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In this paper we propose a new mathematical model for joint Blind Deconvolution and
Inpainting. The main objective is the treatment of blurred images with missing parts,
through the game theory framework, in particular, a Nash game, we define two players:
Player 1 handles the image intensity while Player 2, operates on the blur kernel. The two
engage in a game until the equilibrium is reached. Finally, we provide some numerical
examples: we compare the efficiency of our proposed approach to other existing methods
in the literature that deals with Blind Deconvolution and Inpainting separately.
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1. Introduction

Image inpainting and blind deconvolution have long been key image processing tasks. Both of these
processes improve the appearance of an image, hence making it easy for human interpretation. Their
real world applications include: Medical Imaging, Security Surveillance, Remote Astrophotography
and many others. Blind deconvolution is a process of eliminating the blur of an image in order to
make it visually pleasing when no information about the blur is known. In other words, this classical
image restoration technique attempts at recovering an ideal clean image from a corrupted blurred one,
without a previous knowledge of the blur kernel. It involves also estimating the blur kernel or the
PSF (Point Spread Function) which is a small matrix linked with the image through the convolution
operator. One of the most known types of blur are gaussian blur and motion blur, it is usually caused
by the subject movement, lack of focus, camera shake or Optical aberrations, etc. The mathematical
process of image corruption is usually written as:

c = p ∗ i+ n. (1)

Here, c is a corrupted image: blurred and noisy, i.e. the input image or the available information. p
is the blur kernel, PSF: a small matrix, note that the different size of the kernel produce a different
effect, it is required that p have a smaller size than the image, the PSF is our first unknown. ∗ is
the convolution operator. i is the ideal image: sharp and clean, i.e. the output image or the second
unknown information. n is an additive noise to the blurred image.

In order to get the ideal image i we have to reverse the corruption process. That, however, is not
as simple as it seems. Blind deconvolution is notorious for being an ill posed problem, namely, it is an
inverse problem: we have a shortage of information due to the unknown point spread function, leading
to a non unique solution or even a infinite number of images that satisfy the equation (1). To handle
this problem we have to use some kind of a regularization technique, i.e. introducing an additional term.
Each regularization method opt for a different regularization term. The Lp norm is a very popular
choice for a regularization term in the literature see [1–7]. You and Kaveh [8] use another regularization
technique the Perona and Mallik diffusion [9] also called the anisotropic diffusion. While Chan and
Wong [10] uses the Total variation (TV) regularization method which has proved its effectiveness for
retrieving the edges of an image. Also this method performs very well when dealing with motion blur
or the out of focus blur [11].
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Image inpainting is the process of filling the missing portions of an image in order to obtain a
complete realistic, good looking image. Particularly, reconstructing cracks or scratches, removing
texts, or a logo in an image. The “Inpainting” term was first used in the image processing field in [12].
It is inspired by a very old technique performed by professionals to repair damaged photographs or
paintings with defects such as spots, scratches, dust and cracks in order to maintain the best possible
quality. There is a wide variety of literature papers that handle the problem of Image Inpainting such
as [13–19].

Since the aim of our paper is to recover blurred images with missing data, the model we are
interested in {

c = p ∗ i+ n on Φ,

c = unknown on Ψ.
(2)

Where Φ is the domain of the image, generally a rectangle and Ψ ⊂ Φ is the area of the image that
need to be inpainted; i.e. the missing data.

We briefly mention in the next section some of the related relevant works, that we are going to
compare with our approach.

2. Inpainting and blind deconvolution models

2.1. Total variation blind deconvolution

The classical formula of the minimization energy of Chan and Wong [10] is

ε(i, p) =
1

2

∫

Φ
(p ∗ i− c)2dx+ α1

∫

Φ
|∇i| dx+ α2

∫

Φ
|∇p| dx, (3)

α1 and α2 are two positive constants that control the quantity of TV regularization.
The TV norm is defined as the following

TV(u) = sup

{∫

Φ
udiv η | η ∈ C1

0 and |η|L∞(Φ) 6 1

}
.

For other TV blind deconvolution methods, namely game theory based ones we refer to [20–22].

2.2. Image inpainting

In this paper we are mainly concerned with the Inpainting models based on partial differential equa-
tions.

Mumford–Shah model. This model [15] aims at decomposing the image into two parts: the first
is its piece wise smooth part i and the second is its edge set γ. The H1 norm is used to measure i
while γ is measured by its length or, in general, by H1(γ) the one dimensional Hausdorff dimension.

Let Φ ⊂ R2 be a rectangular image domain, and c the deteriorated image, where inpainting region
is Ψ ⊂ Φ. Let γ an edge set be a relatively closed subset of Φ with finite one dimensional Hausdorff
measure. In this model we look for a couple (i, γ) that minimizes

J(i, γ) =
1

2

∫

Φ\Ψ
(c− i)2dx+ ε(i, γ).

Where,

ε(i, γ) =
α1

2

∫

Φ\γ
|∇i|2dx+ α2H

1(γ).

