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The dynamics of prey—predator interactions are often modeled using differential or differ-
ence equations. In this paper, we investigate the dynamical behavior of a two-dimensional
discrete prey-predator system. The model is formulated in terms of difference equations
and derived by using a nonstandard finite difference scheme (NSFD), which takes into
consideration the non-overlapping generations. The existence of fixed points as well as
their local asymptotic stability are proved. Further, it is shown that the model experi-
ences Neimark—Sacker bifurcation (NSB for short) and period-doubling bifurcation (PDB)
in a small neighborhood of the unique positive fixed point under certain parametric con-
ditions. This analysis utilizes bifurcation theory and the center manifold theorem. The
chaos produced by NSB and PDB is stabilized. Finally, we use numerical simulations and
computer analysis to check our theories and show more complex behaviors.
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1. Introduction

Predator—prey interactions are the most well-studied processes in ecological systems, and they are
crucial to understanding community dynamics and ecosystems. Interactions in populations with over-
lapping generations are typically described by differential equations due to the continuous nature of
birth and death processes in such populations [1-4]. Births occur in regular breeding seasons for
species with synchronized generations, such as insects and birds. As a result, discrete-time models
with difference equations are best suited to represent their interactions [5-11]. To examine the an-
alytical aspects of a solution that is difficult to calculate, different schemes can be implemented for
discretizing a continuous dynamical system, and discussing the numerical solution may be performed.
Usually, the most commonly used methods are piecewise constant arguments and the forward Euler
scheme to achieve the desired discrete-time counterparts of continuous-time models. Usually, the most
commonly used methods are piecewise constant arguments and the forward Euler scheme to achieve
the desired discrete-time counterparts of continuous-time models. These methods, however, are not
dynamically consistent with their continuous counterparts. Some recent works on discrete-time models
can be found in, among many others, [12-18].

Depending on the interactions between different species and the availability of nutrients, different
functional responses are considered in ecological population models [19]. A realistic system model
relies heavily on the selection of a functional response [20-22]. In this paper, we consider the following
Leslie-Gower model, introduced and investigated in [23]:

dx T mx

a= () - aa (1)
dy hy

FT <1 p > v, )

where x > 0 and y > 0 represent the prey and predator densities, respectively. The parameters r,
K, m, s, h are positive constants that respectively represent the intrinsic growth rate, the carrying
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capacity of the prey, the rate of predation on the prey, the intrinsic growth rate of the predator, and
the number of prey required to support one predator at equilibrium. In Eq. (1), the functional response
(#445) is type 2, proposed by Holling [19] for non-learning predators.

Regarding the dynamical consistency of dynamical properties, the authors in [24] investigated some
biological systems by applying nonstandard finite difference schemes (NFDS) of Mickens type [25]. In
the same way, in [26], Lui and Elaydi proposed and investigated discrete-time prey—predator models of
competitive and comparative systems, derived following NFDS Mickens scheme. Additional interesting
papers on the NSFD scheme can be found in [27-31] and the bibliographies therein.

Motivated by the previous cited works, we apply the NSFD scheme to (1)—(2), we obtain:

T _ T ma (30)
61(0) =T Tl A+xtyta
Y41 — Ut YtYt+1
= = sy — sh———, 3b
$2(0) Yt 7 (3b)
with (r6) — 1 (s6) — 1
exp(rd) — exp(sd) —
on() = SRV L g5y = P2
Developing the system (3), one gets
ot - ek, "
Tpr1 = ,
t+1 1 +53§'t
exp(sd)x
s = p(s0)x1y 5)

x + (exp(sd) — 1)hy;

The goal of this research is to find the system’s fixed points (4)—(5) and analyze the asymptotic stability
conditions of these fixed points. Furthermore, the interesting aspect of this study, is to prove rigorously,
by using center manifold theory, that the system possesses NSB and PDB. In particular, we employ
two chaos control techniques to completely eliminate or delay the chaos induced by bifurcation.

To sum up, the paper is organized as follow: in Section 2, the existence and the asymptotic stability
of the fixed points are investigated. In Section 3, the PDB is established analytically by using center
manifold theory. The existence of NSB is proved analytically in Section 4. The chaos control is
developed in Section 5. Detailed numerical simulations are developed to support the analytical findings
in Section 6. Finally, Section 7 makes the conclusion to this paper.

