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The objective of the current paper is to investigate the dynamics of a new predator–prey
model, where the prey species obeys the law of logistic growth and is subjected to a non-
smooth switched harvest: when the density of the prey is below a switched value, the
harvest has a linear rate. Otherwise, the harvesting rate is constant. The equilibria of
the proposed system are described, and the boundedness of its solutions is examined. We
discuss the existence of periodic solutions; we show the appearance of two limit cycles, an
unstable inner limit cycle and a stable outer one. As the values of the model parameters
vary, several kinds of bifurcation for the model are detected, such as transcritical, saddle–
node, and Hopf bifurcations. Finally, some numerical examples of the model are performed
to confirm the theoretical results obtained.
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1. Introduction

Predator–prey systems have long been and will continue to be one of the most important population
models that have received extensive attention in both environmental and mathematical ecology [1].
Since the advent of the historic Lotka–Volterra model, this field has attracted many researchers who
not only improved their models but also studied and added many more aspects affecting the dynamics
of populations [2–12] and wanted to know what models can best represent species interactions.

Different types of predator–prey systems exist that model the dynamics of populations in which
two species interact. In the simplest form, the interaction between predators and preys can be modeled
by the following differential system with logistic growth of prey [13]

{
ẋ = rx

(
1− x

k

)
− axy,

ẏ = y(−d+ cx),
(1)

where x(t) and y(t) represent the densities of the prey and predator species at time t, respectively.
The parameters r, k, a, c and d are all positive constants. The variable r is the intrinsic growth rate
of the prey without predation and carrying capacity k. The amount of prey consumed by a predator
per unit of time is given by ax, where a denotes the rate of predation. The factor c indicates the
predator’s growth rate due to its predation and d represents the natural death rate of the predator.
The dynamical behavior of the model (1) is well-known and relatively simple: as k < d

c , the boundary
equilibrium (k, 0) with the predator going extinct, is globally asymptotically stable, and no positive
equilibrium exists for the prey-predator interaction. As k > d

c , the boundary equilibrium (k, 0) is
an unstable saddle point, and there exists a positive coexistence equilibrium (dc ,

r
a(1 − d

ck )), which is
globally asymptotically stable. Using k as a bifurcation value, a transcritical bifurcation occurs at
k = d

c . Notice that model (1) has no limit cycle.
To enrich the model (1), many researchers modify the nonlinear functional response and add some

other elements such as: toxicity [14], pollution [15], the Allee effect [16], refuge [17], etc. As harvesting
is an important and effective method to prevent and control the explosive growth of predators or preys
when they are enough, it is reasonable and necessary to introduce the harvest of populations into
models.

c© 2023 Lviv Polytechnic National University 261



262 Meziani T., Mohdeb N.

Several forms of harvesting in predator–prey models have been widely studied. Researchers have
added the harvest to the prey component [4, 10, 18] or to the predator [5, 8, 11, 19] or to both species
simultaneously [20–22]. The most common one of these harvesting forms is a nonzero constant or a
linear harvesting rate. Many authors have studied the problem of predator–prey interactions under
the constant or linear rate of harvesting of either species or both species simultaneously: Xiao and
Jennings [10], Xiao et al. [11] have studied the dynamics of ratio-dependent predator-prey models
with constant harvesting rates. Vijayalakshmi and Senthamarai [22], Xiao and Cao [9], Y. Zhang and
Q. Zhang [12], have investigated a predator–prey model with a linear harvesting rate. Models studied
with linear or constant harvesting rates exhibit far richer and more complex dynamics compared to
the models with no harvesting. Moreover, the two kinds of harvesting rates have their own advantages
as well as disadvantages in the dynamic evolution of a population that is subject to it. Bing Li et
al. [6] have studied a new predator-prey model with non-smooth switched harvest on the predator.
They have constructed a new type of harvesting rate that combines the advantages of both linear and
constant harvesting rates. Their model presents new dynamical features compared to those with a
linear harvesting rate or a constant harvesting rate; they have obtained interesting results, such as the
existence and stability of multiple equilibria, the existence of two limit cycles and the appearance of
various bifurcations.