With α1 and α2 are non negative constants and H1(γ) is the one dimensional Hausdorff measure of γ.
Transport model. This method, introduced by Bertalmio et al. [12] is based on the following

PDE

it = ∇⊥i · ∇∆i in Ψ, i = c on ∂Ψ,

∇⊥ is transpose of the gradient (−∂y, ∂x).
The model main idea is to spread the grey level values of the image and the gradient direction

(linear geometry) into the damaged area to be repaired by solving the previous equation.
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AMLE model (Absolutely minimizing Lipschitz extensions). In this model [18], the com-
plete image is obtained as steady-state solution of the following equation

it = D2i

( ∇i
|∇i| ,

∇i
|∇i|

)
+ λ1Φ\Ψ(c− i)

=
∇it
|∇i|D

2i
∇i
|∇i| + λ1Φ\Ψ(c− i).

Where Φ ⊂ R2 is the rectangular image domain, c is the damaged image, where inpainting region is
Ψ ⊂ Φ, i the ideal image and λ is the fidelity coefficient.

3. Joint blind deconvolution and image inpainting game–theoretic approach

Chan, Yip and Park [23] proved that solving the Deblurring and Inpainting problems separately could
lead to poor results, and that two processes are inherently coupled. Lagendijk and Biemond [24] showed
that errors in one task would affect the other one and would lead to more and more inaccuracy, causing
some serious ringing effects. Therefore we consider two functions defined by

εp(i, p) =
1

2
‖p ∗ i− c‖2 +

∫

Dp

(1− λ(x)) |∇p| dx,

εi(i, p) =
1

2
‖p ∗ i− c‖2 +

∫

Do∪Dm

λ(x) |∇i| dx.

Here, Do is the observed region of the image, Dm the damaged part of the image that needs to
be inpainted and Dp the domain of definition of the PSF. λ is defined by Chen and Wunderli [25]

λ(x) = 1
1+α|∇Gσ∗c|2 , where Gσ(x) = 1

2πσ2
exp

(
− |x|2

2σ2

)
is a gaussian filter.

Next we formulate the coupled tasks Inpainting and Blind Deconvolution as a static Nash game as
follows: our first player is responsible for the image intensity, his goal is to minimize his own functional
εi(i, p) when picking his strategies i. The other one is in control of the PSF function or the blur kernel,
he chooses his strategies p while aspiring to minimize εp(i, p). Two individuals act concurrently until
they reach an equilibrium: which is a pair of an ideal image: (deblurred, inpainted) and a estimated
PSF (i∗, p∗) that minimizes both the functionals εp and εi such that i∗ solves mini,p εi(i, p

∗) and p∗

solves mini,p εp(i
∗, p). To compute Nash equilibrium numerically we proceed as the following.

Algorithm and implementation

We carry an alternate minimization approach: we update one variable while fixing the other one. We
seek our Nash equilibrium following the next steps:

— we select the initial pair P0 = (i0, p0): we assign i0 as Blurred damaged image c;
— we fix the variable pn and then calculate in+1 by min

i
εi(i, p

n);

— we fix the variable in and then calculate pn+1 by min
p
εp(i

n, p);

— let Pn+1 = (in+1, pn+1), next compute Pn+2 and redo until convergence.

The simplest way to realize the algorithm is to write the Euler–Lagrange equations of mini,p εi(i, p)
and mini,p εp(i, p)

1Doi(−x,−y) ∗ (p ∗ i− c)− λ(x)∇ ·
∇i
|∇i| = 0 in Do ∪Dm, (4)

∂i

∂n
= 0 on ∂(Do ∪Dm),

p(−x,−y) ∗ (i ∗ p− c)− (1− λ(x))∇ · ∇p|∇p| = 0 in Dp (5)

∂p

∂n
= 0 on ∂Dp.

Then we use steepest descent algorithm to solve the above two equations.
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Algorithm 1 The proposed algorithm.

1: initialization: P0 = (i0, p0). Set n = 0;
2: repeat
3: in+1 = argmin

i

εi(i, p
n)

4: pn+1 = argmin
p

εp(i
n, p)

5: Pn+1 = (in+1, pn+1)
6: n = n+ 1
7: until Pn converges;

4. Simulation results

We implement our joint approach in Matlab and test it on several images. We also implement the
AMLE, Mumford–Shah (MS) and Transport (TR) Impainting methods to do the Inpainting task
combined with the TV blind deconvolution method (TVBD) for the Deblurring task. We compare
the different results objectively using the image quality indicators such as structural similarity index
measure: SSIM [26], peak signal to noise ratio: PSNR, and RMSE: root mean square error. These
image quality indicators are defined by

RMSE =

√∑n1
i1=1

∑n2
i2=1 |A(i1, i2)−O(i1, i2)|2

n1 × n2
,

PSNR = 20 log10

(
255

RMSE

)
,

SSIM(y, z) =
(2µyµz + C1)(2σyz + C2)

(µ2yµ
2
z + C1)(σ2y + σ2z + C2)

.

