
MATHEMATICAL MODELING AND COMPUTING, Vol. 10, No. 2, pp. 566–574 (2023)
Mathematical

M
odeling

Computing

Genetic algorithm parenting fitness

Ouiss M., Ettaoufik A., Marzak A., Tragha A.

Faculty of Sciences Ben M’Sik, Hassan II University of Casablanca, Casablanca, Morocco

(Received 29 January 2023; Accepted 10 April 2023)

The evolution scheme phase, in which the genetic algorithms select individuals that will
form the new population, had an important impact on these algorithms. Many approaches
exist in the literature. However, these approaches consider only the value of the fitness
function to differenciate best solutions from the worst ones. This article introduces the
parenting fitness, a novel parameter, that defines the capacity of an individual to produce
fittest offsprings. Combining the standard fitness function and the parenting fitness helps
the genetic algorithm to be more efficient, hence, producing best results.

Keywords: genetic algorithm; fitness function; parenting fitness; optimization.

2010 MSC: 90B06, 90C47 DOI: 10.23939/mmc2023.02.566

1. Introduction

For genetic algorithms, selecting individuals that will still alive for the next generations is an important
part of the algorithm. This phase is called the evolution phase. There are many strategies to choose
these individuals: (1) general, and (2) elitist strategy. The general approach is a straightforward
approach that replace the whole current population by the offsprings generated so far. In this strategy,
parents and offsprings compete for survival. On the other hand, with the elitist approach, a portion
of the best individuals, with high fitness value (or low fitness value, depending on the problem) are
selected from the current loop. The remaining part is completed with most fit offsprings. The selection
rate is defined in percentage or in number.

In this article, we introduced a novel parameter called parenting fitness (PF). PF defines the
capacity of an individual to produce fittest individuals, independently of it fitness function value.

The article is structured as follows: the first section will introduce the genetic algorithm. The
second section will discuss the parenting fitness parameter. The vehicle routing problem (VRP) with
drones will be discussed in the third section, as a study to test the efficiency of the parenting fitness
parameter. The last section will discuss results of experiences, and gives some developing points for
future research.

2. Genetic algorithm

Genetic algorithms (GAs) were introduced for the first time by [1]. They may be considered as a special
case of the Random Heuristic Search (RHS) [2]. GAs are called population-based metaheuristic, since
they manipulate populations of individuals (also called solutions, chromosomes). They aim to find
good solutions to complex and time consuming problems. The individuals evolve thru generations
according to the mechanism of selection, and genetic operations as crossover and mutation. Genetic
algorithms are constructed from a number of reusable components: (1) the chromosome encoding,
(2) the fitness function, (3) the selection method, (4) the recombination (crossover and mutation), and
(5) the replacement strategy. This type of construction is considered as one of the strengths of GAs,
since we can reuse them, or change them without breaking the algorithm.

Genetic algorithms are search algorithms based on the mechanics of natural selection and natural
genetics [3]. The basic form of Genetic Algorithms is called simple genetic algorithm (SGA), and it

566 c© 2023 Lviv Polytechnic National University



Genetic algorithm parenting fitness 567

was well detailed in [3] and [2]. Genetic algorithms are iterated until the fitness value stabilizes or the
maximum iteration number is reached. The GAs use the survival mechanism that let fittest individuals
to pass thru generations. In each generation, survived individuals mate with other survivals to produce
new solutions. These newly produced individuals may be weak or best according to their fitness value.
The calculation of the fitness function depends on the problem to be solved. It may be a minimization
or maximization function, of a combination of both.

The simple genetic algorithm can be detailed as follows.

Algorithm 1 Simple GA pseudo-code

1: initialization: t := 0;
2: initialization crossover rate: random_χ;
3: initialization mutation rate: random_µ;
4: Create initial population P (0);
5: while t 6= generation_number
6: Select parent P1(t) and P2(t) from current population;
7: Generate random_number between 0 and 1
8: if random_χ > random_number then
9: Perform crossover χ selected parents;

10: for all offspring ∈ newly_created_offsprings
11: for all gene ∈ Genes
12: Generate random_number between 0 and 1;
13: if random_µ > random_number then
14: Perform mutation µ on gene;
15: Prepare next population;

Where χ defines the crossover operator. The crossover is responsible of mixing the genetic informations
of the selected parents to produce new offsprings. The mutation operation µ, for example flips alleles
from the value 0 to 1 and vice versa, with a certain uniform probability. Crossover and mutation will
be discussed in the next sections.

