odeling
MATHEMATICAL MODELING AND COMPUTING, Vol. 10, No. 2, pp. 524-533 (2023) I\/I @P”ti"g

athematical

A drip irrigation prediction system in a greenhouse based on long
short-term memory and connected objects

Ghazouani M., Azzouazi M., Lamhour M. A.

Laboratory of Information Technology and Modeling, Hassan II University,
Faculty of Sciences Ben M’Sik, Casablanca, Morocco

(Received 28 February 2023; Accepted 27 April 2023)

Smart greenhouses use Internet of Things (IoT) technology to monitor and control various
factors that affect plant growth, such as soil humidity, indoor humidity, soil temperature,
rain sensor, illumination, and indoor temperature. Sensors and actuators connected to
an IoT network can collect data on these factors and use it to automate processes such
as watering, heating, and ventilation. This can help optimize growing conditions and
improve crop yield. To enable their vegetative growth and development, plants need the
right amount of water at the right time. The objective of this work is to strictly control the
different factors that affect the growth of greenhouse crops. Therefore, we need a non-linear
prediction model to perform greenhouse crop irrigation prediction. During operation, the
system receives the input commands via sensors and then predicts the next watering run.
The irrigation is predicted using GRU, LSTM, and BLSTM and a comparison was made
between the results of the three techniques, and the technique with the best result was
selected.

Keywords: GRU; LSTM; BLSTM; recurrent neural network; IoT; smart greenhouse.
2010 MSC: 68T05, 68P20, 62H12, 97R50 DOI: 10.23939/mmc2023.02.524

1. Introduction

The Moroccan agricultural sector still presents a breeding ground for opportunities for innovative
projects. Here, if we take the case of the greenhouse, several options for innovation arise whether in
terms of irrigation, fertilization, plant protection by phytosanitary products, or even monitoring of the
growth dynamics of plants, etc. To that, one must add the desire to preserve the environment, by
reducing energy consumption and by recovering agricultural waste.

Modernizing the agricultural sector involves the introduction of technological innovations at differ-
ent stages of the production process, from upstream to downstream, from the field to top management.

In this work, we are interested in innovative techniques in irrigation. Irrigation is the artificial
application of water to land for agriculture. It is used to assist in the growing of crops, maintenance of
landscapes, and revegetation of disturbed soils in dry areas and during periods of inadequate rainfall.
Irrigation can be used to help crops grow in dry regions or to help maintain the health of plants in
areas with insufficient rainfall.

There are several types of irrigation, including:

— Surface irrigation: Water is applied to the soil surface and allowed to flow by gravity. This type of
irrigation is suitable for a level or gently sloping fields.

— Sprinkler irrigation: Water is applied to the soil through sprinklers, which can be mounted on poles
or moved through the field. This type of irrigation is suitable for hilly or uneven terrain and can
be used for crops or landscapes.

— Sub-irrigation: Water is applied to the soil from below, typically through a system of pipes or
trenches. This type of irrigation is often used in greenhouses or areas with high water tables.

— Flood irrigation: Water is applied to a field and allowed to cover the soil surface. This type of
irrigation is suitable for level fields with good drainage.

524 (© 2023 Lviv Polytechnic National University

A drip irrigation prediction system in a greenhouse based on long short-term memory and ... 525

— Drip irrigation: Water is applied directly to the base of the plant through a network of tubes or
emitters. This type of irrigation is very efficient and can be used for a variety of crops.

There are several reasons why drip irrigation is a good choice for watering plants:

— Efficiency: Drip irrigation systems can be designed to deliver water to plants at a slow and steady
rate, which allows the water to be absorbed by the soil and reach the plant roots more effectively.
This can help reduce water waste and increase the efficiency of irrigation.

— Cost: Drip irrigation systems can be less expensive to install and maintain than other types of
irrigation systems. They also use less water, which can help reduce water bills.

— Flexibility: Drip irrigation systems can be customized to fit the specific needs of different plants
and growing conditions. They can be used in a variety of settings, including greenhouses, gardens,
and large fields.

— Conservation: By delivering water directly to the roots of plants, drip irrigation systems can help
reduce the amount of water lost to evaporation and runoff. This can help conserve water and
protect natural resources.