2. Stability analysis of system (4)—(5)
To achieve the fixed point of the system (4)—(5), we need to solve the following algebraic system

ma(exp(rd)—
. exp(rd)r — %y _ exp(sd)zy (©)
B 1+ Bz N (exp(sd) — 1)hy’

The following Lemma summarizes the fixed points obtained from (6), as well as their conditions of
existence.

Lemma 1. The system (4)—(5) has a boundary fixed point and a unique positive fixed point in R? .
More precisely,

e [For all positive parametric values, the system has a boundary fixed point noted A(K,0).
o If & + % > 1 then system has a unique positive fixed point B ((K(l — ) = A) + KFQ{K, x—,:),

where
A 2 (hr)?
A—<m+hr<g—1>> +4 % A.

The Jacobian matrix of the system (4)-5) evaluated at any fixed point (x,y) is given by

. exp(rd)(A+a)?+¢1(8)my(Bz? —A) i (O)pla)
I(z,y) = Jin = (A+z)2(1+pz)? N2 = 115, -
z,Y)= . __ exp(sd)(exp(sd)—1)hy? o z .
J21 = (z+(exp(sd)hy)?) J22 = T (P (s0)—Dhy
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The characteristic equation of this Jacobian matrix (7) is ¥ — Ty + D = 0. The eigenvalues of the
matrix (7) are 71 and 2. The trace (tr J(z,y)) and the determinant (det J(z,y)) are the trace of (7)
are given by:

T'=trJ(z,y) =ju +je, D=detJ(z,y)=jujze — jaj-
The following Lemma is required to analyze stability and bifurcation using the eigenvalues analysis
method [5] (see also [32-34]).

Lemma 2. Let F(vy) =72~ T~ + D where T and D are constants. Suppose that F(1) > 0, 71, 72
are two roots of F'(y) = 0. Then

(i) Im|<1and |y <1iff F(—-1) >0 and D < 1;
(i) (In|>1and |y2| <1)or (| <1 and |y|>1)iff F(~1) <0;
(iii) |y1| > 1 and |yo| > 1 iff F(—=1) > 0 and D > 1;
(iv) m=-1and |y #1if F(—1) =0 and D # 1;
(v) 71 and v are complex and |y;| =1 and |y2| =1 iff T? —4D < 0 and D = 1.

Now, the eigenvalues of the boundary fixed point A(K,0) are v; = exp(—rd) and v = 1. Hence,
the boundary fixed point A(K,0) is non-hyperbolic. The Jacobian matrix about B(z*,y*) is given by

hexp(M)(:&w*)Q;wi(%mw)*(ﬁr*z—A) —¢11J(fﬁ)p(w*)
J(B) — T2 (1+Bz")2 e 3
( ) ( 1—ex1;ﬁ—86) exp(—s5)> ( )
The characteristic equation of (8) is
7% —tr J(B)y + det J(B) = 0, (9)
where
_ hexp(ro)(A + )2 + ¢1(5)mx*(5az*2 —A)
tr J(B) = WA+ o)+ B 2 + exp(—sd), (10)
hexp(rd)(A + z*)? + ¢1(§)ma* (Bz*? — A) ¢1(0)p(x*)(1 — exp(—sd))
det J(B) = WA+ 292(1 + fa*)? exp(=59) + Rl + Ba") - (1)
Lemma 3. Assume that 7~ + % > 1.
— The positive fixed point B(z*,y*) is locally asymptotically stable if
hexp(ré)(A + %)% + ¢1 ()ma* (B2 — A)
‘ h(A+ 2)2(1 + fa")? +eXp(_85)‘ B
hexp(r0)(A + 2*)2 + ¢ ()ma* (Bz*? — A) d1(0)p(x*)(1 — exp(—s9))
< < (A + 27)2(1 + fa*)? ) exp(—s0) + h(L+ Bz*) <!
— The positive fixed point B(z*,y*) is non-hyperbolic if
1. (©h(l+ pz*) - ¢1(5)p(96*)>
=1
0 (T i et ) -
L () K500 4 1) »
6 \h(l+Bz*)(© +1) + ¢1(d)p(z*)

If the non-hyperbolic condition (12) holds, then one of the eigenvalues related to B(z*,y*) is —1
and the other is neither 1 nor —1. Thus (12) can be written as

