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Modeling a dynamics of complex biologic disease such as cancer still present a complex
dealing. So, we try in our case to study it by considering the system of normal cells,
tumor cells and immune response as mathematical variables structured in fractional-order
derivatives equations which express the dynamics of cancer’s evolution under immunity of
the body. We will analyze the stability of the formulated system at different equilibrium
points. Numerical simulations are carried out to get more helpful and specific outcome
about the variations of the cancer’s dynamics.
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1. Introduction

Cancer is a disease that can start in any organ of the body when abnormal cells (tumor cells) grow
uncontrollably, it is a major killer throughout human history, the second cause leading to death glob-
ally, one in six deaths accounting for an estimated studies according to World Health Organization
(WHO) [1]. Cancer affects almost 18 million around the world in 2018, of these 9.5 million cases
were in men and 8.5 million in women [2]. There are many varieties of cancers which are considered
as biological process with predisposing factor describing at [3], cancers of the lung, breast, prostate
and colon and rectum have all become more frequent in countries where risk factors such as cigarette
smoking, unhealthful dietary habits and exposure to dangerous chemicals work. However, the most
causes of many different type cancers still remain unknown. In case, many treatment and solution
can be used in order to help the patients by one or combined specific care such as surgery, radiation,
chemotherapy, immunotherapy, hormone therapy, and psychological support is also needed.

From a mathematical point of view, biological phenomena are carefully designed as mathematical
models [4–7]. Particularly with fractional order derivatives [8–11], using fractional calculus as an em-
pirical method of describing the properties of several characteristics studied, this field of mathematical
analysis is considered an old and yet novel topic. Fractional differential equations can be considered
as one of the extensions of classical ordinary differential equations. In reality, a biological phenomenon
may depend not only on the time of treatment or time of stating the illness but also on the previous
time history, which can be successfully modeled by using the theory of derivatives and integrals of
fractional order [12]. The practice of fractional calculations, can also cover the behavior of different
dynamics, we cite as an example [13] the drinking behavior leading to road accidents and violence.

Several recent works give an interesting results as showing that optimal therapy can control pro-
liferation to reduce specially cervical cancer [14], the formulating of a hybrid PDE-ODE Model test
the feasibility and well- posedness [15] of the cancer velocity, in a stochastic approach to show col-
orectal cancer prediction [16], SEIR epidemic model with fractional order [17] estimating mutation
rates tumor, and with fractional approach [18], eliminating cancer cells with immune system less, an

288 c© 2023 Lviv Polytechnic National University



Fractional derivative model for tumor cells and immune system competition 289

new model is also studied [19] to present and analysis fractional-order tumor virotherapy model with
two time delays. In the same sense, we can note that among the recent models, we find the model
named the Normal Tumor Immune UNHealthy Diet Model (NTIUNHDM) [20] that describes well the
dynamic of cancer with immunity and proposes the system of ordinary differential equations as follow:





dN

dt
= rN(1− βN)− νNI − γNT,

dT

dt
= r1T (1− β1T ) + β2NT − β3TI,

dI

dt
= σ − δI +

ρNI

m+N
+

ρ1TI

m1 + T
− µNI − µ1TI,

(1)

where the variables N , T and I correspond to normal cells, tumor cell and immune system response,
respectively. The parameters of the first equation are: r marks the grown-up normal cells, β refers to
the division rate of normal cells to their abnormal ones, ν denotes immune cells that inhibit abnormal
cells, whereas σ denotes the rate at which tumor cells attack normal cells. For the second equation, the
parameters are: r1 denotes the limited growth of tumor cells, β1 means that tumor cells are confronting
a decline caused by the body’s ingrown tumor during the process of dietary metabolism, β2 denotes
the pace at which abnormal cells become converted into their tumors counterparts and β3 signifies the
rate of inhibition or the eradication of tumor cells caused by the immune cells’ response. For the third
equation the parameter σ denotes a constant source of the immune system response, which is generated
in the body on a daily basis, δ signifies the natural rate at which immune cells die, ρ, ρ1 denote this
response rate by normal cells respectively by tumor cells, while the immune system’s threshold rate is
given by m for the normal cells and m1 for the tumor cells and µ, µ1 signify reduced immune cells due
to the manner in which they interact with normal cells, respectively with tumor cells.