Considering these advantages of drip irrigation, we choose the drip irrigation method for this work. In
Morocco, a large number of hectares of land are considered uncultivable due to the scarcity of rain, but
by using the latest innovative techniques in irrigation, we can give them a second life. Irrigation will
make it possible to produce a multi-yield, i.e. to have more than one crop (up to 3 per year). From this
perspective, we developed a drip irrigation prediction system in a greenhouse based on deep learning
and connected objects.

The remainder of the article is organized into four sections. We review the literature in Section 2.
Theoretical explanations and experimental analysis of the proposed LSTM model are denoted in Sec-
tions 3 and 4. The conclusion of the proposed model is represented in Section 5.

2. Related work

Many sensor-based irrigation methods have been developed over the past few years. But most of these
methods have been considered complex as their adoption by growers has been limited due to cost,
installation time, and maintenance. The automation of the irrigation system facilitates the work of
the farmer. The sensor-based automated irrigation system offers a promising solution to farmers since
the presence of the farmer in the field is not mandatory to perform the irrigation process.

A study of machine learning algorithms [1] was made to understand which will have the highest
accuracy when classifying the ideal hour to irrigate an agricultural field, based on local sensors and
weather data. The algorithms tested included Random Forest, Neural Network, XGBoost, Decision
Trees, and Support Vector Machine. The literature on this topic showed that research is already being
done to calculate the amount of water to be administered to the agricultural field, however, the time
of day at which this administration was done continues to be decided by the owner and in a poorly
founded way. A methodology was followed to obtain a suitable dataset for the study and several
scenarios were explored to understand which algorithm best suited the situation under study, and it
was concluded that XGBoost was the most suitable. After the optimization of the tested algorithm,
it was possible to reach an accuracy in the order of 87% with XGBoost, which leads to the belief that
the final result can improve water management and consequent savings of this natural resource.

In this study [2|, the Long Short-Term Memory (LSTM) Neural Network model was studied to
predict irrigation prescriptions for 1, 3, 6, 12, and 24 h in advance. Training data for LSTM were
collected from a precision irrigation study conducted in Alabama, USA. The prediction estimation
of irrigation prescription used soil matric potential data measured within two contrasting soil types.
The performance of the LSTM models was evaluated by comparing neural network parameters and
prediction capability by soil type. The optimal learning algorithm for each case was also determined.
The LSTM Neural Network showed good prediction capabilities for both soil types, with R2 ranging
between 0.82 and 0.98 for one hour ahead of prescription and getting smaller as prediction time

Mathematical Modeling and Computing, Vol. 10, No. 2, pp.524-533 (2023)

526 Ghazouani M., Azzouazi M., Lamhour M. A.

increases. The irrigation rate prediction was verified by actual observations that demonstrate the
suitability of the machine learning technique as a decision-support tool for irrigation scheduling.

This paper [3] has presented a dynamic neural network approach for modeling the time series of
soil moisture content. The performance of the LSTM for the prediction of soil moisture content was
evaluated for three sites with different soil characteristics. Using an independent evaluation dataset, the
LSTM models developed for the sites achieved accuracies (R2 > 0.94) for a one-day-ahead prediction.
The LSTM models also generated accurate soil moisture predictions for independent sites not used
in training the models. The use of the LSTM models in predictive irrigation scheduling was also
demonstrated using AQUACROP simulations of the potato-growing season. The performance of the
proposed predictive irrigation scheduling system was evaluated by comparing its irrigation policies to
those of a rule-based system. The predictive system was able to maintain the soil moisture deficit
within allowable limits for most of the simulated growing season while minimizing over-irrigation.
Furthermore, the predictive system was able to achieve a yield and WUE similar to that achieved by
the rule-based system using lower irrigation application depths.

The system [4] presents the design and implementation of an irrigation control system for home
gardening using Support Vector Machines (SVMs). The system is designed to optimize irrigation
schedules and minimize water usage. It collects data on soil moisture, temperature, and humidity, and
uses this data to predict the irrigation needs of the plants. The SVM algorithm is trained on this data
to make accurate irrigation schedule recommendations. The system also includes a user interface for
making manual adjustments to the irrigation schedule as needed. The results of the study show that
the SVM-based irrigation control system is effective in optimizing irrigation schedules and reducing
water usage.

