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Simulated annealing algorithm is one of the most popular metaheuristics that has been
successfully applied to many optimization problems. The main advantage of SA is its
ability to escape from local optima by allowing hill-climbing moves and exploring new
solutions at the beginning of the search process. One of its drawbacks is its slow conver-
gence, requiring high computational time with a good set of parameter values to find a
reasonable solution. In this work, a new improved SA is proposed to solve the well-known
travelling salesman problem. In order to improve SA performance, a population-based
improvement procedure is incorporated after the acceptance phase of SA, allowing the al-
gorithm to take advantage of the social behavior of some solutions from the search space.
Numerical results were carried out using known TSP instances from TSPLIB and prelim-
inary results show that the proposed algorithm outperforms in terms of solution quality,
the other comparison algorithms.

Keywords: simulated annealing; travelling salesman problem; metaheuristics.
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1. Introduction

Metaheuristics are approximate methods designed to solve complex optimization problems. Some of
these methods imitate certain strategies or metaphors from nature. Their goal is to provide a good
solution in a polynomial time for problems arising in science and engineering.

The advantage of metaheuristic methods is that they don’t depend on the characteristics of the
problem being optimized. The disadvantage is the number of parameters that should be fine-tuned
to obtain good approximate solutions. We can classify those methods as single-individual methods
and population-based methods. Single-based methods start with and improve a single solution along
iterations, like Tabu Search [1], and Simulated Annealing (SA) [2]. While population-based methods
require the use of multiple candidate solutions rather than one. Particles Swarm Optimization (PSO) [3]
is a famous example of this type of method.

In this paper, we introduce an improved simulated annealing algorithm we call NISA, where, we
incorporate a population-based mechanism, to increase the diversification and enhance intensification
in the algorithm. The robustness and efficiency of NISA method are tested on 12 instances from
TSPLIB95. Therefore, the paper is organized as follows. Related work is presented in Section 2.
Traveling salesman problem is presented in Section 3. The standard algorithm of SA is described in
Section 4. Our New Improved Simulated Annealing (NISA) is introduced in Section 5, followed by the
numerical results in Section 6, and finally the conclusion in Section 7.

2. Related work

The simulated annealing algorithm SA is a stochastic search algorithm, proposed by Kirkpatrick et
al. [2]. Tts development originates from an analogy with metallurgical annealing process and its power
remains in its ability to escape from local optimums by occasionally allowing uphill moves.

Although SA is a classical method, it still grabs researchers’ attention by its simplicity and its effec-
tiveness in avoiding local optima traps. It was first designed to solve discrete optimization problems,
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then it was adapted to be used in the context of continuous optimization also. Discrete optimization
problems define optimization problems where the decision variable is discrete. Examples of this type
of optimization would be the Travelling salesman Problem (TSP) [7], Vehicle routing problem [19],
assignment problem [18], and many more.

TSP was first presented by Dantzig in 1959 [4]. TSP belongs to a class of problems known as being
NP-complete [5], and represent a good benchmark to analyze algorithms and validate newly proposed
ones, thus it still grabs the researchers’ attention and is still an interesting research topic. The state
of the art around this problem is so wide, that we will focus on recent advances using new variants or
hybridization of SA to solve the TSP.

Zhong et al. [6] is among the works that used metropolis criterion inspired by SA, to improve and
obtain a better balance between intensification and diversification in their proposed discrete pigeon-
inspired optimization algorithm to solve large-scale TSP Metropolis. Euzugwu et al. [7] proposed a
hybrid metaheuristic for solving TSP based on SA and symbiotic Organisms Search method known
as an effective new metaheuristic search algorithm. SA was also used to enhance the diversification
of the population of a Gene Expression Programming method in the work of Zhou et al. [8]. In
the work of Zhong et al., [9], a discrete comprehensive particle swarm optimization with metropolis
criterion was proposed aiming to enhance its ability to escape from premature convergence. Geng et
al. [10] combined the application of simulated annealing with a greedy search algorithm to speed up its
convergence rate. Results from all these works accessed the efficiency of SA mechanisms in increasing
other metaheuristics performance.