2.1. Chromosome encoding

Genetic algorithms manipulate a population of chromosomes. Each chromosome contains N genes.
These genes represent the genotype of the chromosome. The representation of chromosomes is problem
dependent, they may be set as bit-string, string, float, or whatever presentation. In addition, when
programming with Oriented Object Programming (OOP) we may define genes as classes, that contain
complex data for each gene; for example a chromosome can be a representation of a string of genes
representing a coordinate point each. The bit-string representation is the commonly used. For example,
the OneMax problem uses a string of bits, each bit has a value of 0 or 1, and the goal is to reach a
solution with the maximum values of 1’s. In the knapsack problem, each gene represents a number
between a maximum and minimum, and the goal is to reach a solution with the maximum total of
genes values that fill completely the knapsack. In certain cases, the chromosomes may have a variable
number of genes, this called a variable-length chromosome. In this case, the standard crossover is no
longer applicable of these types of chromosomes.

2.2. Fitness function

The fitness function is a computation that evaluates the quality of the chromosome depending on the
current problem to be solve. The fitness computation will for example measure how fit each potential
solution is. Fittest solutions may have a maximized value, or minimized value. However, the calculation
of the fitness function can take a tremendous amount of time. The implementation of the fitness

Mathematical Modeling and Computing, Vol. 10, No. 2, pp. 566–574 (2023)



568 Ouiss M., Ettaoufik A., Marzak A., Tragha A.

function is a critical operation, and the practitioner must take a particular care when implementing
it. For simple problem as OneMax problem, knapsack problem, the implementation is straightforward.
However, for complex problem with multiple objectives and constraints, the implementation of the
fitness function must be done carefully, in order to avoid miscalculations. A beautiful definition was
given by [4]: ‘The fitness function is described as “fitness function is the only chance that you have to
communicate your intentions to the powerful process that genetic programming represents. Make sure
that it communicates precisely what you desire”.’

2.3. Selection schemes

The objective of selection is to choose the most fit individuals in the current population that will create
offsprings by the process of mating. The mating does not guarantee that the offsprings produced are
most fit than their parents. The selection mechanism vary according to the scheme used. These schemes
can be grouped in four main categories [5]: (1) proportionate reproduction, (2) ranking selection,
(3) tournament selection, and (4) steady state selection. We may find in the literature other variantes
and other schemes.

2.4. Crossover

The genetic material of two selected parents is mixing using the crossover operation. This operation
allows creating new individuals (also called offsprings). This operation may occur with a certain
probability defined before the execution of the algorithm. There are many types of crossover in the
literature as:

— One-point crossover: a crossover point between 0 and n is chosen with uniform probability.
— Multi-point crossover: a sequence of crossover points is chosen along the chromosome length inter-

changing at each crossover.
— The order crossover [6]: a randomly selected substring of two parent strings is swapped, creating

two new offsprings. The existing genes in the offsprings are deleted, and their positions filled with
remaining values.

— Uniform crossover [7]: a string of bits of the chromosomes size is generated with uniform probability.
For each 1-bit in the string (or mask), in the n position is swapped. The uniform crossover can be
considered as a special case of the multi-point crossover.

We may note that these types of crossover do not perform well for each problem. For example, the
order crossover is more suited for vehicle routing problems. The works of [7] demonstrates that one-
point crossover performs well than two-points for certain problems, and the uniform crossover is the
better choice for others. The crossover operation for variable length chromosome is generally different
from fixed length chromosome.

2.5. Mutation

Genetic algorithms perform the mutation next after the crossover operation. Mutation helps GAs to
prevent premature convergence and to improve found solutions. In this stage, a random number in the
interval [0, 1] is generated with uniform probability for each allele of the chromosome, and these allele
values are changed if the randomly generated number is less than the mutation rate.