The proposed system [5] presents a smart irrigation technique for managing irrigation effectively
by adopting machine learning methods to predict the critical parameters related to agriculture. The
physical parameters like temperature, humidity, soil temperature, UV radiation, evapotranspiration, air
temperature, etc. And also weather forecasting data which affects the soil moisture content of the soil as
the input parameters for training the machine learning model. This machine learning model performs
better compared to the other machine learning model in the prediction process with better accuracy
and reduced error rate. The irrigation process can be monitored by using a web interface. Further, this
prototype model integrates open standard technologies with commercially available sensors to develop
a prediction model in a cost-effective approach and ensures the best-fit model in smart agriculture
applications.

The use of a new method for an irrigation system [6] using a regression algorithm is proposed,
which helps to predict the amount of water needed for daily irrigation based on data from various
sensors. The planned information is made available on the mobile application (app), through which
it is possible to access the current status of the agricultural field. Based on the literature survey it
was concluded to use Recurrent Neural Networks (RNNs). RNNs are a type of neural network that
is particularly well-suited for working with sequential data, such as time series data. This is because
RNNs can remember information from previous time steps, which allows them to model dependencies
between data points that are separated by long intervals.

3. Materials and methods

3.1. Greenhouse and measurements

All experiments were based on a real mini greenhouse, as shown in Figure 1 below, located at our Uni-
versity in Casablanca in Morocco. Experiments were conducted from January 17, 2022, to September
15, 2022, using tomatoes. The soil humidity, indoor humidity, soil temperature, rain sensor, illumi-
nation, and indoor temperature were measured by a sensor module. The six environments’ data were
collected every five minutes and saved to a database.

Soil moisture sensor v1.2. It typically consists of two electrodes that are inserted into the soil, and
the resistance between the electrodes is used to determine the moisture content.

Mathematical Modeling and Computing, Vol. 10, No. 2, pp.524-533 (2023)

A drip irrigation prediction system in a greenhouse based on long short-term memory and ... 527

Fig.1. The experimental greenhouse at Hassan II University of Casablanca, Morocco.

Temperature sensor DS18B20. Is a digital temperature sensor that uses a 1-Wire interface to
communicate with a microcontroller or other device. It is widely used in a variety of applications,
including HVAC systems, refrigerators, and weather stations. The sensor has a temperature range of
—55°C to +125°C (—67°F to +257°F) with a resolution of 0.5°C (0.9°F). It can operate in a variety
of environments, including wet and dry conditions, and can be placed directly in soil or other media
to measure temperature.

Fig. 2. Soil mois- Fig. 3. Temperature Fig. 4. Humidity Fig. 5. Digital Fig. 6. Rain sen-
ture sensor v1.2. sensor DS18B20. and temperature LDR Module. sor module YL-83.
sensor DHT22.

Humidity and temperature sensor DHT22. Is a digital humidity and temperature sensor that
uses a 1-Wire interface to communicate with a microcontroller or other device. It is widely used in a
variety of applications, including HVAC systems, home automation, and weather stations. The sensor
has a temperature range of —40°C to +80°C (—40°F to +176°F) with a resolution of 0.1°C (0.2°F)
and a humidity range of 0% to 100% with a resolution of 0.1%.
Digital LDR Module. Is a device that combines a

Humidity and temperature

light-dependent resistor (LDR) with an amplifier and a “"“’rg“m PR
digital output. It is used to measure the intensity of in- The lightsensar. . @ sensor DS18B20
cident light and convert the analog output of the LDR ® \

into a digital signal that can be read by a microcon- [

troller or other device. Digital LDR modules are often Reomur

used in applications where the light intensity needs to be
measured with a high degree of accuracy, or where the
output of the LDR needs to be used in a digital circuit.
Rain sensor module YL-83. Is a rain sensor module
that is used to detect the presence of rain. It typically

Soil moisture

consists of a PCB with an exposed metal pad that is sensdEsvl2

coated with a special layer of material that is sensitive Multiplexer 7aHCA067

to water. When the pad is wetted by rain, the resistance Fig. 7. Architecture of the IoT data collection
between the pad and a reference electrode changes, and module.

this change can be used to detect the presence of rain. Rain sensor modules are commonly used in
irrigation systems and other applications where the presence of rain can be used to adjust the operation
of a system. All sensors used in our greenhouse are shown in Figure 7. The collected data were sent
to the main controller every five minutes using a standard transmission protocol.