(@) — (1 + Ar)(© + 1)
= 5 u+ﬁxx@+n+¢u><>}'“®

If the non-hyperbolic condition (13) holds, then the eigenvalues related to B(z*,y*) are a pair of
complex conjugate numbers with modulus 1. Thus (13) can be written as

1 0h(1+ Be) — 6iOpla”)
S e (9
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3. Period-doubling bifurcation

For the fixed point (z*,y*) associated to the system (4)—(5). The space (14) can be written as

Py ={s=5u”J(B) <4det J(B),(r,6,m, K,s,A) >0},
one of the eigenvalues of J(z*,y*) is —1 and the other is neither 1 nor —1. Therefore the system
(4)—(5) undergoes PDB at the fixed point (z*,y*) if s varies in the small neighborhood of s = 5 and
(r,0,m,K,s, A) € P;. Giving a perturbation s* (where s* < 1) of the parameter s in the neighborhood
of s =5 to the system (4)—(5), then

exp(ré)zs — ¢1(0) o

Atz *
+1 = = » Yty ) 16
Tt41 1+ By f(we,yt,87) (16a)

exp((s + 5%)0)z¢ye *
= =g(x . 16b
Yt+1 ] h(e ((S S*)(S) 1)yt g( tYt, S ) ( )

Let vy = x4 — %, wy = y¢ — y*, then (16) becomes

exp(ré) (v, + ) — ¢y (§) otz ) wety”)

A+(ve+x*) *
- - 17
Ut 1+ (v + %) S (172)
exp(s + s*)(ve + x*) (wy + y*) .
- — . 17b
VLT O ) 1 h(exp(s + 87) — D(we +g7) 0 (17b)

Expanding (17) in Taylor series about (v, we, s*) = (0,0,0), and considering the terms up to second
order, we have

Upa1 = 00 + oWy + anavwy + 1107, (18a)
W1 = Brvg + Bowy + Praviwy + G107 + Baswi + Pi3s vy + Bassw(t) + Prags v(t)w(t)
+ Brigs 03 (t) + Bagzs w?(b), (18b)
where
B hexp(rd)(A + z*)% + ¢1(8)ma*(Bx*? — A) L x*p1(0)m
“= h(A + 27)2(1 + Bz*)? C T T A B (At )
e $1(0)m(A — Bz*?) o Bexp(rd) s (5)m2aj*2y*ﬁ — Ay* — A%By*
BT pe (A T T (T4 far)r (1+Bz*)2(A+a%)3
51 = jl_eXTp(_(%;)7 52 = eXp(_85)7
Bry = i* < 14 2e>;1}){;8(52)8;) 1)7 By = % <exp(h—s5) N exp(h—2285)>’
) —s8 h
B3 = %, Bog = E(é exp(—sd) + 20(exp(sd) — 1) exp(—2s§)), Pog = —dexp(—s0),
20 (2 — exp(s6)) _ 0 (exp(—=sd)  exp(—2s0)
5123—EW7 Pi13 = x*( Tt >,
P22z = %(5 exp(—s6) + 26(exp(sd) — 1) exp(—2s0)).

a2 a2

l—a; 72 —a >, and use the transformation( Yt > -
“l—qy vp—on

Now we define an invertible matrix T = ( w
t

T < iit > Writing vy = o (X +Y3), w(t) = —(14+ 1) Xt + (72 — @)Y;. Thus, the system (18) becomes
t
<Xt+1>:<—1 O )(Xt>+<Fl(Xt7}/t7S*) > (19)
Y1 0 7 Y; G1(Xy,Y,8%) )7

Y2 — a1
T+

where

Fi(X,Y,8%) =

(( — 0112042(1 + Oél) + ana%)X2(t)
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+ (on202(72 — a1) — arpaa(l 4+ o) + 201103) X, Yy + (arzaa(ye — oq) + 041103)5/}2>
1

et

+ (B11303 + Baz3(1 + 1) — Brazaa(1 + 1)) X7 s*

+ (Br2aa(72 — a1) + Br1a3 + Baa(y2 — a1)?) Yy

+ (B22303 + Bazsz(v2 — 1) + Brasaa (2 — 1)) Yys*

+(

+(

+(

(( — Braoa(1+ a1) + Briog + Bao(1 4 o1)*) X7

Braca(ya — o) — Braca(1 + an) + 261103 — 2B (1 + a1) (12 — 1)) X1 Yy
2811303 + 2B223(1 + 1) (72 — 1) + Prazaa(v2 — o) — Praga(l + o)) X, Y;s*
Przca — Bag(1+ 1)) Xys™ + (Brzova + Baz(r2 — 041))Yt<9*>,

and

1
GL(Xe, Y, 5%) = — 1

T+
+ (a1202(72 — a1) — arpaa(1 + o) + 201103) X3 Yy + (aizaa(v2 — o) + aua%)i?)
1
Y2+ 1