Motivated by the idea used in [6], in the present paper, we propose a predator–prey model (1)
with non-smooth switched harvest on the prey, we assume that the predator in the model (1) is not
of commercial importance and the prey is continuously being harvested at a linear harvesting rate if
his density is below a switched value, and at a constant harvesting rate, otherwise. We show that this
model has rich dynamics.

This paper is organized as follows: in Section 2, we present the mathematical model formulation.
In Section 3, we give some basic results; we prove that the solutions of the system are bounded, which,
in turn, implies that the system is biologically well-behaved. Furthermore, we explore the dynamics
of the proposed model by examining the existence and the stability of the equilibrium points. We
show the existence of limit cycles, and we analyze different bifurcations. In Section 4, we present some
numerical examples to illustrate and confirm the established results. A brief discussion about the
obtained results is given finally in Section 5.

2. Model formulation
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Fig. 1. Harvesting function for x̄ = 0.1, m =
0.2, and h = 0.02.

In this section, we aim to develop the predator–prey
model (1) by introducing the following harvesting func-
tion H(x) on the prey component,

H(x) =

{
mx if 0 6 x 6 x̄,

h if x > x̄,
(2)

where m and x̄ are positive real numbers such that, m
represents the rate of harvesting, x̄ is the threshold value
and h = mx̄ denotes the harvesting threshold value.

We assume that the harvesting rate is proportional to
the prey population size until it reaches a threshold value
due to limited facilities of harvesting or resource protec-
tion. The harvesting rate will then be kept as a constant.

We implement the harvesting function (2) in a
predator–prey model (1), we obtain the following system

{
ẋ = rx

(
1− x

k

)
− axy −H(x),

ẏ = y(−d+ cx).
(3)
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Model (3), when 0 6 x 6 x̄, is
{
ẋ = rx

(
1− x

k

)
− axy −mx,

ẏ = y(−d+ cx),
(4)

and when x > x̄, is {
ẋ = rx

(
1− x

k

)
− axy − h,

ẏ = y(−d+ cx).
(5)

3. Mathematical analysis and main results

The main concern of this paper is to study the dynamical behaviors of predator–prey model (3); for
biological considerations, we are only interested in the dynamics of model (3) in the first quadrant R2

+,
we consider only the biologically meaningful initial conditions, x(0) > 0 and y(0) > 0.

3.1. Boundedness of solutions of (3)

First, we show that all solutions of (3) starting in R
2
+ are bounded.

Theorem 1. All solutions of system (3) with positive initial conditions are positive for all t > 0 and
ultimately bounded, and the set

S =

{
(x, y) ∈ R

2
+, cx+ ay 6

ck

4rd
(r + d)2

}

is positive invariant for system (3).

Proof. For positive initial conditions (x0, y0) = (x(0), y(0)), it is easy to see that x(t) > 0 and y(t) > 0
for all t > 0.

Let ω(t) = cx(t) + ay(t). For each ζ > 0, we have

ω̇ + ζω 6
ck

4r
(r + ζ)2 − y(a(d − ζ)). (6)

If we choose ζ 6 d, then right hand side of (6) is bounded for all (x, y) ∈ R
2
+. Thus we have ω̇+ζω 6 µ,

where µ = ck
4r (r + d)2 > 0.

Applying the theory of differential inequality [23], we get

0 < ω(t) 6
µ

ζ

(
1− e−ζt

)
+ ω(0)e−ζt.

We show that
µ

ζ

(
1− e−ζt

)
+ ω(0)e−ζt 6 max

{
µ

ζ
, ω(0)

}
. (7)

If (x0, y0) is in S, then ω(0) 6 µ
ζ , and by (7), ω(t) 6 µ

ζ for all t > 0.
Therefore, (x(t), y(t)) ∈ S, ∀t > 0. �

3.2. Equilibria and their stability

In this part, we determine the equilibria of system (3) and their stability in the quadrant R
2
+. We can

see that there exists a non-negative equilibrium of system (3) if and only if the equations
{
rx
(

1− x

k

)
− axy −H(x) = 0,

y(−d+ cx) = 0
(8)

have a pair of non-negative real solutions (x, y).