Mathematical Modeling and Computing, Vol. 10, No. 2, pp.524-533 (2023)

528 Ghazouani M., Azzouazi M., Lamhour M. A.

3.2. Recurrent Neural Network (RNN) for climate change prediction

To predict our indoor greenhouse temperature, two prediction techniques are used, namely: Long
Short-Term Memory (LSTM) and Gated recurrent unit (GRU) which are a special kind of RNN that
are capable of learning long-term sequences.

RNNs are natively designed to enable deep networks to process sequences of data. RNN assumes
that incoming data takes the form of a sequence of vectors. If we turn each word in a sentence into
a vector, sentences can be used to feed RNN. RNN can be used in practice to perform tasks such as
producing new sentences or generating text for applications such as chatbots [7].

Recurrent architectures are useful for modeling very complex time-varying datasets. Datasets that
vary over time are traditionally called time series. Figure 8 illustrates some examples of time series.

In time series modeling,

1

90

we design systems that can

learn the rule that mod-

els the future evolution of

1}} {v ’ W that system based on the

i \ h \ F\\ past. Mathematically, sup-

& \ pose that at each time step,

we receive a data point

x¢ where t represents the
present moment.

Time series methods

then seek to learn a func-
tion f such that:

14000
L L

10000
L 1

i
y il
ot

T T T T T T T T T
1960 1970 1980 1990 1960 1970 1980 1990 1995
year year

6000

1

1

Monthly home sales (in millions)
60
1
———

Monthly electricity prediction
30

ZUPO

Fig. 8. Examples of time series datasets that might be of interest
to the model.

T+l = f(:El, N ,:Et).
There are various elaborations based on the concept of a simple recurrent neural network which has

proven to be effective in practical applications [7]. There are various elaborations based on the concept
of a simple recurrent neural network which has proven to be effective in practical applications [7].

3.3. Long Short-Term Memory (LSTM)

The problem with a simple recurrent neural network is that signals from the distant past fade quickly.
As a result, RNNs may fail to learn complex dependency patterns. This failure becomes particularly
noticeable in applications such as language modeling, where words may have complex dependencies with
earlier phrases. A possible solution to this problem is to allow old states to pass through unmodified.
The LSTM architecture proposes a mechanism allowing a past state to be transmitted to the present
with a minimum of modifications as shown in Figure 9.

At each time step, t, the LSTM cell takes three inputs: the input x;, the short-term memory h;_1,
and the long-term memory ¢;_1, and outputs the long-term memory ¢; and short-term memory h;.
The subscript to z, h, and ¢ refer to the timestep [8].

The Forget Gate f(-) controls the amount of short-term memory, h, to be remembered for further
flow in the present time step. Mathematically we can represent Forget Gate f(-) as [8]:

F(-) = oW Xy + Wyephg—1 + by).
Where o represents the sigmoid activation function, Wy, and Wy, are the weights controlling the
influence of input a, short-term memory h;_1, and by the bias of the forget gate [8]. The Input Gate
i(+) controls the amount of input and working memory influencing the output of the cell. We can
express it as follows [§]:
hi = g(Wha Xt + Whnhi—1 + by).

The Output Gate o(-) controls the amount of information that is used for updating the short-term
memory, and is given by the following [8]:

0() = U(Woth + Worhi—1 + bo)-

Mathematical Modeling and Computing, Vol. 10, No. 2, pp.524-533 (2023)

A drip irrigation prediction system in a greenhouse based on long short-term memory and ...

°o—0—— -0
i&;

Input Gate Output Gate

Fig.9. The basic LSTM cell, x is the input to the cell, h is the short-term memory,
and c is the long-term memory. The subscript refers to the time.

