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The fundamental relations of the quasi-static problem of thermoelasticity are written for a
finite layered orthotropic cylindrical shell of an antisymmetric structure. Under convective
heat transfer on the surfaces of this shell and under a linear dependence of temperature
on the transverse coordinate, the basic system of equations for the integral characteristics
of temperature is given. The method is proposed for solving the formulated problems of
thermoelasticity and thermal conductivity, using the double finite integral Fourier trans-
form with respect to the corresponding coordinates of the transformation and Laplace
transform with respect to the time. The results of a numerical analysis of temperature,
deflections, and stresses for the considered two-layer shell hinged at the edges under local
heating by the initially specified temperature field are presented.

Keywords: orthotropic; layered; cylindrical shell; temperature; thermally stressed state;
heat transfer.
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1. Introduction

Cylindrical shells of a layered structure are widely used in many branches of modern technology, in
particular, in aircraft and space constructions, to increase the strength and rigidity of structures and
protect them from low-temperature or high-temperature thermal effects. Therefore, estimating of
temperature stresses in such structures is a significant engineering task.

Elements of layered structures have been studied by many scientists [1-4]. There are developed
refined models taking into account the characteristic features of composite materials, in particular,
high anisotropy in the transverse direction [3-5|. The exact solutions of thermoelasticity problems for
layered shells are constructed on the base of three-dimensional equations in [6,7]. Using the equations of
classical and various refined theories, the analytical solutions are obtained in [8-10]. Using the equation
of interrelated thermoelasticity, the influence of the coupling coefficient on the dynamic behavior of
composite shells is analyzed in [11]. The method of finite elements for studying thermoelastic processes
in shells of a layered structure was used in [12]. In [13], the focus was on the thermoelectromechanical
analysis of multilayer piezoelectric cylindrical shells of an open profile. The thermoelastic properties
of a functional-gradient isotropic cylindrical shell locally heated by heat sources are considered in [14].
The stress-strain state of a layered cylindrical surface under its local convective heating is investigated
in [15]. Detailed overviews of various models and methods are given in [1-3].

The aim of this article is to investigate the change in temperature, deflection, and stresses of a
two-layer circular cylindrical shell of a regular antisymmetric structure under its local heating by an
initially specified temperature field based on the equations of thermoelasticity and heat conduction
equation of the six-modal theory of layered shells.

2. Formulation of the problem and system of basic equations

Consider an inhomogeneous orthotropic circular cylindrical shell with the constant thickness 2h and
a finite length I. We refer the points of the shell space to the cylindrical coordinate system (z, 6, z)
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Determination and analysis of the thermoelastic state of layered orthotropic cylindrical shells 919

denoting the axial, circular, and radial coordinates, respectively. We place the origin of the coordinates
in the middle surface of the shell with the radius R. Hereafter, the indices 1, 2, 3 correspond to these
coordinates.

Let the shell be under the external force action, and let it be heated by heat sources and environment
through convective heat exchange. To study the thermoelastic behavior of such a shell, let us use a
mathematical model with six degrees of freedom, which is based on assumptions about the linear
distribution of the displacement vector U;(z, 0, z,7), i = 1,2,3, and the temperature ¢(x,0, z,7) in the
shell thickness

Ui(z,0,z,7) = ui(z,0,7) + z7vi(z,0,7), (1)

t(z,0,2,7) = Ty(z,0,7) + %TQ(x,o,T), (2)

where wu; are components of the mid-surface points displacement vector; =; are components of the

vector of normal rotation angles; T;, = % fhtz"_l dz, n = 1,2, are integral characteristics of the

temperature.

In the general case, this model consists of interrelated systems of thermoelasticity equations and
heat conduction equations. If the effect of deformation on the temperature field change is neglected,
these systems are independent.