(B11305 + B223(1 + a1)® — Brazaa(1 + 1)) X7s*
(Bizaz(vy2 — a1) + Br1as + Baz (2 — ar)?) Yy
(B22303 + Bazs (2 — 01)® + Brasaz(y2 — 1)) Yy's*
(

+(

(( — a1po(1 + 1) + a1103) X3(1)

+ ((—512042(14-041) + Br1aj + Boa(l + a1)?) X7

4

4

+
+ (Br2aa(ve — 1) — Braca(1 + o) + 2681103 — 2B02(1 + o) (12 — 1)) X1 Y5
2811303 + 2B223(1 + 1) (72 — 1) + Brasaz (12 — a1) — Brasaa(l + a1)) X, Yys*

+ (Bisaz — Baz(1 4 1)) Xys* + (Bisaz + Paz(y2 — 041))Yt«9*>-

Hereafter, we determine the center manifold W,(0,0) of (19) about (0,0) in a small neighborhood
of s*. Thus, there exists a center manifold [35] W,(0,0) that can be represented as follows:
We(0,0) = {(Xe,Y2): YV = h(Xy, ) = a1 X7 + ap Xys™ + a3s™ + O((|Xe| + [5*])?) },
where O((|X¢| 4 [s*])?) is a function with order at least three in their variables (X;, s*). Moreover, the
center manifold must satisfy

h(— Xi + Fi(Xe, M( Xy, 5%)),8%),8%) — y2h(Xe, s%) — Gy (Xy, h(Xy, s7),8°) = 0. (20)
By equating (20), we obtain
14+« 1
a =7 7; (— apaa(l+ 1) + agia3) + 1—72( — Braca(l+ a1) + Br1a3 + Baa(1+ an)?),
72 72
-1
ay = —— (Brsay — Ba3(1+ o)), a3z =0.

1+
Therefore, we consider the map which is the map (19) restricted to the center manifold W, (0,0)

f=Xip1 =X+ hi Xys* + hoX? + haXPs* + hy X7, (21)
where
hy = —ﬁ(ﬂmaz — Paz(1 4 1)),
[ (—apas(l+on) + arjaj) — #( — Braaa(1 + ar) + B1103 + Boa(l + on)?),
L+ 72 +1
hs = _—1(ﬁ13a2 — Bo3(1 + o)) 2 (ar202(72 — a1) — aq2aa(1 + o) + 2a103)
T4+ 1+
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_ ﬁ(ﬁlgaz(’m —ap) — Broas(l 4+ ag) + Qﬁlla% — 2Bo5(1 + an1)(72 — 041))}
- m(ﬁn:aa% + Ba23(1 + a1)? — Brazaa(1 + an))

14+«
_ <(1 — 72)(11—’_ ,.Y2) ( — algag(l + al) + alla%)
2

1
TR0t

14+ oy
hy = <1 2 (—apas(l+ 1) +agas) +
— 72

(= Bizas(l+ 1) + Brias + Bao(l + a1)2)> (Brzoz + Bag(y2 — o)),

1
13

(= Brzas(l + ay) + Briag + Boa(1 + 041)2)>

Y2 — 01 2
X 190 —a1) —apas(l+ a1) 4+ 2071«
[1+72 (r202(v2 — 1) — aras( 1) 1105)
1
g (Braca (e — o) — Braaa(1 + an) + 2681103 — 2822 (1 + 1) (2 — al))}

In order for the map (21) to undergoes a period-doubling bifurcation, we require that the following
discriminatory quantities are non zero [36]:

0?f 10f 0*f
e <8Xt83* T 305 82Xt> ©00) M 70,
10%f  10°f ., 2
= (=L + (= = h2 0.
o (68Xf’+(28Xt2)> 00 ha + hs # 0

From the above analysis we have the following theorem.

Theorem 1. Ifmy # 0, and m # 0 the model (4)-(5) undergoes a period-doubling bifurcation about
the positive fixed point B(x*,y*) when s* varies in a small neighborhood of O(0,0). Moreover, if
g > 0 (resp mo < 0), then the period 2 points that bifurcate from B(z*,y*) are stable (unstable).

