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In this paper, we construct a new conjugate gradient method for solving unconstrained
optimization problems. The proposed method satisfies the sufficient decent property irre-
spective of the line search and the global convergence was established under some suitable.
Further, the new method was used to train different sets of data via a feed forward neural
network. Results obtained show that the proposed algorithm significantly reduces the
computational time by speeding up the directional minimization with a faster convergence
rate.
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1. Introduction

This study will consider the following model

min{f(x) : x ∈ R
n}, (1)

where f is a smooth function defined by f : Rn → R whose gradient g(x) = ∇f(x) is always available [1].
Problem in the form (1) can be found in various specialized disciplines such as computer science,

machine learning, neural network, engineering, statistics and many more (see [2–7]). For simplicity,
the following abbreviations ∇(f(xk)) and f(xk) would be represented by ∇k and fk throughout this
study and ‖ ‖ denote the Euclidean norm of vectors.

In recent years, different types of numerical algorithms have been developed for solving (1), however,
the conjugate gradient (CG) method has been considered as the most preferred, because of its low
memory needs, good convergence features and simple implementation, especially when solving large-
scale problems [8, 9]. Like many optimization algorithms, CG method builds the sequence of iterate
using the following recursive computational scheme:

wk+1 = wk + σkdk, (2)

where wk and wk+1 are the present and the next iteration points, respectively, σk is the learning
rate obtained using either exact or inexact line search approaches [10]. The exact line search requires
computing σk such that the cost function is minimized along the search direction dk. This procedure
is costly and time consuming, thus, many studies considered use the inexact line search approaches
such as Armijo line search (WP), backtracking and the Standard Wolfe line search (SWP) [11]. The
SWP is computed such as σk satisfies

f(xk + αkdk) 6 f(xk) + µαk∇f(xk)Tdk,
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∇f(xk + αkdk)Tdk > σ∇f(xk)T dk, (3)

with 0 < µ < σ < 1. In some cases, a constant value, like σ ∈ [0, 1], is set as the learning rate [12].
Recently, Sun and Zhang [13] proposed a new approach to replace the line search procedure discussed
above. The outcome from the study was very encouraging. For detail discussion of this see Sun et
al. [13] and Wu [14]).

Effective line search procedure and search direction dk play important role in the convergence
analysis of the CG methods. For this reason, [15] highlighted the importance of starting the process
with the steepest descent direction, i.e. d0 = −g0 [16], otherwise, the convergence rate will be linear even
for a strongly convex quadratic function [17]. The successive directions are obtained in a predefined
sequence, defined as

dk = −∇k + βkdk−1 for k > 1. (4)

The choice of βk lead to four classes of CG method, namely, scaled CG method [3], three term CG
method [18, 19], classical CG method (two term) [11, 20] and hybrid CG method [17]. All the classes
were developed to improve either the convergence or computational efficiency of the classical CG
algorithm [5].

Discussion on the convergence of the well known classical CG method like Hestenes–Stiefel (HS) [21],
Polak–Ribiere–Polyak (PRP) [22, 23], Fletcher–Reeves (FR) [24], Liu–Storey (LS) [25], conjugate de-
scent (CD) [26], and Dai–Yuan (DY) [27] have been provided by many researchers [11, 28]. The PRP
formula is considered to be the most effective in terms of numerical computation but its convergence
under the several line search is not guaranteed [5]. This drawback led to various modifications of the
PRP parameter. See Yuan et al. [29], Andrei [28], and Zhang et al. [30] for more detailed discussions
about the PRP method.

Recently, Rivaie et al. [5] defined a new denominator for the PRP method named the RMIL method
and discussed the convergence analysis of the method under both exact line search and inexact (Strong
Wolfe) line searches. However, Dai [31] raised concern about its convergence and suggested that the
convergence can only be valid if the CG parameter is restricted as follows:

βRMIL+ =

{
gTk+1(gk+1−gk)

‖dk‖2 if gTk+1gk 6 ‖gk+1‖2,
0 otherwise.