3.4. Gated recurrent unit (GRU)

The complexity, both conceptual and computa-
tional due to the sophisticated mathematical op-
erations, LSTM has led several researchers to at-
tempt to simplify the LSTM equations while re-
taining the performance gains and modeling ca-
pabilities of the original equations.

It takes only two inputs, the input x; at time
t and memory h;_1 from time ¢t — 1. There are
only two gates, Update Gate and Reset Gate,
shown in the following Figure 10 [8].

The update gate controls how much previous @
memory to keep, and the reset gate determines
how to combine the new input with the previous

memory [8]. GRU preserves many of the advan- Fig. 10. The architecture of a basic GRU cell.

tages of LSTM at a lower computational cost.

4. Proposed approach

4.1. Data set

As mentioned above, we used a real data set of

tomatoes. The sensors collected the soil humidity,
indoor humidity, soil temperature, rain sensor, illu-
mination, and indoor temperature. MinMaxScaler
in Python was used to scale each input variable to
the range [0, 1], which benefits the performance of
many Deep Learning algorithms. After preprocess-
ing, we were left with 319130.

In Figure 11, we indicate the changes in the tem- :
perature in one day. It can be seen from the figure 15

) w
ol =)
L L

[
o
L

temperature / °C

that the temperature change is nonlinear. There-
fore, it is obvious to choose RNN for climate predic-
tion.

Mathematical Modeling and Computing, Vol. 10, No. 2, pp.524-533 (2023)

0 200 400 600 800 1000 1200 1400
Fig.11. Changes the temperature in one day.

530 Ghazouani M., Azzouazi M., Lamhour M. A.

4.2. Metrics

To train a model, we first need a performance metric that will tell us if the model is performing well or
not in the training set. The mean square error (MSE), root mean square error (RMSE), and coefficient
of determination (R?) are selected to evaluate the forecast accuracy of the models in this study,
N 59 N
R?=1- Egl(y—_f) MSE = — > (¥;—Y;)?, RMSE = VMSE.
>oim (Y = Y)? N i=1
In practice, we generally use a measure of the error made by the model on the training set, which is
called a cost function. The most common cost function for a regression model is the root mean square

error (RMSE) as defined above.

4.3. Results and discussion

In this section, we describe the proposed greenhouse system which uses the climate variables and
recurrent neural network (RNN) for drip irrigation prediction.

Comparison of results. The present study aims to compare the performance of the LSTM model and
the GRU model to predict future sensor values 5 minutes in advance, based on a window of past values.
To present the experimental effects concisely and appropriately, we selected the six environments data
that was collected every five minutes and saved to a database for model training and prediction. The
conditions set by the model, such as Batch size, Epochs, Optimizer, Layers, Loss function, and the
proportion of the training set, are all the same.

trainPredict = model.predict(x_train)

testPredict = model.predict(x_test)

invert predictions
trainPredict = min_max_scaler.inverse_transform{trainPredict)
trainy¥ = min_max_scaler.inverse_transform([y_train])
testPredict = min_max_scaler.inverse_transform(testPredict)

look back = 15 tes‘t\:‘ =Im'in_max:scaler‘.in\#er'sJe_transtr'm([y_test])

- # calculate root mean squared error

model = Sequential() trainScore = math.sgrt(mean_squared error(trainv[e], trainPredict[:,8]))

model.add(GRU(20, input_shape=(1, look_back))) print(’'Train Score: ¥%.2f RMSE® % (trainscore)
model.add(Dense(1)) testScore = math.sgrt(mean_squared_error(testY[e], testPredict[:,8]))
model.compile(loss="mean_squared_error’, optimizer="adam") print('Test Score: %.2f RMSE' % (testScore))

model.fit(x_train, y_train, epochs=1@, batch_size=1, verbose=2)

Epoch 1/1@
672301/672381 - 821s - loss: 1.9679e-85 T)
Epoch 2/18 mse=sklearn.metrics.mean_squared error(y_train, trainPredict)

mse2=sklearn.metrics.mean_squared_error(y_test, testPredict)