3.2.1. Equilibrium points for 0 6 x 6 x̄

Proposition 1. When the number of preys is less than the threshold value, the system (3) has three
equilibria:
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1) p0 = (0, 0);
2) p1 = (k(1 − m

r ), 0);
3) p∗ = (x∗, y∗);

where x∗ = d
c and y∗ = r

a(1− d
ck )− m

a .
Their existence in the first quadrant R

2
+, for 0 6 x 6 x̄ depends on the following conditions:

i) if r
(
1− x̄

k

)
6 m < r, p1 lies in R

2
+;

ii) if m < r
(
1− d

ck

)
and d

c 6 x̄, p∗ lies in R
2
+.

The equilibrium p0 represents the extinction of both predator and prey species, which always
exists. The equilibrium p1 indicates the persistence of the prey population in the absence of predator
population and the equilibrium p∗ represents the coexistence of both prey and predator species.

Now, we study the dynamics of system (3) in the neighborhood of each equilibrium. When 0 6 x 6

x̄, the dynamics of system (3) in the neighborhood of an equilibrium comes directly from the property
of eigenvalues of the Jacobian matrix

J1(x, y) =

(
r(1− 2x

k )− ay −m −ax
cy −d+ cx

)
.

Proposition 2. In system (3):

1) p0 is an unstable saddle point, when m < r;
2) p0 is a stable node, when m > r;
3) p1 is an unstable saddle point, when m < r(1− d

ck );
4) p1 is a stable node, when m > r(1− d

ck ).

Remark 1. When m = r(1 − d
ck ), we will show that there exists a bifurcation at p1, depending on

further conditions discussed in subsection 3.4.

The analysis of the stability of p∗ = (dc ,
r
a(1 − d

ck ) − m
a ) can be accomplished by analyzing the

trace-determinant plane (τ1,D1) of its Jacobian, where

τ1 = −dr
ck

< 0 and D1 = acx∗y∗.

The positive equilibrium p∗ exists in R
2
+ if and only if m < r(1− d

ck ) and d
c < x̄, therefore D1 > 0. Thus

all eigenvalues of matrix J1(p∗) have negative real parts. It follows that p∗ is locally asymptotically
stable. Moreover, we have the following result.

Theorem 2. The positive equilibrium p∗ of system (3) is globally asymptotically stable.

Proof. We show the global stability of p∗ = (x∗, y∗) by constructing a suitable Lyapunov function

V(t) = cx∗
(
x(t)

x∗
− log

x(t)

x∗
− 1

)
+ ay∗

(
y(t)

y∗
− log

y(t)

y∗
− 1

)
.

it can be easily verified that the function V is zero at the equilibrium point (x∗, y∗), and is positive for
all other positive values of x and y, thus V is positive definite.

The time derivative along the trajectories of system (3) is,

dV(t)

dt
= c

(
1− x∗

x

)
dx

dt
+ a

(
1− y∗

y

)
dy

dt

= −rc
k

(
x− d

c

)2

.

Clearly dV(t)
dt 6 0 for all t > 0, thus it is negative semi-definite. Furthermore, it can be verified that

dV(t)
dt is zero if and only if x = x∗, and by the first equation of system (4), we get y = y∗. By the

LaSalle invariance principle [24], all the solutions starting in R
2
+ approach the equilibrium point p∗,

and it is globally asymptotically stable. �
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3.2.2. Equilibrium points when x > x̄

When the number of preys is above the threshold value, the system (3) has at most three equilibria.
Therefore, we have the following proposition which describes the number and location of equilibria of
system (3), when x > x̄. We define

h1 = rk
4 , h2 = rd

c

(
1− d

ck

)
, h3 = rx̄

(
1− x̄

k

)
, ĥ = rd2

kc2
.