Where n1 and n2 are the size of the image, i1 and i2 are the pixel positions in the image, A(i1, i2) is
the approximated image and O(i1, i2) is the original image. µy (resp. µz) is the pixel sample mean of
y (resp. z); σ2y (resp. σ2z) is the variance of y (resp. of z); σyz is the covariance of y and z; C1 and C2

are two small positive constants that prevents numerical instability [27].
We consider three images as shown in Figures 1–4. The comparison results are shown in Tables 1–3.

Table 1. PSNR comparison.

Image AMLE+TVBD M-S+TVBD Transport+TVBD Proposed Joint
Lena 28.91 29.89 29.16 33.09
Turtle 31.88 32.19 32.07 35.27
Cameraman 21.5 24.39 24.18 29.45
Lifting body 32.19 32.54 32.23 36.68
Onion 29.69 30.07 29.64 33.6
Barbara 1 22.36 22.69 22.00 24.10
Barbara 2 22.53 22.79 22.03 24.56

Table 2. SSIM comparison.

Image AMLE+TVBD M-S+TVBD Transport+TVBD Proposed Joint
Lena 0.836 0.849 0.832 0.876
Turtle 0.88 0.889 0.884 0.922
Cameraman 0.648 0.766 0.735 0.846
Lifting body 0.883 0.889 0.883 0.906
Onion 0.866 0.877 0.862 0.907
Barbara 1 0.623 0.647 0.632 0.681
Barbara 2 0.635 0.652 0.612 0.699
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a (Original (25.92)) b (Corrupted) c (AMLE+TVBD(28.91))

d (MS+TVBD(29.81)) e (TR+TVBD(29.16)) f (Proposed(33.09))

Fig. 1. Numerical results of Lena image test.

a (Original) b (Corrupted) c (AMLE+TVBD(21.5))

d (MS+TVBD(24.39)) e (TR+TVBD(24.18)) f (Proposed(29.45))

Fig. 2. Numerical results of cameraman image test.
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a (Original) b (Corrupted) c (AMLE+TVBD(32.19))

d (MS+TVBD(32.54)) e (TR+TVBD(32.23)) f (Proposed(36.68))

Fig. 3. Numerical results of Lifting Body image test.

a (Original) b (Corrupted) c (AMLE+TVBD(31.88))

d (MS+TVBD(32.19)) e (TR+TVBD(32.07)) f (Proposed(35.27))

Fig. 4. Numerical results of turtle image test.

Mathematical Modeling and Computing, Vol. 10, No. 3, pp. 674–681 (2023)



680 Nasr N., Moussaid N., Gouasnouane O.

Table 3. RMSE comparison.

Image AMLE+TVBD M-S+TVBD Transport+TVBD Proposed Joint
Lena 1.28E-03 1.02E-03 1.21E-0.3 4.90E-04
Turtle 6.47E-04 6.03E-04 6.20E-04 2.97E-04
Cameraman 7.07E-03 3.63E-03 3.81E-03 1.1E-03
Lifting body 6.04E-04 5.57E-04 5.98E-04 2.14E-04
Onion 1.07E-03 9.82E-04 1.08E-03 4.36E-04
Barbara 1 5.80E-03 5.30E-03 6.30E-03 3.88E-03
Barbara 2 5.57E-03 5.25E-03 6.26E-03 3.49E-03

5. Discussion and conclusion

In this paper, we propose a joint Deblurring and Inpaiting method inspired by game theory, in particular
the Nash game. Using different image quality metrics such as RMSE, PSNR and SSIM, we compare
our approach to three classical inpainting methods: the AMLE method, the Transport method and the
Mumford–Shah approach combined with the TV Blind deconvolution method. Results tables shows
that our proposed joint method gives the best results in terms of PSNR, SSIM and RMSE in all tests
proving the superior performance of a joint approach over a separate one. Also the Barbara results
show that our approach along with the other ones fail at producing texture in image.
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Пiдхiд теорiї iгор для спiльної слiпої
деконволюцiї та розфарбовування

Наср Н., Муссаїд Н., Гуаснуан О.

LMCSA, FSTM, Унiверситет Хасана II Касабланки,
Мохаммедiя, пошт. скр. 146, Марокко

У статтi пропонується нова математична модель для спiльного використання слiпої
деконволюцiї та розфарбовування. Основною метою є обробка розмитих зображень з
вiдсутнiми частинами за допомогою теорiї iгор, зокрема, гри Неша; визначено двох
гравцiв: гравець 1 керує iнтенсивнiстю зображення в той час як гравець 2 працює з
ядром розмиття. Вони грають до тих пiр, поки не буде досягнута рiвновага. Нарештi,
наведено деякi числовi приклади: порiвнюємо ефективнiсть запропонованого нами
пiдходу з iншими iснуючими в лiтературi методами, якi розглядають слiпу деконво-
люцiю та розфарбовування окремо.

Ключовi слова: слiпа деконволюцiя; розфарбування; теорiя iгор.

Mathematical Modeling and Computing, Vol. 10, No. 3, pp. 674–681 (2023)




