problem are considered.

2. Problem statement

Let the scalar quantities be observed:

where X € H,,x, is an unknown matrices, solution of the linear equation
AX =BF, (2)

A € Hpywm (det A # 0), B € Hpyxm are the known matrices; F' € Hp,x, is an unknown matrix
belonging to some finite set G; Ar € Hypxn, kK = 1, N are the known matrices; H,,x, is the space of
matrices m x n dimensions; sp(W) is the trace of the square matrix W; sp(XATL) = (X, Ay) is the
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scalar product of matrices; T’ is matrix transposition symbol; 7, k& € 1, N are sequence of random
variables.

Let us introduce the linear operator p, which operate from the vector space RV into the matrix
space H,,x, and the linear operator p*, conjugated to the operator g:

N
pxr = Z Apxr = X
k=1

0" X = (sp (XTA4y),...sp (XTAN)) "

as well as vectors y = (y1,...,yn)T, n=(n1,...,nn)".
Observations (1) in vector form: y = p*X + 7.

It is assumed that the average value of the random vector € RY is a null vector, that is, En =0
(E is the symbol of mathematical expectation), and the correlation matrix R = Enn” is unknown and
belongs to the bounded sets G2 or G3'

{R sp(R — Ro q}
G3 = {R Sp QQR } (3)

where Ry = (r,g(;)) kj—1N 1S a known symmetric nonnegative definite matrix, ¢ is a known positive real
number, Q2 € Hyxn is a known symmetric positive definite matrix.
A linear operator L is introduced, which acts from the space H,,x», to the space R*:

LX = (B, X), ..., (Ve, X))

where V; € Hy,xpn, © = 1, s are given matrices.

3. Solving the problem of linear estimation of observations

Definition 1. A linear estimate of an element LX is an element f)\( of the form
N

f)\(:Uy+CEZukyk+c,
k=1

where uF € R, k =1, N; U is a linear operator mapping the vector space R into the space R®; the
vector ¢ € R®.

Definition 2. The guaranteed RMS error of estimation LX is called the value

1
ai(U,c):{rgaxEHLX Lx|P}, i=2.3,

T

where ||LX — LX||* = sp ((LX — LX) (LX — LX)").

Definition 3. The estimations LX = Uy + &%, i = 2,3, for which values of U), &9 i = 2,3 are
determined from the conditions

U, &0 e Argnl}inai(U, c), 1=2,3

are called guaranteed RMS estimates.

Let us introduce the vectors ug,) = (u},,ug,...,ué\f)T, p = 1,5, where u];, k € 1,N is the pth
k

component of the vector u”.

Statement 1. Let X € H,,x, is the unknown matrix content the equation (2), and for the random
vector  (En = 0) the unknown correlation matrix R = Enn’ belongs to sets Go or Gs. Then at i = 2
or i = 3 and ¢ = 0 for the vector of estimates

X =U0y) = ((u()w)- - (u)w) ", =23
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the equalities hold:
maxE||LX — LX|? = 1 (UD) + J,(UD), =23, (4)

g

where J; (U®) = max > p=15P (BTZI(,i)FT),
FeG

s 5 2
2 2
BE®) = 3 () + ] 3 67

p=1 p,j=1

BUD) = 2> Auan(D), D= (Q5"ul)ul))
p=1

and matrices Z;,(,i) are the solutions of the equations:

ATZI(f) =V, - pu&)), 1=2,3, p=1s.