Proposition 3. Assume x̄ < k
2 . System (3) in the first quadrant R

2
+ with x > x̄, has:

1) no positive equilibrium, if h > h1;
2) a unique equilibrium, q0 = (k2 , 0), if h = h1;

3) two equilibria, q1 = (x′1, 0) and q2 = (x′2, 0) with x′1 =
rk−
√

rk(rk−4h)

2r and x′2 =
rk+
√

rk(rk−4h)

2r ,
if h2 < h < h1 and h > h3;

4) three equilibria, q1 = (x′1, 0), q2 = (x′2, 0) and q∗ = (x̂, ŷ) with x̂ = d
c and ŷ = r

a

(
1− d

ck

)
− ch

ad ,
if h < h1, d

c > x̄ and h3 < h < h2.
Now, we study the stability properties of the equilibria q0, q1, q2 and q∗.
The Jacobian matrix of system (3) for x > x̄, is given by

J2(x, y) =

(
r(1− 2x

k )− ay −ax
cy −d+ cx

)
.

The equilibrium point q0 is nonhyperbolic and we have the following theorem.

Theorem 3. The equilibrium q0 is: (1) a saddle-node if −d+ ck
2 6= 0, (2) a saddle if −d+ ck

2 = 0.
Proof. The two eigenvalues of the Jacobian J2(q0) are: λ1 = 0 and λ2 = −d + ck

2 . To determine
the dynamics of system (3) in the neighborhood of the equilibrium q0 = (k2 , 0), we first translate the
equilibrium q0 = (k2 , 0) of system (3) to the origin. Then system (3) becomes

{
Ẋ = −ak

2 Y − aXY − r
kX

2,

Ẏ =
(
−d+ ck

2

)
Y + cXY,

(9)

where X = x− k
2 and Y = y.

First, if −d+ ck
2 6= 0, then there exists a smooth nonsingular transformation

{
u = X + ak

ck−2dY,

v = Y

such that system (9) becomes {
u̇ = A1(u, v),

v̇ = λv +B1(u, v),
(10)

where λ = −d+ ck
2 , A1(u, v) = − r

ku
2−
(
a2k
2λ + rka2

4λ2 − a2k2c
4λ2

)
v2+

(
ar
λ + ack

2λ − a
)
uv and B1(u, v) = cuv−

ack
2λ v

2 are analytic functions in a neighborhood of (0, 0). From straightforward analysis of system (10),
the equilibrium (0, 0) of (10) is a saddle-node by [25] (Theorem 2.19, chapter 2). This implies the
equilibrium q0 = (k2 , 0) of system (3) is a saddle-node (Figure 2a and 2c).

If −d+ ck
2 = 0, then both eigenvalues of the matrix J2(q0) are zero. Note that the matrix J2(q0) is

not zero matrix. Thus, system (9) can be transformed to{
u̇ = v +A2(u, v),

v̇ = B2(u, v),
(11)

where A2(u, v) = 2
kuv+ 2r

ak2
u2 and B2(u, v) = −2c

ak uv are analytic functions in a neighborhood of (0, 0).
From [25] (Theorem 3.5, chapter 3), the equilibrium (0, 0) of system (11) is a saddle. This implies the
equilibrium q0 = (k2 , 0) of system (3) is a saddle (Figure 2b). �

By looking for the characteristic roots to the linearized equation of (3), at equlibria q1 and q2, we
get the following result.
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Fig. 2. The phase portrait of system (3) with equilibrium q0: (a) ck
2 − d < 0; (b) ck

2 − d = 0; (c) ck
2 − d > 0.

Proposition 4. The equilibrium q1 is:
(1) an unstable node, if h > h2 and d

c <
k
2 ; (2) a saddle point, if h > h2 and d

c >
k
2 or if h < h2.

The equilibrium q2 is:
(3) a stable node, if h > h2 and d

c >
k
2 ; (4) a saddle point, if h > h2 and d

c <
k
2 or if h < h2.