In our case, to explore these studies further we will build our formulation on NTIUNHDM and to
well know about the analysis of the structured dynamical model previously cited, we study it with
fractional derivatives approach reputed as the generalization of the standard theory of calculus to
derivatives and integrals, its success derives from its proven effectiveness in accurately describing innu-
merable the biological phenomenon of cancer, we formulate our model by fractional order derivatives
equation with the next system as follow:





DαN = rN(1− βN)− νNI − γNT,
DαT = r1T (1− β1T ) + β2NT − β3TI,

DαI = σ − δI +
ρNI

m+N
+

ρ1TI

m1 + T
− µNI − µ1TI,

(2)

where Dα is the fractional differentiation operator and α is fractional derivative order.
To get more details about the model (2), we can describe the equations of the system. The first

equation express the variation of normal cells, it is formulated in three parts the first one main the
natural grow up, the rests express the eliminations of the normal cells due to immune response and
tumor, respectively. The second equation is the variation of tumor cells, expressing also in three parts,
the first one in logistic growth, the second part describing the pace of transformation from normal cells
to their tumors counterparts and the third equation is divided to five expressions, first one describes
the natural existence of immunity, the second term is the normal death, the two next represent the
saturated rate of immune response due to normal cells and tumor, respectively, the two last express
the inhibitions of the immune response due to normal cells and tumor, respectively. To visualize better
the interaction between normal cells, tumor cells and immune response formulated previously, Fig. 1
illustrates this in the following schematic diagram.

This paper will be organized in Sections: The next one will give some mathematical tools about
fractional derivative, Section 3 establishes the solutions and analyze the results of fractional system
modeled, Section 4 give numerical interpretations to conclude in the last section all sets.
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Fig. 1. Schematic diagram of NTIUNHDM.

2. Mathematical tools

In this section, we present some preliminary definitions of the fractional order integral and derivative
which are the principal tools of the analysis in this study.

Definition 1. The α-order fractional integral of the function f , with α > 0 and f : R → R defined
by

Iαf(t) =
1

Γ(α)

∫ t

0
(t− s)α−1f(s) ds,

where Γ(·) is the known function Gamma.

The fractional derivative is introduced as an inverse operation to fractional integration. It is defined
as follow and the next Definition:

Dαf = In−αDnf,

where D = d/dt and n− 1 < α 6 n, n ∈ N.

Definition 2. The Caputo fractional derivative of the function f , with 0 < α < 1 and f : R→ R is
given by

Dαf(t) =
1

Γ(1− α)

∫ t

0

f ′(s)
(t− s)α ds.

Definition 3. The Mittag–Leffler function is defined by, with α > 0:

Eα =

+∞∑

i=0

zi

Γ(αi+ 1)
.

Lemma 1 (Ref. [21]). Let F : Rn → R
n verified such that fractional equation
{
DαX = F (X),
X(0) = X0

and satisfies both following conditions:

1) F and ∂F
∂X are continuous on R

n;
2) ‖F (X)‖ 6 c1 + c2‖X‖ for all X ∈ R

n, with c1 and c2 two positive constants.

Then, the solution exists and uniquely defined on [0,+∞).
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Lemma 2 (Ref. [22]). The fractional differential equationDαX = PX, with P ∈ R
n×n,X(0) = X0,

0 < α < 1, X ∈ R
n and spc(P ) is considered as the spectrum of the matrix P .

The equilibrium point is local asymptotically stable if only if ∀λ ∈ spc(P ), | arg(λ)| > απ
2 (see

Fig. 2).

Stable area Unstable area
απ
2

−απ
2

Fig. 2. Stability and non-stability areas in case of fractional derivative model.

3. Mathematical analysis of the model

In this section, we will establish the positivity and boundedness of solutions to show the well posedness
of the formulation and we will discuss the local stability also to analyze the different equilibrium points.

3.1. Positivity and boundedness

For biological reasons, we will admit that the initial conditions of the solutions are positive.

Proposition 1. The solutions of the problem (2) exist, are non-negative and bounded.

Proof. The model (2) can be written as:
{
DαX = F (X),
X(0) = X0,

with X =



N
T
I


.