Many mutation types exist as:

— Bit Flip Mutation: select one or more random bits and flip them.
— Random Resetting: extension of the bit flip for the integer representation. In this case, a random

value from the set of permissible values is assigned to a randomly chosen gene.
— Swap Mutation: select two positions on the chromosome at random, and interchange the values.
— Scramble Mutation: from the entire chromosome, a subset of genes is chosen and their values are

scrambled or shuffled randomly.

Mathematical Modeling and Computing, Vol. 10, No. 2, pp. 566–574 (2023)



Genetic algorithm parenting fitness 569

— Inversion Mutation: selects a subset of genes like in scramble mutation, but instead of shuffling the
subset, merely inverts the entire string in the subset.

Yet, not every type is suitable for every problem. For example, the swap mutation type is more suitable
for sequence problems as vehicle routing problems.

2.6. Evolution strategy

In the evolution phase, genetic algorithms select individuals that will form the next population. There
are several evolutionary schemes [8–10] that can be used. Generally, there are three families: (1) the
complete replacement: where the whole population is replaced with the offsprings generated; (2) the
elitist strategies: where only the best individuals (or a portion) from the current generation are selected;
and (3) the steady state strategies: the offsprings are inserted in the current population, and participate
in the mating (parent selection). Generally, the number of the offsprings is equal to the number of
parents, since the algorithm is executed till the number of offsprings reach the number of the population
size.

Complete replacement strategy. With this strategy, the whole population is replaced with
the created offsprings. The offsprings are now the current parents. The genetic algorithm is ready to
perform another loop. This strategy is simple, no need of sorting neither the current population, nor
the offsprings. However, important individuals and alleles can be (and will be) lost from generation to
another. The work of [11] brings more details of alleles loss. The premature convergence is more likely
to happen with this strategy.

Ellitist strategies. These strategies select only the best individuals from the current generation.
The rate is defined in percentage or in number, and the rest is filled with most fit offsprings. Another
approach is that the parents and offsprings compete for survival. In this case, the current population
and the offsprings are sorted by their fitness, and the N first solutions (or theX percentage) are selected
to pass to the next generation. The remaining places are filled by the remaining offsprings. We may
find an alternative approach. After the combination of the current population and the offsprings, the
first half of the combination is selected to pass to the next population. Best chromosomes have chance
to live cross many generations. Its true for the fittest chromosomes. The selection rate must be selected
wisely. Too low rate can produce weak final solution, and too high rate converges somehow the ellitist
strategy to a local minima.

Steady state strategy. In this strategy, after the mating, and the genetic operations (crossover
and mutation), the offsprings may replace the weakest individuals in the current population. The
newly created offsprings become parents, and compete for mating. With this strategy, the generations
overlap, hence, no need for sorting population.

The choice of evolutionary scheme is an important aspect of GA design and will depend on the na-
ture of the solution space being searched. Yet, the widely used scheme is replacement-with-elitism [10].

3. Parenting fitness

Selecting only fittest individuals can cause premature convergence to a local optimum. We can ask
ourselves a question: can a weak individual produce fittest descendants? In order to respond to this
question, we introduced a novel parameter called ‘Parenting fitness’ or ‘Parenthood fitness’. The idea
behind the parenting fitness parameter is the capacity of an individual to produce, from mating, fittest
offsprings despite on how it is the fitness value of the concerned individual. This mechanism can be
explained by the fact that an individual can have in its genotype a portion (or multiple portions)
that, combined with other portions, can converge to fittest solutions. The parenting fitness defines the
capacity of the chromosome to generate fittest individuals. Individual with high parenting fitness may
have weak personal fitness (the fitness function). In this case, the evolution phase takes in consideration
this parameter, and keeps individuals with high parenting fitness thru generations.

Mathematical Modeling and Computing, Vol. 10, No. 2, pp. 566–574 (2023)



570 Ouiss M., Ettaoufik A., Marzak A., Tragha A.

4. Vehicle routing problem

In order to test the efficiency of the parenting fitness, we consider the well known Vehicle Routing
Problem (VRP). The VRP was introduced for the first time by [12] as “Truck Dispatching Problem”.
They presented the problem of routing a fleet of gasoline delivery trucks between a bulk terminal and
a large number of service stations supplied by the terminal.