Proof. Since at ¢ = 2 or i = 3 the equalities are fulfilled:

BIZX — X[ =B (V. X) = (u(y),9))°

D)
p=1
=EY (Vo X) = (), 0" X) = (ull).0)* = 3 ((Vp = oufy), X) = (u),m)*,
p=1 p=1

(V,, — pu&)), X) = (Z0AT, X) = sp (BTZY'FT),

then we will get that

- 2 - ; 2 > D) \2
max B[ LX — LX||* = max 37 (sp (BT 20 F"))” + ma 3B (uy). )
&g p=1 p=1
From the equalities
mazuxE Z (ug;, n)” = max (Rugg, ugg) = max Z sp (RU%U%T)
p=1 p=1 p=1

S S 9 5

=3 (R +lalf 3 o0 i)}
p= p.j=

we get an expression for Jo(U®?)).
From the ratios:

5 (3) - 2 (3) 2
H%;%XE:I E(u(p),n)2 = max (u(p)’ b)” = \Iﬁi}f irel%}; - (apu(P)’ b)
p= P=

=maxg® 32 (@) 1)) as; = 6" Amax(D),

where G = {b: (Q2b,b) < ¢%}, the formula for J3(U®)) follows. [

9

Let the set G has the form:
G ={F: sp(QFFT) <1,Q € Hyxm },
where Q) € H,,xm is a known symmetric positive definite matrix.
Statement 2. If F belongs to the set (i, then the formula (4) in statement 1 will take the form:
S
max Y (sp (BTZOFT))? = Anax (DY), i =2,3,
p=1
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where Dgi) = (Sp (BQ_IBTZZ(Ji)Zg(‘i)T))p,jzl_,s'

Proof. The following equalities hold for i = 2, 3:

s

; 2
maXZ sp BTZ(Z)FT)) = mgxlrcrll‘i}lip_l (Sp (apBTZ]gZ)FT))

p=1
= max Z apajsp (BQ'BTZ0 2T = Muax (D).
p,y=1

I. Let LX = (V, X), the correlation matrix R = Enn” belongs to the sets Go or G3, the matrix F
belongs to the set G. Denote by 4%, i = 2,3 the vectors of dimension N obtained from the conditions:

it € Argmin®;(u), =23, (5)
where
;(u) = max B((V, X) — (u®, y))". (6)
G,Gi
|

Statement 3. Vectors @), i = 2,3 from formula (5) have the form:
a9 = Rip*PY =23,
where
Ry = (Ro+lqlIn)™", Ry =q"Q;

Iy is the single matrix N x N dimension; matrices P(i), 1 = 2,3 are determined from the systems of
equations:

ATZ0 = v — oa®),
PO =Qz0,  Q=BQ'BT, i=23

and at the same time the equalities are fulfilled: maXE((V X)—(a @ ),y))2 = <V, P(i)>, 1=2,3.
G,G;

(7)

Proof. It follows from statement 1 when s =1, V3 =V, Z(Z) Z® =2 3 that
max E((V, X) — (u®,9))* = (Q2D, zD) 1 J;(u®), =23,

where
T (u®) = (RVu®,u®) + g/ (u®,u®),  J3(u®) = (@3 u®,u®).
Since the functions @i(u(i)), 1 = 2,3 are strongly convex and quadratic, there are unique minimum

points 4, i = 2,3, which satisfy the conditions:

difb( (2)—1—7'21()) =0, w9 eRN, =23

7=0
Then the equalities hold:
%diqp () 4 7o) _ = sp (QZDZOT) 4 (R, v@) =0, =23,
- -

where

It follows that
0 =R PO =23
From the expression for errors

8,(i9) = (QZ0, 2 + (Ri" PV, " PV), i=2.3

Mathematical Modeling and Computing, Vol. 10, No. 2, pp. 474-486 (2023)



478 Nakonechnyi O. G., Kudin G. I., Zinko P. M., Zinko T. P., Shusharin J. V.

we obtain equalities:
<QZA(Z')’ Z(i)> - <]5(i)’ vV — p*ﬂ(i)> - <]5(i)’ V> _ (Rip*ls(i), p*P(i)), i=23
Le. ®; (i) = (PO, V), i=2,3. »
Remark 1. Note that if the matrix X is a solution of a linear equation
AX=BF+C,

where C' € H,,«y is a known matrix, the correlation matrix R is unknown and belongs to the sets Go
or Gs (formula (3)), the matrix F' belongs to the set G, then at i = 2 or ¢ = 3 the equality holds:

minmax E((V, X) — (u,y) — d)? = maxE((V, X) — (ﬁ(i),y) — d@)? = <]5(i), V),
wd GG G.G;

where d) = < ACH C>.