We pose C1 =




0
0
σ


, c1 = ‖C1‖,

A1 =



r 0 0
0 r1 0
0 0 −δ


 , a1 = ||A1||,

A2 =




0 0 0
0 0 0

0 0 ρN
m+N + ρ1T

m1+T


 , A22 =




0 0 0
0 0 0
0 0 ρ+ ρ1


 , a2 = ‖A22‖,

A3 =



−rβ δ ν
β2 r1β1 −β3
−µ −µ1 0


 , a3 = ‖A3‖,

and

V =



N 0 0
0 T 0
0 0 I


 , ‖V ‖ = ‖X‖.
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We involve that F (X) = C1 +A1X +A2X + V A3X.
So, we get ‖F (X)‖ 6 c1 + (a1 + a2)‖X‖ + a3‖X‖2.
Therefore, we involve having a unique solution on [0,+∞).
Now, let us show that the Ω = {(N(t), T (t), I(t)) ∈ R

3
+ : for all time t} which express the variable

regions is a positively invariant.
Indeed, for (N(t), T (t), T (t)) ∈ Ω, we have:

DαN
∣∣
N=0

= 0 > 0, DαT
∣∣
T=0

= 0 > 0, and DαI
∣∣
I=0

= ρ > 0.

Therefore, all solutions initiating are positive and they logical constraint due to biological qualifications.

N(0) > 0, T (0) > 0, and I(0) > 0.

Which make the Proof of the non-negativity results.
For the boundness, we have from (2):

DαN 6 rN(1− βN).

Let λN be a positive constant, we have the following relationship:

DαN + λNN 6 −rβN2 + rN + λNN

6 −rβ
(
N2 − r + λN

rβ
N +

(
r + λN

2rβ

)2

−
(
r + λN

2rβ

)2
)

6 −rβ
(
N − r + λN

2rβ

)2

+
(r + λN )2

4rβ

6
(r + λN )2

4rβ
.

We pose CN = (r+λN )2

4rβ .
So, we deduce: N(t) 6 N(0)Eα(−λN tα) + CN (1− Eα(−λN tα)).
Since, 0 < Eα(−λN tα) 6 1 and 1− Eα(−λN tα) 6 1.
Then, we obtain the boundness of N .
From (2):

DαT 6 r1T (1− β1T ).

Let λT be a positive constant, we have the following relationship:
DαT + λTT 6 −r1β1T 2 + r1T + λTT

6 −r1β1
(
T 2 − r1 + λT

r1β1
T +

(
r1 + λT
2r1β1

)2

−
(
r1 + λT
2r1β1

)2
)

6 −r1β1
(
T − r1 + λT

2r1β1

)2

+
(r1 + λT )2

4r1β1

6
(r1 + λT )2

4r1β1
.

We pose CT = (r1+λT )2

4r1β1
.

So, we deduce: T (t) 6 T (0)Eα(−λT tα) + CT

(
1−Eα(−λT tα)

)
.

Since, 0 < Eα(−λT tα) 6 1 and 1− Eα(−λT tα) 6 1.
Then, we obtain the boundness of T .
From (2) we have:

DαI + δI 6 σ.

We pose CI = σ/δ.
So, we deduce: I(t) 6 I(0)Eα(−δtα) + CI

(
1− Eα(−δtα)

)
.

Since, 0 < Eα(−δtα) 6 1 and 1− Eα(−δtα) 6 1.
Then, we obtain the boundness of I. �

Mathematical Modeling and Computing, Vol. 10, No. 2, pp. 288–298 (2023)



Fractional derivative model for tumor cells and immune system competition 293

3.2. Stability of equilibrium

At the equilibrium instance, the steady states of the viral infection, the variation over time of the
system (2) are nulls. So, we notice the equilibrium point E∗(N∗, T ∗, I∗) should verify the following
system: 




0 = rN∗(1− βN∗)− νN∗I∗ − γN∗T ∗,

0 = r1T
∗(1− β1T ∗) + β2N

∗T ∗ − β3T ∗I∗,

0 = σ − δI∗ +
ρN∗I∗

m+N∗ +
ρ1T

∗I∗

m1 + T ∗ − µN
∗I∗ − µ1T ∗I∗.

(3)

With simple calculation, we get tree equilibrium points, that can be named as follow.
The disease free equilibrium point E0(0, 0, I0) as response stage. With

I0 =
σ

δ
.

The first endemic equilibrium point E1(N1, 0, I1) as coexisting stage. With

N1 =
1

β
, I1 =

β(1 +mβ)σ

(1 +mβ)(βδ + µ)− βρ.