Another category of research has focused on studying SA and proposed new strategies to improve
the method. In the paper [11] an evolutionary SA is developed for the TSP and compared with the
Tabu Search method. Another interesting work represented in [12], the authors introduced a list-based
simulated annealing (LBSA) algorithm to solve TSP, the objective is to simplify cooling schedule
parameters setting, using an adaptive list-based schedule to control the decrease in temperature. The
results showed that LBSA is a robust and highly competitive method. Johannes J. Schneider et al. [13]
propose a new simplified approach to derive adaptive cooling schedule based on retained data in
memory. Another interesting work is the paper of Roberto da Silva et al. [14] that studies the effects
of the statistics on the coordinates of the points when they apply a standard simulated annealing
algorithm to the traveling salesman problem.

3. Traveling salesman problem

Traveling salesman problem can simply be described as the problem of finding the shortest path possible
in order to visit N cities only once and returning to the starting point at the end. The objective is to
find a route that minimizes the total travelled distance.

Let G = (V, E) a complete graph, where C is the set of vertices representing the cities to be visited
and F = (¢, ¢j),¢i,¢j € C,i # j is the set of edges that links the cities. Let d;; be the cost associated
to each edge. In this paper, the symmetric TSP is considered, i.e. that the cost d;; = dj; for all
instances of the problem. Thus the problem can be mathematically formulated as follows:

N N
minimize f(X) = Z Zdijxij (1)
X i=1 j=1
i#]
N
subject to inj =1, Vje{l,...,N}, (2)
j=1
i#]
N
d wy=1, Vie{l,...,N}, (3)
i=1
i#]

Mathematical Modeling and Computing, Vol. 10, No. 3, pp. 764-771 (2023)



766 Adil N., Lakhbab H.

> mi<IS] -1, VSCV. (4)
1,j€S
Where z;; € {0,1} is the decision variable and takes 1 if the edge (4,7) is used in the solution or 0
otherwise. In addition, the objective function is represented in Expression (1). Expressions (2) and
(3) ensure that each vertex must be visited once and only once. Lastly, (4) guaranties the absence of
sub-tours.

4. Simulated annealing for TSP

As seen in the previous section, simulated annealing algorithm SA is a simple and effective method
widely used to enhance other metaheuristics performance. SA begins with a single solution from the
search space and an initial temperature, then it explores both good and bad neighboring solutions
until a predefined stopping criterion is met. The steps of SA for travelling salesman problem can be
described as follows.

Initialization step. The initialization step of SA consists of getting an initial set to start the
algorithm with. The set includes the starting solution xg that can be generated randomly or using one
of the known constructive methods for the TSP, the initial temperature Tiax, the minimum permissible
temperature Th;, and the stopping criterion. The fitness function f must also be defined. In this work,
the initial solution was generated randomly and the fitness function in our case is the total travelled
distance.

Generate new neighbouring solution. In this step, the process of SA explores new neighbours of
the current solution Zcuyrrent- The definition of a neighbouring solution or a neighbourhood of solution
is always a difficult task and problem specific. In the case of TSP, many operators can be used. As
the improvement we propose later is independent of the choice of such operators, we decided to adopt
the 2-opt operator in our work, a simple yet effective operator to generate a new tour from the current
one. The general idea of 2-opt is that two random edges in the current tour are replaced by two new
edges as long as the result is a tour better than the previous one. In the case of SA, recall that we need
some uphill moves, and thus our 2-opt should be able to produce both improving and non-improving
solutions for the process to work correctly. For that, using the current Temperature 7' (updated
during the process of SA), we introduced metropolis criterion (explained in step 3) in 2-opt, so that
the replacement of two random edges can be done occasionally even if the length of the resulting tour
is higher than the previous tour. That can be called 2-opt-metropolis to avoid confusion.

Acceptance criteria. After the step 2, the next step is to decide whether the new solution is to
replace the current one in the search process or not. This step is known as the acceptance step, and it
is based on the current temperature, and the fitness of the solutions. We can distinguish two cases:

— If the fitness of the new solution is better f(@new) < f(Zcurrent), then this one becomes the new
current one.