The VRP is considered as a generalization of the well known Traveling Salesman Problem (TSP).
The traditional version of VRP considers one depot, and the vehicles capacity as the only constraints,
and assume that all vehicle are homogeneous.

The major difference between TSP and VRP is that in the TSP, the salesman (or the carrier) can
serve every point on one trip. Instead, in the VRP, the vehicle can only make a limited number of
deliveries on each trip. The sum of the quantity delivered can not exceed the vehicle’s capacity.

In the VRP, the goal is to serve delivery points, and for each points Ni deliver a quantity qi.
Constraints and objectives may be considered as minimizing vehicle mileage, transportation cost, time
window, and so on.

The classical VRP known as Capacitated VRP (CVRP), and other VRP variants can be solved
using exact algorithms in order to find the optimal solution. The drawback of these algorithms is the
execution time. They can be solved using heuristics, or metaheuristics. However, there are no guarantee
that we will find the optimal solution in the end since (meta-)heuristics are stochastic methods.

An overview of exact and approximate algorithms to solve the CVRP is given by [13] as: (1) The
assignment lower bound and a related branch-and-bound algorithm, (2) The k-degree center tree and
a related algorithm, (3) Dynamic programming, (4) The Clarke and Wright heuristic, (5) The sweep
algorithm, among others.

A mathematical formulation for the classical VRP was dressed in the work of [13] as follows.
Let consider G = (N,A) as a graph where N = 1, . . . , n is a set of vertices representing cities with a

central depot at vertex 1, and A is the set of arcs. Each arc(i, j) with i 6= j is associated with a numerical
value. The interpretation of this value depends on the context. It can be interpreted as travel cost or
travel time, or both in some cases. The distance matrix C can be either symmetrical or asymmetrical,
depending on the context. The CVRP consider an unique central depot, and N+ = N\{0} as the set
of nodes to be visited. We also consider a set M of available homogeneous vehicles with a capacity D.
In other variants of VRP as HVRP, vehicles can have different capacities. The resolution of a CVRP
considers the following constraints: (1) each city identified by a vertex is visited only once, by a unique
vehicle; (2) each vehicle has a limited capacity; and (3) each vehicle start the route from the central
depot, and must return to it in the end.

In the real world VRP problem, the constraints are way more complex than the canonical CVRP
constraints. These constaints define the VRP variants. Table 1 gives a quick overview of some existing
variants.

Table 1. Definitions.

MDVRP multi depot VRP, in which we consider more than one central depot
VRPTW VRP with time window constraints
HVRP heterogeneous VRP, in which we consider vehicles with different capacity
VRPD or UAVRP VRP with drones, or Unmanned Aerial VRP. This variant consider drones

VRP with drones is also known as unmanned aerial VRP (UAVRP). UAVRP are the VRP variant
that considers drones in the conception of routes. Vehicle routing problems with drones is an extension
of the Capacitated Vehicle routing problems. VRPD have raised an enormous interest in the last
decade. In the first years of the century, the majority of articles published in relation with drones
are focused on military fields. Recent articles are more likely redirected to consider civil application
domains, like delivery, transportation, healthcare, surveillance, logistics and so on.

Recent articles are more focused on Delivery problems, especially the last-mile delivery since drones
are known to have a limited capacity and a limited battery. Because of these limitations, drone routing
must be optimized.

Mathematical Modeling and Computing, Vol. 10, No. 2, pp. 566–574 (2023)



Genetic algorithm parenting fitness 571

Solving approaches for the VRPD can be exact solutions, heuristics, metaheuristics, or a combina-
tion of two or more approaches. A large number of VRPD problems are formulated and resolved using
Mixed Integer Linear Programming (MILP).

4.1. Mathematical formulation

We consider a VRPD where an unique drone with a defined maximum flight range. In this initial
article, we consider the energy consumption by mile to be constant. The instances used in our test
are taken from [14]. These instances contain X and Y coordinates, and a demande value for each
customer. The demande value are ignored since we consider drone to perform monitoring missions,
which means that demand value is useless. The maximum load capacity of the drone is not considered
too. The routes are performed in a 2D environnement. The drone is a multi-rotor type, which means
that it can perform multi-directional flights.