The second endemic equilibrium point E2(0, T2, I2) as resisting stage. With

T2 =
1

6β1


6−

2
2
3

(
C3 +

√
C2
3 + 4C4

) 1
3

+ 2r1β3C1

r1β3µ
+

2
4
3β3

(
−r1C2

1 + C2

)

µ
(
C3 +

√
C2
3 + 4C4

) 1
3


 ,

I2 =
1

6β23µ


2β1β3C1 +

2
4
3 r1β

2
3

(
−r1C2

1 + C2

)
(
C3 +

√
C2
3 + 4C4

) 1
3

+ 2
2
3

(
C3 +

√
C2
3 + 4C4

) 1
3


 .

Where:

C1 = 2µ1 + β1 (δ +m1µ1 − ρ1) ,
C2 = 3µ1 (r1 (1 +m1β1) (β1δ + µ1)− r1β1ρ1 +β1β3σ) ,

C3 = r21β
3
3

(
r1C1

(
−µ (C1 − µ) + β21

(
2δ2 + 2 (−m1µ1 + ρ1)2 − δ (5m1µ1 + 4ρ1)

)))

+ 9 (µ1 + β1 (δ + 2m1µ1 + ρ1)) r
2
1β1β

4
3µ1σ,

C4 = −r31β63
(
α1

(
µ1 (C1 − µ1) + β21

(
δ2 + (−m1µ1 + ρ1)

2 − δ (m1µ1 + 2ρ1)
))
− 3β1β3µ1σ

)3
.

Proposition 2. At response stage E0(0, 0, I0). The equilibrium point E0 is stable when
I0 > Max( r

ν ,
r1
β1

).

Proof. The Jacobian matrix at E0 is

JE0 =




r − νI0 0 0

0 r1 − β1I0 0

ρI0
m − µI0

ρ1I0
m1
− µ1I0 −δ




And the spc(JE0) = {r − νI0, r1 − β1I0,−δ}.
So, when r < νI0 and r1 < β1I0 the E0 is stable, else it is not.
Therefore, we can argue that the immunity must be as strong to have the stability. Otherwise, the

infection will diverge from the state of stability E0.
At this stage, only the immunity operates in normal way. �
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Proposition 3. At coexisting stage E1(N1, 0, I1). The equilibrium point E1 is stable when the
following conditions are verified:

1) r1β+β2

β3β
< I1;

2)





∆P1 > 0,
a0 > 0,
a1 > 0,

or

{
∆P1 < 0,

α < 2
π Arctan

√
−∆P1

a1
.

Proof. The Jacobian matrix at E1 is

JE1 =



r − 2rβN1 − νI1 −νN1 −γN1

0 r1 + β2N1 − β3I1 0
ρmI1

(m+N1)2
− µI1 ρ1m1I1

(m1+N1)2
− µ1I1 −δ + ρN1

m+N1
− µN1


 .

And the spc(JE1) = {λ0, λ1, λ2}, when λ0 = r1 + β2N1 − β3I1 and λ1, λ2 ∈ S1, when S1 is the roots
set of the following polynomial P1:

P1 = X2 + a1X + a0.

With: a1 = −(r− 2rβN1− νI1− δ+ ρN1

m+N1
−µN1) and a0 =

(
− δ+ ρN1

m+N1
−µN1

)
(r− 2rβN1− νI1) +

γN1

( ρmI1
(m+N1)2

− µI1
)
.

We pose ∆P1 = a21 − 4a0. As r1β+β2

β3β
< I1 we get λ0 ∈ R

−.
Furthermore, if ∆P1 > 0 naturally λ1, λ2 are real, and if more ai > 0, ∀i ∈ {1, 0}, we get the

negativity. So, λ1, λ2 ∈ R
−. Moreover, if ∆P1 < 0 it is obvious that λ1, λ2 are complex, λ1 = λ2 and

tan(Arg(λi)) = ±
√

−∆P1

a1
, ∀i ∈ {1, 2}. So, |Arg(λi)| = Arctan

√
−∆P1

a1
.

Therefore, we can say that the immunity have to be so robust to ensure the stability. Or else, the
infection will deviate from the stable state E1. �

Proposition 4. At resisting stage E2(0, T2, I2). The equilibrium point E2 is stable when one of the
following conditions is verified:

1) r < νI2 + γT2,

2)





∆P2 > 0,
b0 > 0,
b1 > 0,

or

{
∆P2 < 0,

α < 2
π Arctan

√
−∆P2

b1
.