672301/672301 - 744s - loss: 1.8833e-85 e frcay

. rmse=math.sqrt(mse)
Epoch 3/1@ rmse2=math.sqrt({mse2)
672381/672361 - 738s - loss: 5.1499e-86 print(Train Score: %.2f RMSE' % (rmse))
Epoch 4/1@ print('Test Score: %.2f RMSE' % (rmse2))
6723017672301 - 7355 - loss: 6.3126e-@6 FHHHHRH
Epoch 5/1@
672301/672381 - 738s - loss: 5.8196e-86
Epoch 6/1@ 5961/5961 [] - 185 2ms/step
£72301/672381 - 738s - loss: 4.2785e-06 Js54/2550 [1 - s ams/step
Epoch 7/1@ Train Score: 8.28 RMSE
672301/672301 - 732s - loss: 4.8811e-86 Test Score: ©.19 RMSE

Fig.12. GRU model training phase. Fig.13. GRU model testing phase.

Figure 12 and 13 show the training and testing dataset with the GRU model.
Figure 14 and 15 show the training and test-

look_back = 15 . .

model = Sequential() ing dataset with the LSTM model.

mogei-aggEEST”{ E?:)input_s hape=(1, look back)}) Through our experiments, we found that our
model.a ense(1)

model.compile(loss="mean_squared_error’, optimizer="adam") LSTM model has the lowest RMSE, therefore
model.fit(x_train, y train, epochs=18, batch size=1, verbose=2) has the best performance

Epoch 1/1@

o501 /672301 - 821s - loss: 1.96798-05 However, we excluded BLSTM networks
Epoch 2/10 since are not the most appropriate model for
672301/6723@1 - 744s - loss: 1.8833e-@5 . .

Epoch 3/19 this kind of problem.

&72301/672301 - 7305 - loss: 8.14992-06 System overview. Figure 16 shows the archi-

Fig. 14. LSTM model training phase. tecture of the proposed greenhouse system, this
system includes three sub-systems, such as the greenhouse of the tomato crop, the interface, and the
classifier used in the control system.

Mathematical Modeling and Computing, Vol. 10, No. 2, pp.524-533 (2023)

A drip irrigation prediction system in a greenhouse based on long short-term memory and ... 531

trainPredict = model.predict(x_train)
testPredict = model.predict(x_test)
invert predictions

trainPredict = min_max_scaler.inverse_transform(trainPredict)
train¥ - min_max_scaler.inverse_transform([y_train])
testPredict = min_max_scaler.inverse_transform{testPredict)
test¥ = min_max_scaler.inverse_transform([y_test])

calculate root mean squared error

trainscore = math.sgrt(mean_squared_error(trainy[e],

print('Train Score: %.2f RMSE' % (trainScore))|

testScore = math.sgrt(mean_squared_error(testY[8], testPredict[:,

print('Test Score: %.2f RMSE' % (testScore))

FHRHRHHHA

mse=sklearn.metrics.mean_squared_error(y_train, trainPredict)
mse2=sklearn.metrics.mean_squared_error(y_test, testPredict)

rmse=math.sqrt(mse)
rmse2=math.sqrt(mse2)

print(Train Score: %.2f RMSE' % (rmse))
print('Test Score: %.2f RMSE' % (rmse2))

R
5961/5961 [] - 18s Zms/step
2554/2554 [] - 4s 2ms/step

Train Score: @.24RMSE
Test Score: 8.17 RMSE

Fig.15. LSTM model testing phase.

¢ Data transmitter motule
Control signal generator module

Send last 15 lines &
h z
2
a
3
“ om
\\/\ =

— B
@ Soil humidity
Indoor humidity

il temperature

© Indoor temperature
© Rain sensor

@ lllumination

Fig.16. Architecture of the proposed
greenhouse system.

The implemented approach involved five steps as described in Figure 16:
— We installed 6 sensors in the greenhouse (sensors of indoor temperature, indoor humidity, lighting,
rain sensor, soil temperature, and soil humidity). The data is collected by an MQTT client. This

is an ESP32 WiFi microcontroller.

— The MQTT client transmits all the data collected in real-time, via WIFI, to an MQTT broker. It
is a Raspberry PI 4, a small single-board computer. The MQTT broker contains two modules.