— Otherwise, the solution can be accepted with a probability MC. This probability is known as
metropolis criterion and is computed with the formula:

[ (@new) — f(ZEcurront)) ‘

T

Metropolis criterion is what allows the uphill moves, to avoid local optima and increase the explo-
ration of the search space.

MC = exp (—

Temperature update. The temperature is an important parameter in the SA process. The per-
formance of the algorithm is highly influenced by the cooling schedule. The cooling schedule is the
strategy used to decrease the current temperature 7" along iterations. If the cooling process is too fast,
SA would not be given enough time to explore the solution space while if it is too high, it can be com-
putationally expensive. Therefore, a good temperature update equation is crucial to have satisfying
results. We used a monotonically decreasing formula that can be defined as follows:

T = Tmax - [(Tmax - Tmin) * k]/Nmax- (5)
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With k is the current iteration and Np.x is the maximum number of iterations for SA process to stop.

Stopping criterion. The stopping criterion in algorithms can be defined in many ways and often
depends on the decision-makers choice. The algorithm can stop if it reaches a maximum number of
function evaluations F Ey,.x or a predefined maximum number of iterations Ny,.x or if the temperature
got to Tiin. Finally, SA can be summarized in Algorithm 1.

Algorithm 1 SA pseudo-code

Require: initial temperature Ty, minimum temperature Th,n, maximum number of iterations Ny ax;
Ensure: Randomly generate initial solution zp; Evaluate fitness for initial solution f(xg);
1: set xpest < xo; T + To;

2: repeat

3:  Generate new solutions ey using 2-opt-metropolis;
4:  compute Af = f(Znew) — f(x0);

5. if Af <0 then

6: Accept new solution;

7:  if random(0,1] < exp (—Af/T) then

8: Accept new solution;

9:  Update temperature T using Eq. (5);

10: Update Thest;
11: until termination criterion reached.

5. Proposed improved method NISA

The improvement procedure is inspired by population-based algorithms, it can be seen as a local search
component developed to enhance SA.

After the acceptance step in SA, and with a probability p, a population of solutions RPop is
randomly generated from the search space. Then the new current solution of SA zg4 is appended as
a member into RPop. Next, the members of RPop evolve toward the best element in the population
(it can be different from the best-found solution of SA). So each member of the population represents
a solution. The member i at iteration ¢ is provided with a velocity v} and a position x!. The velocity
and solution’s update formulas are defined as in the Improved Bat Algorithm from [15] and are given
as follows. The velocity was defined using the number of differences of positions between the best
solution found so far z, and the current solution wg, also known as hamming distance:

t

vl = random(1, hammingdistance(x,, z})).

Then to update the position of the member z! of the population, the 2-opt or 3-opt is used v! times,
and a mechanism was introduced based on the number of cities to choose between two operators, so
the formula is:

b ew = 3 —opt(zt,,, vf) otherwise.

inew

{:L"ﬁnew =2 opt(:ngold,vf) it ol < N/2,
x

The probability p will be updated with the formula:

rt=7rd(1—e).
In other words, the new current solution of SA is occasionally improved by exploiting a set of random
solutions, taking advantage of social behaviour we find in the population-based methods. This will
speed up the convergence of the algorithm, as it not only improves the single point of SA randomly,
but it takes into account information about better solutions from different neighbours in each iteration,
thus attaining larger search regions from the solution space.

The flowshart of the method is represented in Figure 1.
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Parameters Initialization

Lot —Xp(best initialization)

Lpew —2_0pt_metropolis(xy,.g ,T)

DE1ta=F11ew 'Fbest

rnd<eXp(—Delta/T) Lnew —Lbest

Generate new population RPOP
and include Xy in it

Move the population in the space using eq (7) and (8)

Return xp.rpop

Update .

Is Stopping criteria
satified?

|-
>

Fig. 1. Flowshart of NISA.

6. Numerical results

Comparison tests were done between the proposed NISA, classical SA as described in Section 2, Im-
proved Bat Algorithm from [15] and particle swarm optimization PSO that was adapted to use the
same position update formulas as IBA and the velocity update equation being dependent on both the
best particle and best past of the incumbent particle like follows:

v} = random (1, max [hammingdistance(z,, z}), hammingdistance(z,, z})] ) .
It is worth mentioning that the algorithms were implemented using Python 3.9 and all the tests were
performed on an Intel Core i7 laptop, with 2.80GHz and RAM of 16GB.