Proof. The Jacobian matrix at E2 is

JE2 =



r − νI2 − γT2 0 0

β2T2 r1 − 2r1β1T2 − β3I2 −β3T2
ρI2
m − µI2

ρ1I2
m1
− µ1I2 −δ + ρ1T2

m1+T2
− µ1T2


 .

And the spc(JE2) = {r − νI2 − γT2} ∪ S2 when S2 is the roots set of the following polynomial:

P2 = X2 + b1X + b0.

With: b1 = −
(
r1− 2r1β1T2−β3I2− δ+ ρ1T2

m1+T2
−µ1T2

)
and b0 = (r1− 2r1β1T2−β3I2)

(
− δ+ ρ1T2

m1+T2
−

µ1T2
)

+ β3T2
(ρ1I2

m1
− µ1I2

)
.

We pose ∆P2 = b21−4b0. So, when ∆P2 > 0 and bi > 0, ∀i ∈ {1, 0} the roots of P2 are real negative.

And when ∆P2 < 0, b1 > 0 and α < 2
π Arctan

√
−∆P2

b1
, we get the stability criterion.

At this stage, the normal cells disappear completely, letting the growth proliferation parameter r
deciding for the stability of E2, we can summarize from the theorem that for small values of r are
favored for stability. �
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4. Numerical simulations

In this section, we try to see numerically the solution of the problem (2) in order to verify theoretical
results. For this purpose, we use the numerical approach for fractional differential equation [23] based
on the Lagrange interpolation approximation.

For our numerical simulations, we will use the parameters given at the Table 1.

Table 1. Parameters for the model, their descriptions, values and units.

Parameter Description Value Reference
r Logistic grown-up rate of normal cells 0.4312 [20]
β1 Multiplicative inverse of normal cells 2.99 × 10−6 [20]
ν Inhibition rate of normal cells by immune response 0.1379 [20]
γ Inhibition rate by tumor 0.9314 [20]
r1 Logistic grown-up rate of tumor 0.4426 [20]
β1 Multiplicative inverse of tumor 0.4 [20]
β2 Pace of change from normal to tumor cells 1.189 [20]
β3 Inhibition rate of tumor by immune response 0.1469 [20]
σ Source of the immune system response 0.7 [20]
δ Natural death rate of immune response 0.57 [20]
ρ Proliferation rate of immune response by normal cells 0.2710 [20]
µ Inhibition rate of immune response by normal cells 0.813 [20]
m Threshold rate by normal cells 0.813 [20]
ρ1 Proliferation rate of immune response by tumor 0.7829 [20]
µ1 Inhibition rate of immune response by tumor 0.3634 [20]
m1 Threshold rate by tumor 0.8620 [20]
α Fractionnel derivative order ∈ [0, 1]

In what follows, we give the guidelines of the principle of this method, since our problem can be
formulated as the fractional differential equation:{

DαX(t) = F (t,X(t)),
X(0) = X0.

(4)

The fundamental theorem of calculus on equation (4) give the next equation,

X(t)−X(0) =
1

Γ(α)

∫ t

0
F (s,X(s)) (t − s)α−1ds.

With uniform subdivision of a time line, for n = 0, 1, 2, . . . we pose tn = nh where h is the subdivision
step, of t ∈ {tn, tn+1}

X(tn+1)−X(tn) =
1

Γ(α)
(A1 −A0),

with A1 =
∫ tn+1

0 F (s,X(s))(tn+1 − s)α−1ds, and A0 =
∫ tn
0 F (s,X(s))(tn − s)α−1ds.

The Lagrange interpolation approximation of F (s,X(s)) function as polynomial P is

P (s) ≃ s− tn−1

tn − tn−1
F (tn,X(tn)) +

s− tn
tn−1 − tn

F (tn−1,X(tn−1)).

Corresponding to Adams method [24], we program numerically the solution of fractional system (2) to
get the graphical observations over the results.

First, we discuss the dynamic of cancer modeled by system (2), we analyzed the plots at fractional
order values α ∈ {1, 0.9, 0.8, 0.7} during 100 days. In Figures 3–5, we demonstrate the general dynamic
behavior of the normal cells, tumor cells and the immune system response when the abnormal cells
established themselves in the tissue and the cancer disease propagate as tumor cells. We can also
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Fig. 3. Numerical simulation results of the normal
cells for different fractional order values.