(5)

Yousif [32] investigated this method under the Wolfe line search while Sulaiman et al., [33] presented
a new three-term direction using the above suggestion. The restriction above follows from the work of
Gilbert and Nocedal [34] on PRP method which states that if PRP method is restricted to be positive
and the learning rate is obtained by the line search strategy satisfying the sufficient descent condition:

gTk dk 6 µ‖gk‖2 µ > 0, (6)

then the method would be globally convergent [23]. Based on this result, Wei et al. [35] proposed the
WYL parameter with formula given as

βWY L =
gTk

(
gk − ‖gk‖

‖gk−1‖gk−1

)

‖gk−1‖2
. (7)

The study shows that the parameter is always positive in addition to satisfying the important property
mentioned by Gilbert and Nocedel [34]. Various modifications of (7) satisfying the descent property
based on inexact line search have been provided (see [36]). One of the recent modifications is the work
of Zabidin et al. [37] with the parameter defined as

βA1 =





‖gk‖2−µ|gTk gk−1|
m|gT

k
dk−1|+‖gk−1‖2 if ‖gk‖2 > µk|gTk gk−1|,

µk
gTk sk−1

dTk−1yk−1
otherwise,

(8)

where µ =
‖sk−1‖
‖yk−1‖ .

Based on the above trend, it is obvious that the modifications of the classical PRP CG method
are generally centred around changing the denominator or numerator. As indicated by Andrei [11,28],
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most of the modifications were defined by authors that a new denominator performs well but the
methods often consist of the previous search direction in the conjugate parameter. Kamilu et al. [12]
also construct a new denominator for the PRP coefficient which does not contain the search direction
as

βKMAR
k =

gTk (gk − gk−1)

gTk−1(gk + gk−1)
. (9)

This new parameter has been found to be efficient under exact line search [12, 19, 38]. Another three-
term CG method based on the parameter has also been developed for unconstrained optimization and
image restoration [39].

Motivated by the above trend, this paper presents an improvement of (9) and applies the modifi-
cation to solving various data set in feed forward neural network. The remaining part of this paper
is as follows: Section 2 contains the derivation process of the new conjugate parameter with detailed
description of it algorithm. A sufficient descent condition and global convergence properties of the
method are discussed in Section 3. Section 4 consists of the numerical result generated by testing the
new method on some benchmark test problems. Lastly, the method was extended to solve real-life
application problems in feed forward neural network.

2. New method and algorithm

Consider the HS [21] parameter defined as

βHS
k =

gTk (gk − gk−1)

dTk−1(gk − gk−1)
. (10)

Let the denominator for k = 1 be defined as

M = dTk−1(gk − gk−1).

Substituting the initial search direction will give

M = −gTk−1(gk − gk−1)

= gTk−1gk−1 − gTk−1gk

= −gTk−1(gk + gk−1).

Algorithm 1 KMAR + and KMAR++ methods.

Require: Initial point x0 ∈ Rn for k = 0;
Ensure: ε0 > 0;
1: Compute g(x0) set d0 = −g0, ε = ε0 and k = 0
2: Check if ‖gk‖ 6 ε then stop.
3: Compute the learning rate using (3)
4: Update the new point using (2)
5: Compute βk using (11) or (12) and update dk using (4)
6: Set k = k + 1, Go to Step 2

To modify the KMAR parameter, so as there is sufficient decrease in the function value, a number
of iteration and CPU time, and, above all, to make the parameter useful in the neural network, we
present the following two methods based on KMAR,

βKMAR+
=





gTk (gk−gk−1)

gTk−1(gk+gk−1)
if ‖gk‖2 > µk|gTk gk−1|,

0 otherwise,
(11)

βKMAR++
=





gTk

(

gk− ‖gk‖

‖gk−1‖
gk−1

)

gTk−1(gk+gk−1)
if ‖gk‖2 > µk|gTk gk−1|,

0 otherwise.

(12)
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The new denominator employed in the new method is expected to play a significant role in the con-
vergence analysis. Note, this alteration differentiates the new method with classical PRP and WYL
method. Next, the algorithm of the new method called Algorithm 1 is presented below. The order of
the Algorithm was adapted from the work of Andrei [28] and Riviea et al. [5].