Proof. Since equalities hold
a = R PO =23,
then pa® = ZJ lAJ ] Zk 12; lrk]A Sp (ATP ) ZJ IA(Z <AJ,P()>, where Ri_l =

i)
{’fﬂ}k,y 17 4; Eklrk]Ak,J—lNZ—Q?)
Let us denote

B = (A;,PD), i=23 j=TN.
Then the solutions of the equation system (7
{ 20 =75y, 55-@:)2](-2‘)
PO =p N 8P, i=23,
where Zj, Py are the solutions of the matrix system of equations
{ ATZy =V,
APy = QZy,

) can be presented in the form:

and matrices Pj(i), Z ](-i), i =2,3, 7 =1, N are the solutions of systems of matrix equations:

ATZ(Z) A(Z)
AP].(g QZ“, jeT,N, i=23.

The unknown coefficients ﬁ](-i), i=2,3, j =1, N of linear combinations (8) are solutions of systems of
linear algebraic equations:

+Zﬁ P(Z Ak <P07Ak>7 1= 2,3, k:LN

|
II. Next, for the vector LX = ((V1, X),..., Vs, X))T, where V}, € Hysn, p = 1,5 (s < m - n) are
given matrices, we determine the estimate at i = 2 or ¢ = 3 as follows:

v _ ( (@) - (1) - (4)
LX = ((u(l)’y) (@ Uy ), (@ Uiy Y )) ’
where vectors u% )) 1 =2,3, p=1,s are determined from the conditions:

Ep)) € Argmin 027 (u@p)), =23, p=1s,

U(p)

O-Izjvi(u(P)) - maXE(<V2177X> - (u(p)7y))2a 1=2,3, p=1,s.

Such an estimate LX will be called a quasi-minimax RMS estimate.
Let us find the guaranteed RMS error of this estimate.
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Remark 2. If ¢ =2 or i = 3, the equalities that follow from the statement 2 hold:
max E||LX — LX||* = Apax (D) + J;(T®),

G,G;
where
(%) ~ 7 (1 (@)
D2 - (<QZ](J )7 Z >)p,j:1,s’
. > 0) (2) ~(2 i 2) ~2n2]2
R(O®) =3 (R4l al)) + \q!{ > (i) i) } )
pzl p,jzl
. > C1.3) ~(3
J(UW) =¢ 2:1 Amax(D), D = (Q; 1uEp§,uE]§)p7j:1—’s,
p:
and matrices ij Plgi), i =2,3, p=1, s are defined as solutions of systems of equations

4. Quasi-minimax RMS estimates for small matrix perturbations
Let the known observation matrices of the model (1) have the form

A = Ak(O) + EAk(l) + O(E)Imxn, k=1,N, (10)
where € € R! is a small parameter.

Then for the above introduced operators, the equality holds:
p(e)r = p(0)z + ep(1)z + o(e) Lnxn, =€ RY,
P ()X =" (0)X +ep"(1)X +o0(e)Inx1, X € Hpyxn,

where p(0)x = Z]kvzl Ak (0)zg, p(l)x = Ei\;l Ar(Day, o1 € RY, Lnxn € Hpxn is the matrix, all
elements of which are equal to one,

e (0)X = (sp (XTA41(0)),...,sp (XTAn(0))),
" ()X = (sp(XTAL(1)),...,sp (XTAn(1)))".

Let us determine the effect of small perturbations of the matrices on the estimates, as well as on the
errors of the observation estimates, using the results presented in statement 3 and remark 2. For this,

we determine the dependence on the small parameter of vectors &EQ) (e),p=1,s,i=2,3.