4. Neimark—Sacker bifurcation

The roots of the characteristic equation (9) at B(x*,y*) are a pair of complex conjugate numbers 1,
Yo given by

tr J(B) £i\/4det J(B) — (tr J(B))?
71,2 = 5 )
with ¢rJ(B) and det J(B) are given in (10)and (11) respectively. Now NSB occurs when the roots of
the above equation are complex conjugates with unit modulus. It occurs for s =3, we construct then
a set Ny = {(r,0,m,K,s,A) >0,s =5,tr? J(B) < 4det J(B)}. If we vary s in the neighborhood of
s = 5 keeping other parameters in NSB constant, then the positive fixed point B undergoes NSB.
Taking a perturbation s* where (s* < 1) of the parameter s in the neighborhood of s = 3 in the
system (4)—(5), we have

exp(ré)ze — ¢1(5) e
1+ Bxy

exp((s + 57)0)1ys "

yt‘l’l []:'t + h(exp((s + S*)(S) _ 1)yt g(xt7yt7 § ) ( )

Let vy = x4 — ¥, wy = y¢ — y*, then from (22) we set

exp(ré) (v, + ) — ¢y (§) otz ) wety”)

= f(:Et)yt)S*)? (22&)

Ti41 =

A+ (ve+a*) *
— _ 23
Ut 1+ Bv; + %) T (232)
exp(s + %) (ve + o) (wg + y*) »
- — . 23b
VLT O ) + h(exp(s + 87) — D(we +97) 2 (23b)
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Expanding the above in Taylor series at (v, wy) = (0,0) considering the terms up to second order, we

have
V41 = QU + QWi + Qppiwy + O411%2 + O((‘Ut’ + ’wt’)2)7 (24a)
W1 = Brvg + Powy + Praviwy + B11v; + Baswi + O((Jve] + |wy])?), (24b)
where
o — hexp(rd)(A + z*)? + ¢1(6)ma* (Bx*? — A) oo — x*1(0)m
o (A + 272 (1 + Bar)? LT 0 B (At )
L @mA=pe?)  Bew(rd) o a0y Ay — A%y
T 4B At T T (A pa2 (1 + Bz*)2(A +2*)3
B = 1_%1)(_85), B2 = exp(—sd),
B exp(sd) — 1 _ 1 [exp(=sd)  exp(—2s6)
512—;[— W]v 511_3:*[ h + 2 )
Bz = % [5 exp(—sd) + 20(exp(sd) — 1) eXp(—Qsd)].

The roots of the characteristic equation associated with the linearized map (24) at (v, w;) = (0,0)
are given by

rJ(s*) £ et J(s*) — (tr(s*))2
hafar) = TICNEWVAARTED) T () = /et T

when s* = 0, we have

det(J(0) =1 and 412!

£0. (25)

s*=0
Additionally, we required that when s* = 0, 7{, # 1, m = 1,2,3,4. This is equivalent to tr.J (0) #
—2,—-1,1,2. Let n = Re(y1,2), and £ = Im(y;,2). The model (24) is written as

< Vt+1 > _ < ap a2 > < Ut ) n < C¥12%ﬂl)1t‘i‘a11%2 >
Wil B1 Bo wy Braviwy + B11vE + Pagws?

Let consider the invertible matric P = < . OQ@ 0 ¢ >, associated to the eigenvalue v 2 = n £ €.
-
Using the following translation
()= 0 ) G
wy n—ar —§ i )’
Therefore, one gets
Xt+1> < n —§><Xt> <F(Xtayi)>
= + , 26
< Yit1 - n Y G(X:,Y:) (26)
with
1 1
F(X:,Y) = a—2(a12a2(77 —ay) +ag103) X7 — a—2(50412012)Xth,
and

G(X0 V) — ("gajl

(g ) =

In order for (26) to undergoes a NSB, it is mandatory that the following discriminatory quantity, (i.e,
L #0 [36)),

3
(Braaaé +2(n — Oél)ﬁ22§)>XtYi + BaalYy

(a1202(n — 1) + ania3) — l(512612(77 — 1) + Br105 + fBaa(n — a1)2)>Xt2

(1 - 277

L:—Re[ =~

1
/311/)20] — 5\011’2 — |po2|* + Re(Fpa1), (27)
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where

po2 = 3 [Fx,x, — Friv, — 2Gx,v, +i(Gx,x, — Gvivi +2Fx,v,)] g )

pir = 3 [Fxxin + Frevi + G + )]