— Data transmitter module: developed in python, which transmits the last 15 lines of DATASET to
our LSTM Model. It is a model developed under FLASK based on long-term memory (LSTM), a
deep learning algorithm, and deployed as a service on google CLOUD.

— Control signal generator module: developed in python, receives the predicted value of the temper-
ature from the LSTM Model and decides the action to be performed on the greenhouse according
to the value received, either watering, roof opening natural ventilation, or shading.

— Based on the last 15 lines, the LSTM Model predicts the soil moisture in the greenhouse in the

next 5 minutes.

os
os.envizon['TF_CPP_MIM LOG_LEVEL'] = *2¢
pandas pd
io
censorflow of
tensorflow ! r keras
numpy np

flask ir rt Flask, request, jsonify

new_model= keras.models.load model ("tomato_humsol.hS"

inwvers predction (x):

maxl=8%5

minl=1

X _scaled =(x *(maxl - minl)) + minl
X scaled

£ predict (x):

data = np.array(x['scl’']).reshape(-1, 1)

ty = np.reshape (data, (data.shape[l], 1,

tesete=new model.predicet (Ty)

bb = teeete[0][0]

predction = invers predction (bb)
predction

4pp = Flask(__name_)
@app.route {("/", methods=["GET", "BOSI"])
get_sol():
_—rEmmEDCIG it .
file = request.files. ger_(file')
file file.filaname
dsonify({"error®: "no f

Data = pd.read_csv(file)
Datal = predict (Data)

Fig.17. The python code used to create a Flask

application.

data.shape[0]))

The deployment of the LSTM model in
Google Cloud. We created a Flask application,
as illustrated in Figure 17, by defining routes
(URLs) and associated functions that accept in-
put data and return predictions made by our
model. Finally, we used the pickle library to save
the model under the extension (.h5) and load our
model into the Flask application.

Flask is a popular Python web framework that we
used to deploy our deep learning model on the
Google Cloud Platform as can be seen in Figu-
re 18.

) cloudRun Services

o =

O wnt R S pre—— ° ke @ D aons Y

0o « +

3 P o

Fig.18. Deployment of LSTM Model on Google
Cloud.

Mathematical Modeling and Computing, Vol. 10, No. 2, pp.524-533 (2023)

532 Ghazouani M., Azzouazi M., Lamhour M. A.

5. Conclusion

The scarcity of water requires Moroccan farmers to implement innovative techniques to improve the
agricultural productivity of their farms. Therefore, it is necessary to predict the water needs of plants
in a drip irrigation system and adjust the irrigation schedule accordingly. The system uses data on
factors such as soil humidity, indoor humidity, soil temperature, rain sensor, illumination, and indoor
temperature to make these predictions.

In this manuscript, a new deep learning model (LSTM model) is introduced for effective climate
prediction. We have shown that our LSTM Model (RMSE = 0.17) has the best performance compared
to the GRU Model (RMSE = 0.19).

LSTM Model is a novel solution to reduce energy consumption because it is allowed control of
the climatic variables inside the greenhouse using simple techniques such as natural ventilation and
shading. For future work, we plan to:

— Expand the capability of the model to predict climate, humidity, CO2, light intensity, and the
growth of the plant as well.

— Use underground rainwater harvesting. By collecting and storing rainwater, greenhouse growers
can reduce their reliance on municipal water sources and use a natural source of irrigation.

[1] Cardoso J., Gléria A., Sebastido P. Improve Irrigation Timing Decision for Agriculture using Real-Time
Data and Machine Learning. 2020 International Conference on Data Analytics for Business and Industry:
Way Towards a Sustainable Economy (ICDABI). 1-5 (2020).

[2] Jimenez A.-F., Ortiz B. V., Bondesan L., Morata G., Damianidis D. Long Short-Term Memory Neural Net-
work for irrigation management: a case study from Southern Alabama, USA. Precision Agric. 22 (2),
475-492 (2021).

[3] Adeyemi O., Grove L., Peets S., Domun Y., Norton T. Dynamic Neural Network Modelling of Soil Moisture
Content for Predictive Irrigation Scheduling. Sensors. 18 (10), 3408 (2018).