Statement 4. If in the observation model (1) the known matrices A () € Hyxn, k =1, N, depend
on a small parameter ¢ € R! (formula 10) and the conditions of statement 3 are fulfilled, then for

vectors @EQ) (e), p=1,s, i =2,3 the expansions hold:

ﬁ%;))(&“) = @E;))(O) + Eﬁ%;))(l) + O(E)INXL p=1,s, i=23, (11)
i) = B PO (), p=T5 =23,

Proof. According to the formula (9) remark 2 we have:

'ELE;))(Q) = R;lp*(g)PZSZ) (6), p= 1’ s, i = 2’3’

where matrices Pzgi) (€),1=2,3, p=1,s are defined as solutions of systems of equations:

ATZ(e) = V, — piig) (@),
AP(e) = 0Z(e), p=T,s, i=223
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If for the matrices P;,Si) (e), Z ,S")(s) enter expansions:

Z0(2) = Z8(0) +eZ0) (1) + 0(e) Iynxn, p=T,5, i=2,3, (12)

P () = P{(0) + eP (1) + o(e) Imxn, p=1,5, i=23,
then in the first approximation of the small parameter method, the solution of the systems of equations
will be matrices P,gi)(k‘), ZZ(,i)(k), p=1,5,1=2,3, k=0,1, which are the solutions of matrix systems
of equations:

ATZ,(0) = ¥, — p(0)a(y) (0),
AP (0)=0z(0), p=T,s5 i=2,3,

ATz (1) = V- p(1)a() (0) — p(0)a) (1),
AP (1) =0z (1), p=T,s i=23

Thus, the representation takes place:

i) (0) = R'g* OPP(0), p=Ts, =23,

a0 (1) = Ry (DB (0) + B o (0B (1).

Corollary 1. There are asymptotic distributions:
3 ~(3
D(e) = (Q3 ') (), 4 (), ;15 = D(0) +eD(1) + 0o(e) Loxs, (13)
DY (e) = ((QZ(2), Z(2))),, ;15 = DY (0) + eDY) (1) + o) oxs, i =2,3,

where D(0 ( Sl (3 ,AE%(O)) =T

<@”3><1r%§’§< Dpa=ts + (@2'36)0) 5 D), 55
D(’ = ((QZ{)(0), 5(0)>) e =23,
Dé”<1>=(<czz<l<> Z00)), s+ Q20,20 W), = i=2.3,

Remark 3. According to statement 4 for 1 = 3 there is equality

= Muax (D5 (€)) + 4" Max (D(e)).

G.G '

To determine the eigenvalues of matrices D(e), Dg) (€), i = 2,3, we will also apply the small parameter

method, the algorithm of which was used in the authors’ publication [15]. The application of the
(%)

method is determined by knowledge of eigenvalues and eigenvectors of matrices D(0), Dy (0), ¢ = 2, 3.

Example 1. Let s =1, Vj = I;,, and the matrices of the model (1) have the form:
Ak:Im+5Ak(1)7 k:LNv Q:Imv R3:Q2IN,

where Ag(1) are known m X m matrices, I, is the single m x m matrix.
Then, according to the formula (6), as well as the statement 3, the estimation error will have the
form:

1
0’3(@(3) (e)) = {ngaxE((Im,X> - (&(3)(6),31))2}2 = <Im,P(3) (€)>% (14)
G,Gs

The matrix P®)(¢) is defined as the solution of the system of equations:
ATZO)(e) = I — p(e)a® (e),
AP®)(¢) = BBTZ®)(¢),

and at the same time 4®) (g) = ¢%p*(e)P®) (e).

Applying the small parameter method for the variables of the system of equations (15) 4 (),
ZB)(e), PG)(g), we use asymptotic expansions according to the formulas (11), (12).