CO| — x| — 00| =

p2 = Z[Fx,x, — Friv, + 2Gx,v, + i(Gx,x, — Gviv, — 2Fx,v,)] (0,0)°

1 .
P21 =16 [Fxoxox. + Fxpvive + Gxoxon + Griviy, +i(Gxoxox, + Gxvive — Fxoxoi — Friviv)] g0

After calculating, one gets

po2 = i KO%(O&QOQ(?? — 1) + aq103) + (ngajl (§arzaz) — %(5120425 +(n— Oé1)522€)>>

+z’<<77£:)§1 (cr200(n — 1) + anos) — %(512612(77 —ay) + Bi1a2 + Ba(n — a1)2)>

— 22§ — aiz (falzaz)ﬂ ;

P11 = % |:ai2 (0112042(77 — Oé1) + 0411013) + Z<<n§_ajl (0412012(’17 — Oél) + 0111045)
- %(512042(77 —a1) + Brias + Baz(n — a1)2)> + 5225)} ;
P20 = i [<ai2(0412a2(?7 — o)+ apaj) — (776_0;1 (§orzaz) — %(&2@25 +2(n — 041)5225))
+ <<?7;l;11 (ar202(n — a1) + arag) + %(512012(77 — o) + Briag + Baz(n — 041)2)>
— P22€ + i(@éu%)ﬂ ;
Qa2
p21 = 0.

Based on the above analysis, we state the following result on NSB.

Theorem 2. If the condition (25) holds and L defined in (27) is nonzero, then the model (4)-
(5) undergoes a NSB at the positive fixed point B(x*,y*) when s* varies near the origin and
(r,0,m,K,s,A) € Ny. Moreover, if L < 0 (L > 0) then an attracting (respectively repelling) in-
variant closed curve bifurcates from the fixed point B(x*,y*) for s >3 (respectively, s <'3).

5. Chaos control

In this section, we control the chaos influenced by NSB and PDB. Chaos can be controlled by various
methods (see, e.g. [14,28,33]). In this paper, we apply the state feedback method [14] to stabilize the
chaotic orbits at an unstable fixed point of system (4)—(5). Thus, we introduce a feedback control force
P, such that

_ exp(rd)zs — ¢1(8) s (28)

1 + ﬁ!Et ’
exp(30)1y, * *

B — plae — — 2
oyt h(exp(0) — 1)y L Z @)t vl — v, (29)

Ti41

Yt+1

Py
where pu, v are feedback gains and s is the nominal value for s which belongs to some chaotic regions.
The Jacobian matrix of (28)—(29) at B(x*,y*) is

exp(rd)  ¢1(8)my* (B2 —A) ¢1(8)ma* )

J(B) = | @Bz ~ @Hpz)P(Ata™ ) (14 Br7)(A+a")
%(1 — exp(—30)) — p exp(—sd) — v

(30)
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The corresponding characteristic equation of (30) is

2 ( exp(rd) é1(0)my* (Bx*? — A)

(14 Bz*)2 (1 + Ba*)2(A + 2%)2
exp(rd)  ¢1(6)my*(Bx** — A) -

<<1+5x*>2 T QB RA T >2>(exp(_35) =)

a +¢6195*§(A ey <%(1 — exp(—36)) — u) =0. (31)

Let k1, ko are the eigenvalues of the characteristic Eq. (31) then sum and the product of their roots
are given by

+exp(—3d) —v |k

exp(rd *(Br*? — ~
K1+ Ky = a +péx*))2 - (1(+)5$ )g( )) + exp(—3s9) — v, (32)

R R N
s = (T~ 4 Feptar o) (o)

¢1(0)ma* < 1 ~ >
—(1 —exp(—3d)) — i ). 33
0 o)A o) L 0~ oP(50) (33)
Lemma 4. The system (28)—(29) is locally asymptotically stable if all the eigenvalues of the charac-
teristic Eq. (31) lie in an open unit disc.