Note that the instances used in the experimental results are from the famous TSPLIB95 [16], for

which optimal values or best-known solutions are provided. The parameters were set as follows:

— Common parameters: F E.x = 3000, Tinax = 1000, Tinin = 0.001, Nypax = 200.

— 1In NISA, the population size of the improvement was set to 4 and maximum iterations set to 5 and
rp = 0.4.

— For BA and PSO, the population size was set to 15 and maximum iterations set to 200.
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Comparison and discussion. Table 1 represents the best solution (Min), the mean value (Mean),
the standard deviation (Std) and the worst solution (Max) values that were calculated after running
the algorithm 10 times.

Table 1. Results of NISA vs BA, PSO and SA.

Instances PSO BA SA NISA optimum
Mean | 3330.2 3332.8 3545.8 3323
STD | 15.178933 | 12.345039 | 204.229609 | 0

burmald | 5 & | 3323 3323 3323 3323 3323
Worst | 3359 3359 3793 3323
Mean | 6362.6 6364.8 7125.8 6859

alyssesi | STD | 11:3842 11.792653 | 199.971554 | 0 6850
Best | 6859 6859 6859 6859
Worst | 6895 6895 7487 6859
Mean | 7050.9 7069.5 7482.9 7013

alysseszz | STD | 35132022 | 47209345 | 320.488672 | 0 013
Best | 7013 7013 7047 7013
Worst | 7100 7131 7938 7013
Mean | 1642 1649.6 1718.4 1624.6

bayg29 STD | 14.306176 | 18.833776 | 87.510253 | 11.296017 1610
Best | 1630 1625 1625 1610
Worst | 1677 1677 1856 1646
Mean | 2060.6 2079 2188.7 2034

bays29 STD | 23.538149 | 30.940804 | 92.514323 | 8.944272 9020
Best | 2031 2033 2030 2020
Worst | 2099 2132 2316 2052
Mean | 2096.1 2098.4 2160.1 2085

gr17 STD | 12.887979 | 18.148768 | 68.549171 | 0 2085
Best | 2088 2085 2085 2085
Worst | 2129 2142 2294 2085
Mean | 2774.7 2764.1 2959.8 2707

ar2l STD | 48.737506 | 64.205313 | 181.129052 | 0 o707
Best | 2707 2707 2707 2707
Worst | 2833 2853 3202 2707
Mean | 1283.3 1283.8 1363.3 1272

ar2d STD | 17.372072 | 14.589189 | 59.522265 | 0 197
Best | 1272 1272 1286 1272
Worst | 1326 1317 1461 1272
Mean | 947.8 961.7 1040.5 939.8

126 STD | 8.337332 | 10.46741 | 24.509635 | 5.266245 037
Best | 937 937 1000 937
Worst | 957 975 1085 953
Mean | 715.1 718.8 861.9 710.5

. STD | 13.543756 | 14.972568 | 54.744761 | 7.905694

dantzigd2 | g ¢ | 699 701 807 699 699
Worst | 742 753 948 727
Mean | 439.5 1428 531.9 432.7

eils1 STD | 5.948856 | 5.202563 | 54.000926 | 4.667857 196
Best | 431 437 464 427
Worst | 451 451 648 442
Mean | 7856.3 7908.1 8284 7870.2

berlinsg | STD | 135:329269 | 207.245131 | 402.855088 | 133.010275 519
Best | 7666 7542 7542 7596
Worst | 8073 8158 8845 8050
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From those results our NISA clearly outperforms PSO, BA and SA in 11 out of 12 TSP instances
considering four criteria. Besides, it has reached the optimum value in all instances but two: eil51
and berlin52. NISA algorithm combines in a way the advantages of SA and its uphill moves, and
the population-based methods’ social behaviour enabling the algorithm to get more information about
the new solution’s neighbourhood. Besides, as the population is always created from anew, we think
that this actually gives a certain balance between diversification and intensification in the method,
enhancing its convergence.