3. Convergence result

We begin this section by showing that the new parameter satisfies the sufficient descent property.
From [7], it follows that KMAR parameter will reduce to the following:

0 6 βKMAR
k 6

‖gk‖2
‖gk−1‖2

, (13)

which would play an important role in the convergence analysis of the proposed method.
For a new CG method to be considered efficient, it must be able to possess the sufficient descent

property (6) and converge under certain conditions [15]. The proof presented in this section will be
supported by numerical results generated using different test functions in subsequent sections. The
convergence discussion will begin with the following assumption on the objective function.

Lemma 1. Let the sequence gn and dn be generated by the KMAR+ and step length by the Strong
Wolfe line search, then

dTk gk < −θ‖gk‖2, ∀ k > 0. (14)

Proof. For k = 0, we have

d0 = −g0,
gT0 d0 = −gT0 g0

= −‖g20‖.
For k > 1, we have from (4), (11), and (13)

dk = −gk + βKMAR
k dk−1

= −gk +
‖gk‖2
‖gk−1‖2

dk−1.

Multiply both sides by gTk

dTk gk = −‖gk‖2 +
‖gk‖2
‖gk−1‖2

gTk dk−1. (15)

Factor ‖gk‖2 in RHS

dTk gk = −
[
1− ‖gk‖‖dk−1‖

‖gk−1‖2
]
‖gk‖2, (16)

hence (14) holds where θ =
[
1− δw

δ

]
. �

Assumptions A

1. The function f is bounded below on the level set Y = {x ∈ R
n : f(x) 6 f(x0)}, where x− 0 is the

starting guess.
2. f is smooth in some neighbourhood N of Y and its gradient g(x) = ∇f(x) is Lipschitz continuous,

i.e., there exists a constant H > 0 such that ‖g(x) − g(y)‖ 6 H‖x− y‖ ∀x, y ∈ N .

Lemma 2. Let Assumption A be true, using the new parameter, define in Algorithm A, where dk is
a descent direction and the step length αk satisfying the standard Wolfe condition, then

∞∑

k=0

∇f(xk)Tdk
‖dk‖2

< +∞. (17)
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Lemma 3. Let Assumption A hold and the parameter KMAR+ generate the sequence
{xk, dk, αk, gk}. Then there exists a constant θ > 0 such that

αk > θ ∀k > 1. (18)

Proof. The Lipschitz condition and first inequalities of standard Wolfe line search provide us with
the following

αkH > (gk − gk+1)Tdk−1

> −(1− σ)gTk dk

> (1− σ)‖gk‖2,

αk >
1− σ
H

‖gk‖2
‖dk‖2

>
1− σ
Hγ

.

Let λ ∈
(
0, 1−σ

Hγ

)
. �

Theorem 1. Suppose Assumption A is true, consider Algorithm A with the step length satisfying
the standard Wolfe condition, then

lim
k→∞

inf ‖gk‖2 = 0. (19)

Proof. If k = 0 then the statement holds. Suppose that (18) is not true, then there exists a constant
ε > 0 such that

‖gk‖ > ε ∀k. (20)

From (8), we have

dk = −gk + βkdk−1

6 ‖gk‖+
‖gk‖2
‖gk−1‖2

dk−1,

‖dk‖2 6 ‖gk‖2 +
‖gk‖4
‖gk−1‖4

‖dk−1‖2,

‖dk‖2
‖gk‖4

=
1

‖gk‖2
+
‖dk−1‖2
‖gk−1‖4

6

k−1∑

n=0

1

‖gk‖2

6
k

ε2
, (21)

therefore, (18) implies
∑

k>1

‖gk‖4
‖dk‖2

> ε2
∑

k>1

1

k
= +∞,

which contradicts Lemma 2, hence
lim
k→∞

inf ‖gk‖ = 0,

which completes the convergence proof. �

4. Numerical results

The performance of KMAR+ and KMAR++ was investigated using the standard test function from
Andrei [11], with various initial points ranging from 2 to 10000. A comparison is made with βRMIL+

and βAMRI based on a number of iterations and CPU time.
A personal computer Intel Core i3-3217u 4GB DDR3 Memory 500 GB HDD was used to run each

algorithm after being coded on Matlab R2015b software. ‖gk‖ 6 ε is set as the stopping condition
or the iteration would be terminated when the number of iteration exceeds 1000. A summary of the
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performance based on a number of iterations and CPU time is presented in Tables 1 and 2 respectively.
To further analyse the results, we employed a well-known performance profile tool introduced by Dolan
and More [40]. Details of the profile can be obtained in [5]. Figure 1 shows the performance in terms
of the number of iterations and CPU time.