Proof. The marginal stability lines can be obtained from the conditions x; = 41, k1k3 = 1. For the
conditions k1K = 1, Eq. (33) gives

. »1(G)ma” exp(rd) _ ¢1(0)my*(Ba*? — A)

Waram@ar T ((1 T Ba)? (1 T B )2(A + o) >”
B ~ exp(rd) é1(8)my* (Bz*2 — A) ¢1(6)ma* (1 — exp(—39))
= exp(_35)<(1 B L+ B (A+ a:*)2> T TR B At

The Eq. (34) expresses the first condition for marginal stability. For k1 = 1, the Eq. (32) yields

o d1(6)ma* __exp(rd) ¢1(8)my* (Bx*? — A)
b i gem@r et <1 (+ B2 (1+ B 2(A+ ) )”
) —1+( ep(r)  dr(6)my* (527 — A)
(L4 Ba*)®  (L+ fa*)*(A+ %)

(34)

o1(0)max* (1 - exp(—§5))
h(1+ Bz*)(A+a*)

> (1—exp(—30)) +exp(—56)—

similarly for \; = —1, it gives
. »(O)ma exp(rd)  ¢1(d)my*(Bz** — A)
L et et (U s~ G e R)”

_ exp(rd) ¢1(8)my* (Bx*? — A)> ¢1(0)yma* (1 — exp(—56))
=1+ —30)+1 —~ - 30)+
(o(=50)+1) ((1 VAP (Lt per@r ey ) TP T e )
The lines Lq, Lo, L3 give the conditions for the eigenvalues to have absolute value less than 1. The
triangular region bounded by these lines accommodates stable eigenvalues. ]

6. Numerical simulations

In this section, we give some illustrative simulations to our theoretical findings. We choose
(r,0,m, A, K,h) = (0.5,3,5,3.5,2.5) and initial conditions (xg,yo) = (0.8,0.5) for the system (4)—(5).
All orbits are attracted to the positive fixed point B(0.7,0.28), which is locally asymptotically stable,
see Figure la. Increasing the value of s, from s = 0.64 to s = 0.69 (see Figures 1b—1e), the system
starts to lose its asymptotic stability. Based on the theorem 2, the value L = 0.0961179847 > 0. This
proves the existence of an attracting closed invariant curve, which indicates that the system undergoes
a NSB about the positive fixed point B.
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Fig. 1. Phase portraits for the discrete model (4)—(5) for different values of s.

2

18 _
16

14

12
1
0.8
0.6
04
0.2

. . . . . . ) 0 . . . . . . . )
0 50 100 150 200 250 300 350 400 0 50 100 150 200 250 300 350 400
v time (t) time (t)

a b c

Fig. 2. (a) Stability region of the controlled system (28)—(29). (b) and (¢) Stable time series for x and y for
the controlled system (28)—-(29) s = 0.76.

For exploring complexity in the system (4)—(5), a bifurcation diagram with respect to s is plotted
in Figure 3a. It is observed that the system (4)—(5) exhibits a range of period-doubling bifurcation.
To stabilize chaos influenced by NSB in the system (4)—(5), we implement the state feedback control
method. We choose a chaotic value of s = 0.76,

L;:2.61496844p — 0.6135971594r = —0.001760686,

Loy: 2.614968444 + 0.386402841y = —1.28587932,

Ls: 2.61496844p — 1.6135971594v = —2.717642052.
Using Lemma 4, one gets the lines Ly, Lo and Ls of the asymptotic stability for the system (28)—
(29). These lines determines a triangle region (see Figure 2a), such that, for every values of pu and
v chosen from this triangle, the system (28)—(29) is controllable in the sense that the asymptotic
stability is verified. Toward this, we chose p = 0.2, v = —0.1 (i.e., the feedback controlling force is
P, = 0.2(x; — 0.7) — 0.1(y; — 0.28)). For these values, the efficiency of the this method is proved.

In Figures 2b—2¢, time series are plotted which show that our derived system (28)—(29) converges
asymptotically to the positive equilibrium point B(0.7,0.28).