[4] SuzukiY., Ibayashi H., Mineno H. An SVM-based irrigation control system for home gardening. 2013
IEEE 2nd Global Conference on Consumer Electronics (GCCE). 365-366 (2013).

[5] Ramya S., Swetha A. M., Doraipandian M. IoT Framework for Smart Irrigation using Machine Learning
Technique. Journal of Computer Science. 16 (3), 355-363 (2020).

[6] Kumar A., Surendra A., Mohan H., Valliappan K. M., Kirthika N. Internet of things based smart irrigation
using regression algorithm. 2017 International Conference on Intelligent Computing, Instrumentation and
Control Technologies (ICICICT). 1652-1657 (2017).

[7] Ramsundar B., Zadeh R. B. TensorFlow for Deep Learning: From Linear Regression to Reinforcement
Learning. O’Reilly Media (2018).

[8] Kapoor A. Hands-On Artificial Intelligence for IoT: Expert machine learning and deep learning techniques
for developing smarter IoT systems. Packt Publishing (2019).

Mathematical Modeling and Computing, Vol. 10, No. 2, pp.524-533 (2023)

A drip irrigation prediction system in a greenhouse based on long short-term memory and ... 533

Cuncrtema nporHosyBaHHSI KpaneabHOro 3pOLeHHs1 B Tenauui Ha
OCHOBI J0BroCTpOKOBOI NaM’'sITi Ta NOB’si3aHNX 00’ EKTIB

lazyani M., Aszyasi M., Jlamxyp M. A.

Jlabopamopis tHGOPMAUTTHUT METHOA021T Ma Mmodestosanhs, Yrisepcumem Xacara 11,
Daxyavmem nayx Ben M’Cix, Kacabaanka, Mapoxko

PosymHi Terunni BUKOpUCTOBYIOTH TexHOsorio InTeprery peueii (IoT) ayst MoniTOpUH-
Iy Ta KOHTPOJIIO pi3HuX (aKTOPIB, fKi BILIMBAIOTH HA PICT POCIWH, TAKUX SK BOJIOTICTH
I'PYHTY, BOJIOTICTh Y TPUMIIIEHH], TeMIepaTypa I'PYHTY, JTaTINK JTOIILY, OCBITJIEHHS Ta TeM-
neparypa B npuMmimienti. /laTaukn Ta BUKOHABYI MPUCTPOI, Hiak/I09eHi 10 mepexi [oT,
MOXKYTh 30UpaTH JaHi npo I (HaKTOPU Ta BUKOPUCTOBYBATHU IX JjId aBTOMATH3AIlil Ta-
KUX IIPOIECIB, K IIOJIUB, ONAJIEHHA Ta BeHTHJAIisA. lle MoxKe IOIOMOITH ONTHMIi3yBaTH
YMOBH BUPOIILYBAHHSI Ta MiABUIATH BpoxKaiiHicTh. 1106 3abe3nednTn BereraTuBHUI picT i
PO3BUTOK, POCJMHAM HEOOXIIHO MPABUJIBHY KiJIbKOCTI BOJIU B mMOTPiOHUI gac. Meroro miel
poboTH € CTPOruii KOHTPOJIb 32 Pi3HUMEU (aKTOPaAMHU, IO BIUIMBAIOTH HA PICT TEITMIHIX
KyJbTyp. ToMy HaM morpibHa HesiHIfiHA MOJEsb JJIs IPOTHO3YBAHHS 3POIIEHHS TEeITnY-
Hux KyabTyp. Ilig gac poboTu cucTteMa OTPUMY€E BXidHI KOMaHIN Uepe3 JATIUKA, & MOTIM
[IPOTHO3YE HACTYIIHUI IUKJI TOJIUBY. 3POIeHHs nepeadadeno 3a gonomororo GRU, LSTM
ta BLSTM, i npoBeneHo moOpiBHSIHHS MiXK pe3yJIbTaTaMU TPhOX METOIB Ta 00PaHO METO.,
3 HARKPAIIUM PE3YJIbTaTOM.

Kntouosi cnosa: GRU; LSTM; BLSTM; pexypenmuna netiporna mepeorca; IoT; posymna
MENAUUSA.

Mathematical Modeling and Computing, Vol. 10, No.2, pp.524-533 (2023)