(15)
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Then the zero approximation of the system of equations (15) has the form:

{N%sz%—mwwmx

AP®)(0) = BBT Z®)(0), (16)

where 1) (0) = ¢p*(0)P®)(0), and the first approximation of the system of equations (15) is presented

in the form:
{ ATZB3)(1) = —¢*p(0)p* (0) PP (1) + C(1), (17)

AP®) (1) = BBTZ() (1),
where C(1) = —¢*(p(1)p* (0) PP (0) + (0)p* (1) P#)(0)),
(1) = ¢ (p"(0) PP (1) + p*(1) P(0)).
Solving the equation system (16) of the zero approximation with using the small pa-
rameter method. Since the equality
p(0)p" (0P (0) = N'sp PP (0) I,

holds, we have
sp P (0) = ¢"2sp P (0) (g7 + N sp PP (0)) 7,

where the matrix Pl(g) (0) is defined as the solution of the system of equations:

AT ZB(0) = I,
3y — pRT7® (18)
AP (0) = BB" Z;7(0).
Using the solution of the system of equations (18), we obtain equalities:
PP0) = (A'B)(A7'B) = P, (19)
1 al 1 al
21(3)(0) =sp P(q_2 + NspP)_ Zek, (@(3)(0),y) =sp P(q_2 + N sp P)_ Zyk,
k=1 k=1
where ¥, k =1, N is the basis vectors of space RV.
Thus, in the zero approximation of the small parameter method, we obtain the ratio:
N
PB)(0) = aP, (11(3) 0),y) = ¢*a spPZyk, a=(1+¢’Nsp P)_l, (20)
k=1

. 1
o3 (u(g) (0)) = (asp P)2.
Solving the system of equations (17) of the first approximation of the small parameter
method. We will rewrite the system of equations (17) in the form:

ATZ®)(1) = —¢* N sp (PO (1)) I, + C(1),
{ AP®) (1) = BBTZO)(1),

=z

N
C) = (P 3 A +In Y (4(1).P))
k=1 k=1
By replacing the variables:

Z(1) = —¢*Nsp (PP (1)) 2 (1) + 2,
PO (1) = —*Nsp (PP (1)) PP (1) + P,

introduce unknown matrices Z}g)(l)7 Pl(g)(l), Zy, Py, which are determined from the systems of equa-
tions:

{ AT 2O (1) = I, { AT Zy = O(1), 1)

AP® 1) =BBTZP (1), AP, = BB" Z».
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After solving the systems of equations (21), we obtain equalities:

—PC(1), PPO(1)=aPy, a1=(1+¢Nsp(PP(1))7, (22)
N
a® (1) = ¢ <Sp PO b + ((A1(1), PP(0)), ..., (An(1), P<3>(0)>)T>,
k=1
(0®)(1),y) = ¢*(arsp Po + aAx(1 Zyk

N
<Im,P(3)(1)> = aysp Py = oy sp(PC(1)) = —2¢°ay spPZ (AR(1), P).
k=1

Finally, we get that the guaranteed RMS error of estimation a3(u(® (¢)) in the first approximation of
a small parameter is determined by the expression:

N
1 q2a1 SPPZ <Ak(1)7p> + 0(6)7 (23)
(asp P)2 k=1

where the values of the parameters «, P, o are determined, respectively, by the formulas (19), (20),
(22).

Remark 4. It is assumed that in the formula (23) the multiplier for the parameter ¢ is of the same
order with a zero approximation.

o3(u®(c)) = (aspP)2 +

Example 2. Let s = 2, and the matrices of the model (1) have the form:
Ap = Ao+ kBy +€4,(1), k=1,N, (24)
the correlation matrix R = Enn’ belongs to the set G3 (formula (3) at ¢ = 1):
Gs ={R: sp(Q2R) < 1}.
It is necessary to find a guaranteed estimate for the vector LX = ((V1, X), (Va, X)) in the form:
~(3) ~(3) T
LX = ((a U ), (“(2)79)) :
In accordance with the corollary and remark 3 of statement 4, the guaranteed RMS error of estimation
has the form:

2 ~
o?(@®(e)) = maxE|LX — LX|* = E Y ((Vp, X) — (@), 1))* = Amax (D5 (€)) + Amax(D(€)),
feXeR Pt
where Dés)(e) = (<QZI(,3)(5),Zj(-s)(s)>)p7j:ﬁ, D(e) = ((Q;lag(s),ﬁgg(s)))nj:ﬁ, and matrices

ZZ.(?)) (e), PZ-(?’) (¢), i = 1,2 are determined from systems of equations:

{ATZ@<> v;—p@mgy@,

APO(E) = 029, p-T2, (%)

i) (e) = p" ()PP (), p=T.2.
Applying the method of small parameter to variables ugzg(s) Z (3)( ) PZE?’) () systems of equations (25),

we use asymptotic expansions according to the formulas (11), (12), and for Dg?’) (€), D(e) is an according
to the formula (13). The zero approximation of the system of equations (25) has the form:

{fF%Wm—%—p@ﬁﬁm,

ARP(0) =Q27(0), p=T72,

a0 (0) = 9" ()FP(0), p=1,2

(26)
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Since equalities hold:

N
2 Z Ag + §Bo){(Ag + jBo), BY(0)) = apL1(N) + B,L2(N), p=T1.2,

.
Il
i

where o, = <A0,P(3 (0 >, Bp = <BO,P(3)(O)>,

N N
Li(N) = 4g + Bon, Ly(N) = Ag» j+BoY i’
j=1 j=1 j=1
then the system of equations (26) takes the form:
3
ATZ(0) = Vi, — ap Ly (N) — B, La(N), 27
AR (0) = Qz7(0), p=T2.
If now the matrices Z,(,?’)(O)7 P,Sg) (0), p=1,2 to present in the form of combinations:
Z7(0) = Z;7(0) + 0 (0) 25V (0) + 5,(0) 22 (0),
BP(0) = B?(0) + ap(0) B3 (0) + 5,(0) B (0),
then the entered unknown matrices Zlgk)(O), Plgk)(O), p=1,2, k=0,2 are determined from the system
of equations (27) for certain combinations of coefficients: Z;,(,O)(O), P;,SO)(O), p = 1,2 at o,(0) = 0,
By(0) = 0; Z§”(0), BV(0), p = T,Z at V, = 0, 5,(0) = 0; 252(0), P (0), p = T,2 at a,(0) = 0,
V, =0.
Nonzero coefficients «,,(0), ﬁp(O), p=1,21is the solution of the following systems of equations:
1 0
{ (1- <f§‘;;=P15 1(0))) ap(0) + (Ao, Py o ?(0))8,(0) = <A0,PI§O;<0>>, -
<B07PP (0)>ap(0) (1 - <B07 ( )>)Bp( ) <B07PP (O)>7 p= 172
Thus, in the zero approximation, the equalities hold:

aij;;m) = ({(Ao + By), P(3> (0)),...,{(Ao + NBy), PP (0)))", p=

R N
<‘A/p7X> <A07P Zyk+ B07P(1 )>Zkyk7 p:17—27
k=1 =

L2,

2
3 2 3
U =E E V},,X Epg’y)) = )‘maxDé )(O) + )\maxD(O)y
p=1

D(0) = (Q3'al)(0),al)(0)) .1 DS(0) = ((QZ(0), 2 (0))), ;1

Yp)
Since for the first approximation of the system of equations (25) the relations hold:

ATZP (1) = o(0 0)*(0) P57 (1) + Vp(1),
AP<3<1> éz (1), p=T73,

Vp(1) =—(p () “(0)BP(0) + p(0)p" (1) P (0))