Now, we investigate the stability of the equilibrium q∗ = (dc ,
r
a

(
1− d

ck

)
− ch

ad ). The trace (τ2) and
the determinant (D2) of the Jacobian J2(q∗), are

τ2 = hc
d − rd

ck and D2 = dr
(
1− d

ck

)
− hc.

The analysis of the stability of q∗ can be accomplished by analyzing the trace-determinant plane. The
positive equilibrium q∗ exists in R

2
+ if and only if h < min{h1, h2}, therefore D2 > 0. Then we have

the following.

Proposition 5. The positive equilibrium q∗ of system (3) is,

1) an unstable focus or node if h > ĥ;
2) a weak focus if h = ĥ;
3) asymptotically stable if h < ĥ.

3.3. Existence of limit cycles

Since the existence of limit cycles in dynamical systems plays an important role in determining the
dynamical behavior of solutions, we explore in this part the existence of limit cycles in system (3).

Theorem 4. Suppose ĥ < h < min {h1, h2}. If m < r, then system (3) has at least a stable limit
cycle.

Proof. For ĥ < h < min {h1, h2}, the equilibrium q∗ exists and it is an unstable focus or node.
Furthermore, if h < h2, the equilibrium q2 is an unstable saddle point and if m < r, the origin p0 is a
saddle point. Then there are two separatrices of saddle p0 and q2 tends to a movement periodic.

As the set S is positively invariant for system (3), and system (3) does not have any equilibrium in
the interior of S \ {q∗}, it follows from the Poincaré–Bendixson theorem that system (3) has at least
a stable limit cycle which encircles q∗. �

Remark 2. Suppose ĥ < h < min {h1, h2}. If m > r, i.e. if harvesting rate of the prey is greater
than intrinsic growth rate of the prey, then the origin is globally asymptotically stable and gradually
the population density of both the species will decline and finally will tend to extinction and system (3)
has not any limit cycles in R

2
+.

3.4. Bifurcations of system (3)

In this section, we investigate the bifurcations that take place in system (3).
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3.4.1. Transcritical bifurcation

When m < r
(
1− d

ck

)
, the coexistence equilibrium p∗ is a stable focus or node, while p1 is an unstable

saddle point. When m = r
(
1− d

ck

)
, the two equilibria coincide and become p1 = p∗ = (dc , 0). Once

m < r
(
1− d

ck

)
, both equilibria exchange stability as p∗ becomes an unstable saddle point and p1

becomes a stable node. The system (3) undergoes a transcritical bifurcation involving the two equilibria
p1 and p∗ at m = r

(
1− d

ck

)
(Figure 3). A transcritical bifurcation diagram is given in Figure 4.
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Fig. 3. The phase portrait of system (3), for (a) m < r(1 − d
ck ); (b) m = r(1 − d

ck ); (c) m > r(1 − d
ck ).
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Fig. 4. The transcritical bifurcation diagram of x1
and y∗ versus m for system (3) with r = 0.1, k = 0.2,
a = 0.1, c = 0.5 and d = 0.01. The red line with x1
and blue line with y∗ represents the curves of the prey
and predator with equilibrium p1 and p∗, respectively.

Fig. 5. The saddle-node bifurcation diagram of x′1
and x′2 versus h for system (3) with r = 0.04, k = 0.5,
a = 0.1, c = 0.07, d = 0.01 and h1 = 0.005. The
dotted line with x′1 and solid line with x′2 represents
the curves of the prey with equilibrium q1 and q2,

respectively.

3.4.2. Saddle-node bifurcation

Suppose h > h2. The number of equilibria of system (3) changes from zero to two. From Propositions 3
and 4, when h > h1, there are no equilibrium points. When h = h1, there is one equilibrium point q0,
that is a saddle-node. When 0 < h < h1, there are two equilibria q1 and q2 which are respectively, a
saddle point and a node. Thus h = h1 is a saddle-node bifurcation value (Figure 5).