Table 1. Performance Analysis Based On the Number of Iterations.

CG Method RMIL+ KMAR+ KMAR++ AMRI+
Number of Success 17 79 51 15
Percentage of Success 0.1604 0.7453 0.4811 0.1415
Number of Failure 24 0 0 24
Percentage of Failure 0.7736 1 1 0.7736

Table 2. Performance Analysis Based On the CPU Time.

CG Method RMIL+ KMAR+ KMAR++ AMRI+
Number of Success 0 32 59 17
Percentage of Success 0 0.3019 0.5566 0.1604
Number of Failure 24 0 0 24
Percentage of Failure 0.7736 1 1 0.7736
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Fig. 1. Performance profile outputs for RMIL+, KMAR+, KMAR++ and AMRI+ based on NOI (left) and
CPU time (right).

5. Application in neural network

Artificial Intelligence (AI) was designed to imitate the human brain [41]. There are various branches
of AI, popular among them is artificial neural network (ANN) [15]. This class is used in classifying,
optimizing, or prediction of a given set of data/information to give an appropriate results or output.
Training and testing of the data are the main stages in ANN. It is carried out in order to give the
room for the ANN to understand the pattern of data even when data set is incomplete [42, 43]

In the literature, various learning methods have been designed for training set of data, function
minimization, and pattern recognition. A lot of these methods are based on the gradient descent
method [42, 43]. One of the shortfall of this method is the bad convergence rate and poor computa-
tion results. To address this shortfall different Quasi-Newton methods have been employed and the
outcomes is remarkable [41,44]. However, this procedure requires the use of the inverse of the Hessian
matrix or its approximation, which requires a lot of storage and, therefore, cannot handle large-scale
data set.

To address this shortfall, this work applied a new CG method to train the set of data. The choice
of CG method due to the fact that it does not require any Hessian evaluation or its approximation
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during the iteration process. Also, the CG method can handle large-scale of data set. In what follows,
we present a CG based NN algorithm based on the ideas of [41–43].

1. The given vector u0 is transformed into the output vector uk by solving the following equation

uli(k) = f(xli) = f

( nl−1∑

j=1

vliju
l−1
j + bli

)
.

2. The error that is the difference between the desired output and actual output is obtained using

δLi (k) = f ′(xLi )(di − uLi ).

3. Based on the following formula, we propagate the error signal at the output units backwards through
the whole network

δl−1
j (k) = f ′(xl−1

j )

nl∑

i=1

δliv
l
ij.

4. Learning update using CG search direction based on Algorithm 1.

To illustrate the performance of the proposed methods, their algorithms were coded in Matlab
program. The performance was compared with the classical training function like traincgf (FR) and
traincgp (PR) using the default parameters throughout.

6. Experiment and results

1. For the first problem, the study considers the Chemical sensor data set from the neural tool box.
The network architecture for this problem contains the one hidden layer with 10 neurons and a
single output layer. All the parameters use the default values as mentioned in the NN tool and a
maximum of 1000 iterations is set as the termination condition. For 100 simulation, the performance
based on the min number of iterations (epochs), maximum number of iteration (epochs) and the
percentage of the success of the algorithms are reported in Table 3. Figure 2 presents the regression
analysis of each of the training function for KMAR+ and FR methods while Figure 3 illustrates
the training performance. Also, Figure 4 presents the regression analysis and training performance
of each of the training function for PR method.

Table 3. Simulation Performance for Chemical Sensor Data Set.

Training Function Min Epoch Max Epoch Succ
FR 17 97 100 %
PR 16 76 100 %
New 11 65 100 %

2. The second problem we consider is the Body fat percentage data set from a neural network tool
box. The network architecture for this problem contains the one hidden layer with 50 neurons
and a single output layer. All the parameters use the default values as mentioned in the NN
tool and a maximum of 1000 iterations is set as the termination condition. For 100 simulations,
the performance based on the min number of iteration (epochs), maximum number of iteration
(epochs) and the percentage of the success of the algorithms are reported in Table 4. Figures 5 - 7
demonstrate the training and validation performance of each of the training function for KMAR+,
FR, and PR methods, respectively. Based on these results, it is obvious that the proposed method
is efficient and can further find applications in other fields.