Mathematical Modeling and Computing, Vol. 10, No. 2, pp.593-605 (2023)



Complex dynamics and chaos control in a nonlinear discrete prey—predator model 603

Now, in order to control the chaos produced by PDB in Figure 3a, we take into account the
triangle region (Figure 2a). We set v = 1 and pu € (0.57,1) (Figure 2b), and the fixed point B is
locally asymptotically stable. Additional simulations are carried out to stabilize the chaotic behavior
produced at s = 2 in Figure 3a. We set u = —0.8 and v € (—2,—1.8) (Figure 3¢), and p = 0 and
v € (—2,0.5) (Figure 3d). The dense chaotic region is reduced to periodic and quasi-periodic window
in (Figure 3d) with respect to Figure 3a. Hence, the above method controls chaos with respect to

different parameters.
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Fig. 3. (a) Bifurcation diagrams for the discrete model (4)—(5) with respect to s. (b) Bifurcation diagram of

the controlled system (28)—(29) for v = 1 and p € (0.57,1). (¢) Bifurcation diagram of the controlled system

(28)—(29) for p = —0.8 and v € (—2,-1.8). (d) Bifurcation diagram of the controlled system (28)—(29) for
pw=0and v e (-2,0.5).

7. Conclusion

In this paper, we explore the rich dynamical properties of a discrete-time, two-dimensional prey—
predator system. The model is developed by discretizing a differential predator-prey model by using
a nonstandard finite difference scheme. The existence and local asymptotic stability of the fixed
points are investigated. In order to support the complexity of (4)—(5), the presence of NSB and PDB
for the positive fixed point B(z*,y*) is proved analytically by using bifurcation and center manifold
theories. Further numerical simulations are performed. Through these simulations, we showed that the
model (4)—(5) goes through NSB and PDB when the parameters vary in the neighborhood of (14) and
(15). We implemented the state feedback method to avoid unstable orbits, and the provided numerical
plots give evidence of the successful implementation of this method.
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CK}'Ia,D,Ha ,D,I/lHaMlKa Ta KGpYBaHHSI XaoCom
Yy HEeNIHIVHIN ,EI,I/ICKpETHII/I MO,EI,eJ'II 3,EI,O6I/|L|—XI/|)KaK

Moxksi K., Ber Ami X., Y-Ilayi M.

Honiducyunainapruts gaxysvmem Xypibea, Ynisepcumem Cyamana Mynaas Caiman, Jlabopamopis MRI,

BP: 145 mazicmpans Xypibea, 25000, Mapoxxo

JunaMiky B3a€MOJIil KE€PTBU Ta XUKaKa YACTO MOJIETIOITH 3a JIOMOMOTOI0 Judepen-
miaJgbHAX ab0 PI3HUIEBUX PiBHSAHB. Y B3aIPOIOHOBaHINl poOOTI MOCTIIKYETHCS TUHAMIY-
Ha TOBEJiHKa JTBOBUMIPHOI IUCKPETHOI cucTeMu ‘ykeprBa—xmkak . Momeas chopmMynboBa-
Ha B TepMiHaX PI3HUIIEBUX PiBHSHB i BUBEJIEHA 3a JOTOMOI'0OI0 HECTAHJIAPTHOI CKIHYEHHO-
pisaunesoi cxemu (NSFD), sika BpaxoBye IOKOJIIHHS, 110 He NEPEKPUBAIOTHCs. JloBeIeHO
icHyBaHHSI HEPYXOMHUX TOYOK, & TAKOXK X JIOKAJbHY aCUMIITOTUYIHY CTiiiKicTh. /lasmi moka-
3aHO, 110 Mozesb 3a3Hae 6idbypkario Heiimapka—Cakkepa (ckopoueno NSB) ra 6idypka-
uiro noxsoenus uepioxy (PDB) y HeBesmkoMmy OKoJ HEPYXOMOI TOUKHU CHIBICHYBaHHS 3a
[IeBHUX mapamMeTpudHux yMmoB. Lleit anasis BukopucroBye Teopito Oidypkariit Ta Teopemy
[IEHTPAJIbLHOIO MHOIOBUy. Xaoc, Ha skuil BiimBaoTh NSB i PDB, crabiiisyerbes 3a 110-
IIOMOT'OI0 METOJIY 3BOPOTHOT'O 3B’4I3KY CTaHy. UucesibHEe MOJEIOBAHHS Ta KOMII' IOTEPHUN
aHaJIi3 BUKOPUCTOBYIOTHCs, MO0 MEPEeBIpUTH 3aIPOITIOHOBAHY TEOPII0 Ta MOKA3ATH CKJIAJI-
HIITl BUIIAIKMA.

Knwo4oBi cnoBa: pishuyesi piHAHHA; GCUMNMOMUNHA CMabiabHicmy; OiPyprayitiHul
AHANI3; KEPYBAHHA TAOCOM.
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