N
_ZAJ(1)<(A0 +jBo), P*(0) Z Ao+ jBo)(A;(1), B (0)),

= ]:1
A (1) = (p*<0>Pp<3><1> + " (L)PP(0)),

N
p(0)p"(0) P (1) = Z(Ao +B0){(4o + jBo), B (1)) = ap(1) L1 (N) + B,(1) La(N),

where a,(1) = <Ao, ( ) Bp(1) = <Bo,PI§3)(1)>, p = 1,2, then matrices Z,§3)(1), P,Sg)(l), p=1,2

are determined from systems of matrix equations:
ATZP (1) = V(1) — ap(1)L1(N) = Bp(1) La(N),
APP (1) = QzP (1), p=T2.
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If now matrices ZI(,S)( 1), P(g)( 1), p=1,2 present in the form of combinations:

29 (1) = ZP (1) + ap ()20 (1) + 5, (1) 27 (1), (28)
(1) = PO(1) + (B (1) + B,(1) B (1),
then the unknown matrices Zz() )( 1), P;,Ek)(l), p=1,2, k =0,2 are determined from systems of equa-
tions (28) for certain combinations of coefficients: ZI(,O)(l)7 PISO)(l), p=1,2at ap(l) =0, Bp(1) =
Z50 (), PV (1), p=T,2 at V(1) = 0, B,(1) = 0; 2 (1), P (1), p=T,2 at ap(1) = 0, V(1) = 0.
Nonzero coefficients a,(1), 5,(1), p = 1,2 are solutions of such systems equations:
1 0
(1 = (Ao. BV W)y (1) + (A0, B 1) 5(1) = (Ao BV (1),
(Bo, B (1))ap(1) + (1 - (Bo, B (10)) (1) = (Bo, (1)), p=T,2
Thus, for the first approximation, the equalities are fulfilled:
N T
) (1) = (((Ao + Bo), P (1)), -, (Ao + NBO> PO (1))

+ (A1), PA0)), ..., (An(1), PO(0))", p=T.72,

)

~

« N N
<‘>;)7X> = <A07P]§1)(1)> Zyk + BOv Zkykv =12 27
k=1 k=1
2 ~
2@ (1) =B Y ((Vp, X) = () (1),))” = AnaxD5” (1) + Amax D(1),
p=1

3) NE] 3) 3
where D(1) = (Q5a)) (1),a(5) (1)) 15 D (1) = ((QZ57 (1), 2 (1)), ;1o
As a result, we get that the guaranteed RMS error of estimation a(ﬁ(?’) (¢)) (formula (14)) in the
first approximation of the small parameter method is determined by the expression:

Amax DS (1) + Amax D(1)

3
2(Amax DS (0) + Amax D(0))
Let us supplement example 2 with assumptions about parameter values:
1) for the unknown matrix X in the equation (2):

A=Q=1I, = BBT=DL,:

2) in the evaluation model (formula (24):

AO — Ime BO = 07 Ak(l) - (1/2)k_112m7 k = 17N7 Vl — I2m7

0, if @ # 7,
Vo = (vij); jotom>  Vij = { :

=

o ((€)) = Pmax DS (0) + Amax D(0)) 2 + & +o(e).

D=

(—1)=1 if =3

Then for the zero approximation of the small parameter method we have equalities:
N
ap = <A07P;§3)(0)>, Bp =0, Li(N)=Ag, La(N)=Ag Z]}

@1(0) =70, @2(0) =0, L1i(N)= Nlap,
P(0) = Z(0) = Vo + ap(0) N Iy, p=T,2,

’Yoze ?1 0) =0,

Amax DS (0) = 2m,  AmaxD(0) = N2, 7o =
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Equalities hold for the first approximation:
ai(l) = dyy2,  as(l) =0,
Vi(1) = —vov2lom,  V2(1) =0,
ZP(1) = BP(1) = V(1) = ap() N Lo, p=T2,