Fig. 4. Numerical simulation results of the tumor
cells for different fractional order values.
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Fig. 5. Numerical simulation results of the immune system
response for different fractional order values.

observe from the numerical outcomes in
Figure 3 the curves of normal cells solu-
tion converge to zero, it is done speedy
with higher α values, in Figure 4 tu-
mor cells proliferate also with the same
manner, for an ordinary time variation
(α=1), the evolution’s velocity of tumor
cells is optimal. In Figure 5 the descrip-
tion of the immune system response is
regressing naturally with the fractional
order α in a decreasing way.
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Fig. 6. Numerical simulation results of the normal
cells for different values of inhibition rate of tumor by

immune response, when α = 0.7.

Fig. 7. Numerical simulation results of the tumor
cells for different values of inhibition rate of tumor by

immune response, when α = 0.7.
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Fig. 8. Numerical simulation results of the immune system
response for different values of inhibition rate of tumor by

immune response, when α = 0.7.

The fractional derivative order α effect
is showing efficiently for high values, we
should note that for higher values of α, we
get significant results and interpretations,
which describe the long memory behavior
and the solutions converge more quickly to
the regular state. Besides this we can say
that the behavior of the system is slow when
the fractional order values decreases, so the
normal cells, tumor cells and the immune
system response reactions take a long time
to converge.

In Figures 6–8, we study the sensitivity of tumor’s inhibition rate by immune response, the sensi-
tivity analysis allows us to measure the relative change in a state variable when a parameter changes.
In our case, the positive effect of increasing β3 is well visualized at Figure 7 where tumor cells converge

Mathematical Modeling and Computing, Vol. 10, No. 2, pp. 288–298 (2023)



Fractional derivative model for tumor cells and immune system competition 297

towards lower values for higher values of β3, the curve expresses for β3 = 14 that the tumor cells attend
1.64 at day 100 and at the same time the tumor cells can get off to 1.56 for β3 = 15, to 1.46 for β3 = 16
and to 1.37 for β3 = 17, on the other side about the immune system response at Figure 8, the effect
is reverse, the immunity cells increase in time when the inhibition of tumor rate by immune response
increase, for β3 = 14 the immunity cells decrease to converge towards 1.075 and for β3 = 17 immunity
cells converge around higher value next to 1.2, we can say that the progression of the immune system
response is relative to the inhibition rate of tumor β3 and that also help to reduce the tumor. However,
Figure 6 expresses that the normal cells do not undergo much change with the variation of β3 value.

5. Conclusion

Oncolytic disease remains one of the most biologic phenomena under research, specially our mathe-
matical study can explain and show the evolution of cancer formulated with the model (2) by α-order
fractional derivatives equations which are used to have the long memory behavior of the cancer dy-
namics, we realize the existence, uniqueness and the well posedness of the solutions of the proposed
fractional system have been examined. Then we analyze the steady states named response, coexisting
and resisting stage respectively to add the numerical results in order to show that the α-order of the
fractional derivative has an effect on the steady states stability. Moreover, we performed higher α
values next to unit to analyze our results practically, which describe the long memory behavior thus
the solutions go more quickly to the converged terms.
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Модель конкуренцiї пухлинних клiтин та iмунної системи
з дробовими похiдними

Елкаф М., Аллалi К.

Лабораторiя математики, iнформатики та застосункiв, Факультет наук i технiки Мохаммедiа,
Унiверситет Хасана II Касабланки, Мохаммедiя, Марокко

Моделювання динамiки складних бiологiчних захворювань, таких як рак, все ще є
складною задачею. Отже, у нашому випадку намагаємося вивчити це, розглядаючи
систему нормальних клiтин, пухлинних клiтин та iмунну вiдповiдь як математичнi
змiннi, якi є в структурi диференцiальних рiвнянь дробового порядку та виражають
динамiку еволюцiї раку в умовах iмунiтету органiзму. Проаналiзовано стiйкiсть сфор-
мульованої системи в рiзних точках рiвноваги. Чисельне моделювання виконується
для отримання бiльш корисних i конкретних результатiв щодо варiацiй динамiки ра-
ку.

Ключовi слова: моделювання раку; iмунна вiдповiдь; дробовий порядок; стiйкiсть;
числовий розв’язок.
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