To effectively evaluate the performance of NISA, we use both Wilcoxon and sign tests for pairwise
comparison. The tests’ p-values were computed using the tests from the SciPy library in Python, and
are presented in Table 2.

The first row presents the number of wins

Table 2. Results of wilcoxon Test. and losses of NISA against PSO, BA and SA.
NISA vs PSO BA SA The algorithm is considered a winner on a
Win/loss 11/1 12/0 12/0 given instance if the mean of the best of 10

sign test pvalue | 6.34E-02 | 4.88E-04 | 4.88E-04

= runs is better than the other algorithms.
wilcoxon pvalue | 1.22E-02 | 1.22E-02 | 4.88E-04

Now as we have 12 instances, and with
a level of significance @ = 0.05, our algorithm outperforms its standard version (an algorithm is
considered better if it has at least 9 wins, see Derrac et al. [17]). The remaining rows present the
p-value of the sign test and Wilcoxon’s respectively. Both show that NISA has the upper hand with
a level of significance of 0.05 over the methods we compared with, thus we can say that our proposed
algorithm is very competitive.

7. Conclusion

In this work, an improvement was integrated into the classical SA algorithm. The improvement was
inspired by population-based methods. Tests were performed on 12 instances from the TSPLIB. The
results of these tests assess that the mechanism is efficient and can enhance the performance of the
algorithm. Although the results of the tests are encouraging and the algorithm is competitive with
other algorithms, an extensive analysis of other instances is required and the application of some
statistical tests should be performed. A parametric study will also be considered.
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HoBa nokpauwieHa cumynsauia Bignany ans 3agadi KomiBosikepa

Anins H., Jlax6ab X.

Vuisepcumem Xacawa II, aabopamopis dyndamernmarvrol ma npuriadHol Mamemamuk,
Kacabaranxa, Mapoxxo

Asropurm cumysoBanHg Binnasy (SA) € oHi€ro 3 HARIOIYIAPHIIIMX METAEBPUCTHK, KA
YCIIITHO 3aCTOCOBYBaJacs J0 OaraThox 3ajad onrumizaril. [osioBHoI0 mepeBaroo SA €
WOro 3JATHICTH BIAXOAUTH BiJl JIOKAJTBHUX ONTHUMYMIB, TO3BOJSIOUA PYXH BBEPX Ta JIO-
CJIJIZKyBaTH HOBI PO3B’I3KM Ha IOYATKY Ipolecy mnomryky. OmHuM i3 #Ooro HejoJiiKiB €
oro moBiJibHA 3012KHICTD, 0 BUMATAa€ BEJMKOIO YACy OOUUCIEHHS JJIs XOPOIIOTO HabO-
Py 3HaUEHDb MapaMeTpiB I MOMIYKY PO3yMHOI'O PO3B’a3Ky. ¥ Iiif poOOTi MPOIOHYETHCs
HOBUiT TOKparnenuit SA st po3B’sa3aHHs BijoMol 3aja4di komiBosizkepa. 11106 moxparu-
TH TPOAYKTUBHICTL SA, micss dasu npuitaarts SA BKIIIOYEHO MPOLELYPY MOKPAIIEHHS
Ha OCHOBI IOITYJISAIII1, IO JO3BOJISIE aJITOPUTMY BUKOPHUCTOBYBATH IIEpPEBArU COIIAJIBHOI TO-
BE/IHKU JESIKUX PO3B’g3KiB i3 mpocTopy momryKy. YucenabHi pe3yiabraTu Oy/Iu mpoBeeHi 3
BUKOpPHUCTaHHsIM Bijomux exzemiuisipiB TSP Bix TSPLIB, i momepenti pesysbraTu mOKa-
3YI0Th, IO 3aIIPOIIOHOBAHUI aJTOPUATM IIEPEBEPIIYE IHI aJTOPUTMU TOPIBHIHHS 3 TOUYKH
30py AKOCTI PO3B’sI3KiB.

Kntouosi cnoBa: imimosanuil 6idnas; 3a0aua KoMi6oACEPA; MEMALEDUCTNUKY.
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