3.4.3. Hopf bifurcation

The Hopf bifurcation is a very interesting type of bifurcations of systems. In this part, we analyze the
existence of Hopf bifurcation in (3) at the coexistence equilibrium q∗.
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Theorem 5. When h = ĥ, system (3) exhibits a subcritical Hopf bifurcation at the equilibrium
point q∗.

Denote

V =

{
(c, d, x̄, h) ∈ R

3
+ :

d

c
> x̄, h = ĥ < min {h1, h2} and σ > 0

}
,

in order to show Theorem 5, we first prove the following proposition.

Proposition 6. If the parameter (c, d, x̄, h) ∈ V, then the equilibrium q∗ of system (3) is an unstable
weak focus of multiplicity one.

Proof. It follows from h = ĥ that the positive equilibrium q∗ of system (3) satisfies the trace τ2 = 0
and the determinant D2 > 0, then the Jacobian matrix J2(q

∗) has a pair of pure imaginary eigenvalues.
Hence, system (3) may undergo a Hopf bifurcation. We first shift the equilibrium point q∗ = (x̂, ŷ) to
the origin using a change of coordinates X = x− x̂ and Y = y − ŷ, we get




Ẋ = −ad
c
Y − aXY − r

k
X2,

Ẏ =

(
cr

a
− 2rd

ak

)
X + cXY.

(12)

Then, we performed a suitable linear change of variables



X = − 1(
cr
a − 2rd

ak

)u,

Y = − 1√
rd− 2rd2

kc

v,

t =
T√

rd− 2rd2

kc

(13)

we obtain {
u′ = −v + a11uv + a20u

2,

v′ = u+ b11uv,
(14)

where u′ = du
dT , v′ = dv

dT , a11 = a

rd− 2rd2

kc

, a20 = ra

(ckr−2rd)

√

rd− 2rd2

kc

and b11 = −cak

(ckr−2rd)

√

rd− 2rd2

kc

.

To determine the stability of the equilibrium q∗, we compute the Liapunov number σ for sys-
tem (14) [26]. Moreover, if σ 6= 0, then a Hopf bifurcation exists.

We have,

σ =
3π

2
a11a20 =

3πra2

2(ckr − 2rd)
√
rd− 2rd2

kc

3 > 0.

�

Proof of Theorem 5. From the Propositions 5 and 6, the equilibrium q∗ is a hyperbolic unstable
focus if h > ĥ; the equilibrium q∗ is a hyperbolic stable focus if 0 < h < ĥ. Hence, when parameter h
passes through the bifurcation value h = ĥ from one side of the surface V to the other side, system (3)
undergoes a subcritical Hopf bifurcation and an unstable limit cycle appears in a neighborhood of q∗

when (c, d, x̄) ∈ V and 0 < h < ĥ. �

4. Numerical examples

In this section, we study the dynamics of system (3) numerically to verify the obtained analytic results.

Example 1. We take the parameter values as r = 0.1, k = 0.2, a = 0.2, m = 0.01, c = 0.4, d = 0.01
and x̄ = 0.2 in appropriate units. In this case, p0 = (0, 0) and p1 = (0, 0.18) are both saddle points
and p∗ = (0.025, 0.387) is globally asymptotically stable (see Figure 6).
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Fig. 6. The phase portrait of system (3) when p∗ is
globally asymptotically stable.

Fig. 7. A stable limit cycle of system (3) encircling
the unstable equilibrium q∗.

Example 2. Using the following parameter values r = 0.04, k = 0.5, a = 0.1, c = 0.07, d = 0.01
and m = 0.035, we obtain h1 = 0.005, h2 = 0.00408 and ĥ = 0.0016. Selecting x̄ = 0.05, we
get h = 0.00175. Thus ĥ < h < min {h1, h2} and r > m. System (3) has a stable limit cycle which
encircles q∗ (see Figure 7). The equilibria p0 = (0, 0) and q2 = (0.45, 0) are saddles and q∗ = (0.14, 0.16)
is an unstable focus.