The VRPD mathematical formulation is quite similar to the FSTSP of [15], with additional con-
straints, and some difference for others. We refer to the previously article in the construction of the
current model. The objective function of this model is to minimize the maximum distance of all routes
performed be the drone. Minimizing the number of routes is not consider in our case.

Table 2 presents the considered notations.

Table 2. Notations.

N = 1, . . . , n set of nodes representing the points to visit.
N0 the departure node, and also the final arrival node.
N+ the set of nodes to which the drone may visit.
Li,j Distance between node i and j.
R defines all routes performed by the drone.
d maximum flight range of the drone.

The formulation used in our model is as follows:

min

N∑

i=1

Ri, (1)

subject to the constraints:

Ri 6 d, (2)
∑

j∈N0

xij +
∑

j∈N0

∑

k∈N+

yijk = 1, i 6= j, (i, j, k) ∈ P, ∀j ∈ C, (3)

∑

j∈N+

x0j = 1, (4)

∑

i∈N0

xi,c+1 = 1, (5)

∑

j∈N0

xi,j =
∑

k∈N+

xj,k, ∀j ∈ C (6)

The objective function 1 seeks to minimize the total distance of all routes performed by the drone.
The constraint 2 guarantees that the length of a route Ri should be less or equal to the maximum
flight distance d of the drone. Constraint 3 requires each node to be visited exactly once. Constraint 4
ensures that the drone takes off from the departure node exactly once, while the constraint 5 requires
the drone to return to the landing node exactly once. We consider the take off node is the same as
the landing node. Constraint 6 indicates that the drone visiting a node j must also depart from j.
Since we ignore the maximum drone load, no constraint is defined for this parameter. In addition, we
consider an infinite battery change.

Mathematical Modeling and Computing, Vol. 10, No. 2, pp. 566–574 (2023)



572 Ouiss M., Ettaoufik A., Marzak A., Tragha A.

4.2. Genetic algorithm with parenting fitness

The algorithm implements two evolution strategies: (1) Parent and Offspring Replacement Strategy,
and (2) Parent and Offspring Replacement with Parenthood Fitness Strategy. The parenting fitness
of individuals selected for mating is updated in the end of the loop. For each offsprings created so far,
their two parents are being updated. The update is relative to fitness of the offspring in comparison
with the maximum fitness of the whole offsprings. The parenting value of individuals may increase
or decrease depending on the Maximum fitness of the current population. In the evolution phase,
individuals parents are sorted by their parenting fitness. The first n (with n < Pop_size) parents are
selected to form the future population. A second sorting is performed according to the fitness value of
individuals (parents and offsprings), and the algorithm selects the remaining Pop_size−n individuals.
A new population is ready to loop. This evolution scheme belongs to elitist strategies.

The datasets are composed of multiple files with 20, 50, and 200 visiting points. The algorithm
implements two evolution strategies: (1) Parent and Offspring Replacement Strategy, and (2) Parent
and Offspring Replacement with Parenthood Fitness Strategy. We ran the algorithm for each set of
files.

Table 3 presents the considered parameters.

Table 3. Genetic algorithm parameters.

Parent selection Roulette Wheel Selection defined as pi(t) = f(ai(t))∑
n
l=1

f(aj(t))

Fitness function Maxmimum route distance
Crossover operation order crossover operator (OX)
Crossover rate Cr 0.75
Mutation Mr 0.02
Evolution scheme Elitist
Parenting fitness 10% of the population (parents only)

An individual (or chromosome) represents the large tour that a drone takes to visit nodes clustered
to the departure node N0. We consider the order crossover operator (OX) [6], and the swap mutation
operator. The crossover controls the diversification mechanism, and the mutation controls the inten-
sification mechanism. The order crossover operates as follows: after the random selection of parents
from the mating pool, a randomly selected substring of two parent strings are swapped, creating two
new offsprings. Since the offspring should have different nodes, the nodes included in the substring
added will be deleted, and their positions will be filled with remaining ones. In swap mutation, the
genetic algorithm interchanges the values of two positions randomly selected on the chromosome.