N
a) (1) = 47072(1 = 70) ; ek, aly)(1) =0,
Amax DS (1) = 8maE73,  AmaxD(1) = 16(7072(1 — 7))’ N,
N
r=1-(3)" -

Therefore, the guaranteed root mean square error of estimation 0(21(3) (€)) in the first approximation,
the small parameter has the form:

om~+2N(1 —70)2

53 — 2\3 2
ot (e)) = (2m + N~y )2 + devgy + o(e).
( ( )) ( 0) 072 (2m N’}/g)% ( )

5. Conclusion

The problems of linear estimation of unknown rectangular matrices, which are solutions of linear
matrix equations whose right-hand sides belong to bounded sets, are studied. The random errors of
the vector of observations have zero mathematical expectation, and the correlation matrix is unknown
and belongs to one of two bounded sets.

Explicit expressions of the guaranteed RMS errors of estimates of linear operators acting from the
space of rectangular matrices into some vector space are given.

Guaranteed quasi-minimax RMS errors of linear estimates are obtained. As test examples, two
options for solving the problem are considered, taking into account small perturbations of known
observation matrices.
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rapaHTOBaHI Cepep.HbOKBa,El,paTl/I‘-lHl OLI,IHKI/I po3B 'A3KIB NIHINHUX
MaTpPpU4HNX pIBHFIHb B ymMmoBax HEeBU3HA4YeHOCTI

Hakoneunnit O. I'.Y, Kyzain I'. 1.1, Bineko I1. M., Biasko T. I1.1, Ilymrapin 0. B.2

I Kuiscokuti nayionanvrut ynisepcumem imeni Tapaca Iesyerka,
6yn. Boaodumupcora, 60, 01033, Kuis, Yxpaina
2 Kuiscokuti Hayionaabrut exoromivnud yrisepcumem imeni Baduma Temovmana,
np. Hepemoeu, 54/1, 03057, Kuis, Ykpaina

Hocnimzkeno 3agadi JIHIHHOTO OIHIOBAHHS HEBIJOMHUX MPSIMOKYTHUX MATPUIb, dAKi €
pPO3B’sI3KaMU JIHINHAX MATPUYHAX PIBHSHB, IPAaBI 9aCTUHU SKAX HAJEXKATh OOMEXKEHUM
MHOXKHMHaM. BunajkoBi 1MOXuOKH BEKTOpa CIIOCTEPEXKEHb MalOTh HYJIbOBE MaTeMaTUIHEe
CIIO/iBaHHs, a KOpeJdIliiiHa MaTpulld HeBijoMa it HaJEKUThb OJHIN i3 JBOX OOMEKEHUX
MHOKMH. HaBejieHi siBHI BUpa3u rapaHTOBaHUX CEPETHBOKBAIPATUYHUAX MOXUOOK OIIHOK
JIHITHUX OMEepaTOoPiB, IO JIIOTH i3 MPOCTOPY MPSIMOKYTHUX MaTPUIh Y JedKN BEKTOPHMIT
npoctip. OTpumani rapaHTOBaHi KBa3iMiHIMAKCHI CepeIHbOKBAIPATUIHI MOXUOKU JTiHIH-
HOAX OINHOK. %K TeCTOBI MPUKJIAJM PO3IVISHYTO /Ba BapiaHTH PO3B’sd3yBaHHS 3aadi 3
ypaxyBaHHAM MaJjux 30yPIOBAaHb BIJOMUX MATPHUIb CIOCTEDEKEHHSI.

Knto4oBi cnoBa: Ainitine ouiniosanha; 2aparmosani cepeonbokeadpamusti OuinKy; 2a-
PAHMOBAHT CEPEIHBOKBAOPATNUYHT NOTUOKY,; ATHITHUT Ta CNPANCEHUT ONEPAMOPU; MAAUT
NAPAMEMP; KBA3IMIHIMAKCHT CEPEOHDOKBAIPAMUNHT OUTHKU.
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