Table 4. Simulation Performance for Body Fat Percentage Data Set.

Training Function Min Epoch Max Epoch Succ
FR 19 87 100 %
PR 18 46 100 %
New 10 41 100 %
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Fig. 2. Regression Analysis for KMAR+ method (left) and FR method (right).
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Mathematical Modeling and Computing, Vol. 10, No. 2, pp. 326–337 (2023)



334 Kamilu K., Sulaiman M. I., Muhammad A. L., Mohamad A. W., Mamat M.

13 Epochs

0 2 4 6 8 10 12

M
e
a
n

 S
q

u
a
re

d
 E

rr
o

r 
 (

m
s
e
)

100

101

102

103

104

105
Best Validation Performance is 22.5359 at epoch 7

Train
Validation
Test
Best gr

ad
ie

nt

100

105
Gradient = 48.847, at epoch 13

va
l f

ai
l

0

2

4

6
Validation Checks = 6, at epoch 13

13 Epochs
0 2 4 6 8 10 12

a

10-2

100

102
Step Size = 0.031769, at epoch 13

Fig. 5. Validation Performance (left) and Training Performance (right) of KMAR+ method.

20 Epochs

0 2 4 6 8 10 12 14 16 18 20

M
e
a
n

 S
q

u
a
re

d
 E

rr
o

r 
 (

m
s
e
)

100

101

102

103
Best Validation Performance is 23.1058 at epoch 14

Train
Validation
Test
Best gr

ad
ie

nt

101

102

103
Gradient = 34.7064, at epoch 20

va
l f

ai
l

0

2

4

6
Validation Checks = 6, at epoch 20

20 Epochs
0 2 4 6 8 10 12 14 16 18 20

a

10-4

10-2

100
Step Size = 0.025431, at epoch 20

Fig. 6. Validation Performance (left) and Training Performance (right) of FR method.

19 Epochs

0 2 4 6 8 10 12 14 16 18

M
e
a
n

 S
q

u
a
re

d
 E

rr
o

r 
 (

m
s
e
)

100

101

102

103

104
Best Validation Performance is 19.1534 at epoch 13

Train
Validation
Test
Best gr

ad
ie

nt

100

102

104
Gradient = 14.5572, at epoch 19

va
l f

ai
l

0

2

4

6
Validation Checks = 6, at epoch 19

19 Epochs
0 2 4 6 8 10 12 14 16 18

a

10-2

10-1

100
Step Size = 0.16067, at epoch 19

Fig. 7. Validation Performance (left) and Training Performance (right) of PR method.
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7. Conclusion

In this paper, a modified KMAR conjugate parameter is proposed for solving unconstrained opti-
mization problems. The new method is an improvement of the classical CG method and possess the
sufficient descent property irrespective of the line search. Further, the global convergence of the method
is discussed under suitable conditions. Results from numerical computation show that the new method
is promising. In addition, the method is extended on feed forward neural network and the outcome
has shown a reduction in a number of iterations and CPU time when compared to Classical training
function of FR and PR.
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Оцiнка продуктивностi нового методу спряженого градiєнта
для навчання нейронної мережi з прямим зв’язком
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У цiй статтi створено новий метод спряженого градiєнта для розв’язання задач
необмеженої оптимiзацiї. Запропонований метод задовольняє властивiсть достатньо-
го спуску незалежно вiд лiнiйного пошуку, i глобальна збiжнiсть була встановлена за
деяких умов. Крiм того, новий метод використовувався для навчання рiзного набору
даних через нейронну мережу з прямим зв’язком. Отриманi результати показують,
що запропонований алгоритм значно скорочує час обчислення за рахунок прискорен-
ня спрямованої мiнiмiзацiї з вищою швидкiстю збiжностi.

Ключовi слова: метод спряженого градiєнта; нейронна мережа; лiнiйний пошук;
аналiз збiжностi.
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