4.3. Experiences and results

The genetic algorithm was implemented using the Python language, and executed on a Intelri3 ma-
chine, with double core 2.20GHz, and 4 Gb RAM. The datasets consist on two files, the first contains
informations about departure points, drones that will be launched from these points, and for each
drone, the maximum flight range in km. The second dataset contains coordinates of nodes to be
visited. In this first article, we will consider only one departure point.

Table 4. Genetic algorithm parameters.

number of generations N × 10
number of individuals size of N × 2

The datasets are composed of multiple files with 20, 50,
and 200 visiting points. The algorithm implements two evolu-
tion strategies: (1) Parent and Offspring Replacement Strat-
egy, and (2) Parent and Offspring Replacement with Parent-

hood Fitness Strategy.
Table 4 presents the considered parameters.
The number of generation is fixed at 250 for datasets of 200 nodes, to avoid the tremendous

execution time. In our future articles, we will consider an HPC environnement to deal with the
calculation load. We executed the algorithm several times, and took the best results from these
executions.

Mathematical Modeling and Computing, Vol. 10, No. 2, pp. 566–574 (2023)



Genetic algorithm parenting fitness 573

The results are shown in Tables 5–7.
Table 5. Experiences for dataset of 20 nodes.

Dataset Pop_size Loop ES Max fitness ES Max fitness
20.10.3 40 200 PAOR 46.0 PAORwPF 46.0
20.10.4 40 200 PAOR 57.0 PAORwPF 50.0
20.5.2 40 200 PAOR 26.0 PAORwPF 26.0
20.5.3 40 200 PAOR 24.0 PAORwPF 23.0
20.5.4 40 200 PAOR 24.0 PAORwPF 25.0
20.10.3 10 200 PAOR 67.0 PAORwPF 83.0
20.10.4 10 200 PAOR 68.0 PAORwPF 75.0
20.5.2 10 200 PAOR 32.0 PAORwPF 36.0
20.5.3 10 200 PAOR 31.0 PAORwPF 30.0
20.5.4 10 200 PAOR 23.0 PAORwPF 31.0

ES = Evolution strategy. PAOR = Parent and Offspring Replacement Strategy.
Pop_size = Population Size. PAORwPF = PAO with Parenthood Fitness Strategy.

Table 6. Experiences for dataset of 50 nodes.

Dataset Pop_size Loop ES Max fitness ES Max fitness
50.20.4 100 500 PAOR 596.0 PAORwPF 500.0
50.30.1 100 500 PAOR 990.0 PAORwPF 954.0
50.30.2 100 500 PAOR 801.0 PAORwPF 813.0
50.30.3 100 500 PAOR 958.0 PAORwPF 993.0
50.30.4 100 500 PAOR 926.0 PAORwPF 942.0
50.20.4 25 500 PAOR 716.0 PAORwPF 693.0
50.30.1 25 500 PAOR 1084.0 PAORwPF 1075.0
50.30.2 25 500 PAOR 936.0 PAORwPF 918.0
50.30.3 25 500 PAOR 1032.0 PAORwPF 1088.0
50.30.4 25 500 PAOR 1036.0 PAORwPF 1012.0
ES = Evolution strategy. PAOR = Parent and Offspring Replacement Strategy.
Pop_size = Population Size. PAORwPF = PAO with Parenthood Fitness Strategy.

Table 7. Experiences for dataset of 200 nodes.

Dataset Pop_size Loop ES Max fitness ES Max fitness
200.30.2 400 250 PAOR 4197.0 PAORwPF 4441.0
200.30.3 400 250 PAOR 4591.0 PAORwPF 4451.0
200.30.4 400 250 PAOR 4357.0 PAORwPF 4163.0
200.40.1 400 250 PAOR 5815.0 PAORwPF 5715.0
200.40.2 400 250 PAOR 5958.0 PAORwPF 5953.0
ES = Evolution strategy. PAOR = Parent and Offspring Replacement Strategy.
Pop_size = Population Size. PAORwPF = PAO with Parenthood Fitness Strategy.