Example 3. Set r = 0.2, k = 0.5, a = 0.1, c = 0.3, d = 0.01 and m = 0.1, we obtain h1 = 0.025,

h2 = 0.0062 and ĥ = 0.00044. Selecting x̄ = 0.003, we get h = 0.0003. Thus h < min
{
h1, h2, ĥ

}
. The

phase portrait of system (3) is shown in Figure 8. The equilibria p0 = (0, 0), q1 = (0.49, 0) are saddles
and q∗ = (0.03, 1.77) is a stable focus.
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Fig. 8. Two limit cycles of system (3) encircling the
stable equilibrium q∗.

Fig. 9. The phase portrait of system (3) with glob-
ally asymptotically stable equilibrium p0 and positive

unstable equilibrium q∗.

We can see in this example that model (3) could exhibit more dynamical features: two limit cycles
surrounding a positive equilibrium q∗, one stable and one unstable (see Figure 8). A trajectory (the
dotted line) between the outside and inside periodic orbits ultimately tends to the outside periodic
orbit, but a trajectory (the black line) starting from within the unstable periodic orbit finally tends to
equilibrium q∗.
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Example 4. If we take r = 0.04, m = 0.07, k = 0.5, a = 0.1, d = 0.01 and c = 0.07, we obtain
h1 = 0.005, h2 = 0.00408 and ĥ = 0.0016. Choosing x̄ = 0.025, we get h = 0.00175. Thus ĥ < h <
min {h1, h2} and r < m. The equilibria p0 = (0, 0) is globally asymptotically stable, q1 = (0.048, 0)
and q2 = (0.45, 0) are both saddle points and q∗ = (0.14, 0.16) is an unstable focus. In this case, the
population density of both the species tend to extinction (see Figure 9).

5. Conclusion

In this work, we have discussed the effects of non-smooth switched harvest on the prey for the predator–
prey model (1). We have performed a qualitative analysis, thus examining the dynamics of the proposed
model, and we have studied the existence and the global stability of the equilibrium. We have also
shown the existence of at least one limit cycle when the harvesting rate of the prey is less than its
growth rate and we have shown the existence of a second limit cycle numerically. We have shown that
model (3) exhibits three bifurcations: a transcritical, a saddle-node, and a Hopf bifurcations. Finally,
some numerical examples of the model are provided to illustrate the theoretical results.

Our model exhibits new dynamics compared to the existing harvesting models. We could show some
differences for the model (3) with switched harvest on the prey and the model in [6] with switched
harvest on the predator. We would like to simultaneously introduce the switched harvest in both prey
and predator populations and add a superpredator to the model. The dynamics may be far richer and
more complex, like the existence of a chaotic attractor [27].
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Динамiчна поведiнка моделi “хижак–жертва”
з неплавним здобуванням жертви

Мезiанi Т., Мохдеб Н.

Лабораторiя прикладної математики, Факультет точних наук, Унiверситет Беджайя, Алжир

Метою цiєї роботи є дослiдження динамiки нової моделi “хижак–жертва”, де вид жерт-
ви пiдкоряється закону логiстичного зростання та пiддається негладкому перемикан-
ню здобичi: коли щiльнiсть жертви нижча значення перемикання – швидкiсть здобу-
вання жертви є лiнiйною, в iншому випадку – швидкiсть здобування постiйна. Описа-
но рiвноваги запропонованої системи та дослiджено обмеженiсть її розв’язкiв. Обго-
ворюється iснування перiодичних розв’язкiв, показано появу двох граничних циклiв:
нестiйкого внутрiшнього граничного циклу та стiйкого зовнiшнього. Оскiльки значен-
ня параметрiв змiнюються, для моделi виявляється декiлька видiв бiфуркацiй, таких
як транскритична, сiдло–вузлова та Хопфа. Накiнець для пiдтвердження отриманих
теоретичних результатiв подано декiлька чисельних прикладiв моделi.

Ключовi слова: модель “хижак–жертва”; перемикання здобування; стiйкiсть; бi-
фуркацiя; граничний цикл.
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