From these results, we notice that the parenting fitness give almost the same performance for small
dataset (with 20 points) for both replacement strategies. However, using the parenting fitness gives
good results for large datasets (with 200 nodes). In addition, a small population size gives also good
results. This point is interesting since the genetic algorithm will consume less time to give acceptable
solutions. The parenting fitness parameter seems to be a promising enhancement for genetic algorithms.
The challenge is to find the optimal function to calculate its value efficiently.

5. Conclusions and future work

The use of the parenting fitness in the genetic algorithm help finding way better individuals in compar-
ison with algorithm using only the fitness function as criterion of best individuals. The main reason is
that the parents with portion of potential best fitness pass thru the generation even if they have weak
fitness value as individual. In addition, using large population improves the final results. However,
raising the population size above a certain value does not give better solutions, but raises only the

Mathematical Modeling and Computing, Vol. 10, No. 2, pp. 566–574 (2023)



574 Ouiss M., Ettaoufik A., Marzak A., Tragha A.

time execution of the algorithm. This is due to the random mechanism of genes generation, that may
generate redundant individuals.

In future work, we will consider using hybridization with other metaheuristics in order to enhance
the parenting fitness function. In addition, the execution of the algorithm will be done in an HPC
environnement, using GPUs.

[1] Holland J. H. Adaptation in Natural and Artificial Systems. University of Michigan Press (1975).

[2] Vose M. D. The Simple Genetic Algorithm: Foundations and Theory. Complex Adaptive Systems. MIT
Press (1999).

[3] Goldberg D. E. Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley Pub-
lishing Company, Inc. (1989).

[4] Kenneth E., Kinnear Jr. Advances in Genetic Programming. MIT Press (1994).

[5] Goldberg D. E., Kalyanmoy D. A Comparative Analysis of Selection Schemes Used in Genetic Algorithms.
Foundations of Genetic Algorithms. 1, 69–93 (1991).

[6] Moscato P. On genetic crossover operators for relative order preservation. C3P Report (1989).

[7] Syswerda G. Uniform Crossover in Genetic Algorithms. Proceedings of the 3rd International Conference
on Genetic Algorithms. 2–9 (1989).

[8] Saini N. Review of Selection Methods in Genetic Algorithms. International Journal of Engineering and
Computer Science. 6 (12), 22261–22263 (2017).

[9] Dianati M., Song I., Treiber M. An Introduction to Genetic Algorithms and Evolution Strategies (2002).

[10] McCall J. Genetic algorithms for modelling and optimisation. Journal of Computational and Applied
Mathematics. 184 (1), 205–222 (2005).

[11] De J K. A. An Analysis of the Behavior of a Class of Genetic Adaptive Systems (1975).

[12] Dantzig G. B., Ramser J. H. The Truck Dispatching Problem. Management Science. 6 (1), 80–91 (1959).

[13] Laporte G. The vehicle routing problem: An overview of exact and approximate algorithms. European
Journal of Operational Research. 59 (3), 345–358 (1992).

[14] Sacramento D. Vehicle Routing Problem with Drones Instances. https://zenodo.org/record/1403150.

[15] Murray C. C., Chu A. G. The Flying Sidekick Traveling Salesman Problem: Optimization of Drone-assisted
Parcel Delivery. Transportation Research Part C: Emerging Technologies. 54, 86–109 (2015).

Генетичний алгоритм виховання

Уiс М., Еттауфiк А., Марзак А., Трага А.

Факультет наук Бен М’Сiк, Унiверситет Хасана II Касабланки, Касабланка, Марокко

Фазова схема еволюцiї, в якiй генетичнi алгоритми вiдбирають особин, що сформу-
ють нову популяцiю, мала важливий вплив на цi алгоритми. У лiтературi iснує ба-
гато пiдходiв. Однак цi пiдходи враховують лише значення функцiї вiдповiдностi,
щоб вiдрiзнити найкращi рiшення вiд гiрших. Ця стаття знайомить iз придатнiстю
для батькiвства, новим параметром, який визначає здатнiсть iндивiда народжувати
найпридатнiших нащадкiв. Поєднання стандартної фiтнес–функцiї та батькiвської
придатностi допомагає генетичному алгоритму бути ефективнiшим i, отже, досягати
найкращих результатiв.

Mathematical Modeling and Computing, Vol. 10, No. 2, pp. 566–574 (2023)