3. Divergence measure for FFSs

3.1. System of thermoelasticity equations

The kinematic relations for the components e;; of the deformation tensor at an arbitrary point of the
shell have the following form

e11 = €11 + 2211, e = (€22 + 2302) /(1 + 2/R), e33 = €33,
e12 = (€12 + 23012 + 22wi2) /(1 + 2/R),
e13 = €13 + 2113, €23 = (€23 + 23023) /(1 + z/R). (3)
Here, the components ¢;;, »;; of the deformation tensor of the mid-surface in terms of generalized
displacements u;, y; are expressed by formulae

€11 = O1u1, €22 = (uz + Oaua) /R, €33 =73,
€12 = Oqu1 /R + Orug, €23 = 72 + (Qouz — u2)/R,
e13 =71 +01u3, w12 = diy2/R,
s =011, a2 = (3 +0a2)/R, 313 = 0173,
s12 = 0172 + a1/ R+ O1uz /R, 03 = 0273/ R. (4)

Physical equations for stresses and deformations can be written as follows

011 ci1 ¢z c13 el 3t

o2 | _ | ci2 ca2 a3 e | 5%1 ; (5)
o33 | | ci3 co3 33 €33 ﬁ%Q ’

012 Co6 €12 33

013\ _ [ cu €13
023 C55 €23
Here ¢;;(z) are the elasticity coefficients; 8};(z) = ciialy + cinaby + cisad; are coefficients of thermal

elasticity; ozgj(z) are coeflicients of linear thermal expansion.
Physical equations for internal forces INV;; and moments M;; are obtained from the relations

h h

{N11, N12,N13} = / {o11,012,013}(1 + 2/R) dz, {Na2, No1, No3} = / {0922,012,093} dz,
—h —h
h h

{My1, Mya, My3} = / {o11,012,013}(1 + 2/R) zdz, {Ma, Mo, Ma3} = / {022,012,093} 2 dz,
—h —h
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h
Nas = / (L +2/R)dz. (6)
The equilibrium equations:
O01N11 + 02Na1 /R = —qu,

01N12 + 02N22 /R + No3 /R = —qq,

O1N13 + 02Na3 /R — Nag /R = —qs,

O1My1 + 9o Ma1 /R — N1z = —my,

01M13 + 9o Moz /R — Noz = —m,
01 Mys + 0o Mas /R — Maos/R — N33 = —ms, (7)

where ¢;, m; denote the external load, 01 = 8%7 Oy = %

Using the above relations, we write the system of equilibrium equations (7) in terms of generalized
displacements in the form

6
Zeryk:br (r,k=1,2,...,6). (8)
k

Here y; = u;, ys+; = v (i = 1,2,3). Differential operators L, (L, = Lk,) and absolute terms b, are
described by the expressions:

L1y = Ao + Aes/R*035,  Lia = (A1z + Agg) /R0y, L1z = A12/ R0,
Ly = B110}; + Bg/R*03,, Lis = (Bi2 + Bgg)/R 0%,
Lis = (A13 + B12/R)01, Lag = AgeOfy + Aga/R*03, — k' As5 /R,
Ly = (A + K As5)/R*92, Loy = (Biz + Bes)/R 05,
Los = B3y + Bag/R*03, + k' Ass /R, Lo = (Ass/R + (Bos + k' Bss) /R?) 05,
Lsy = —K Ap07) — K Ass JR*93) + Asa/R?,  Lss = (Bia/R — k' Aus)0n,
L35 = (Byo/R — K As5) /R0y, Lsg = —k' Bud}y + (Bao — k' Bs303,) /R* + Ass/R,
Las = D110}, + Des/R*055 — k' Ags,  Las = (D12 + Des) /R 03,
Lys = (D12/R + Bi3 — k'Bua)01, Lss = D03, + Daz/R?03, — k' Ass,
Lse = ((B2s — k'Bss)/R + Das/R?) 05,
Les = Ass + 2Bos/R + Dag/R* — k' D403y — k' D55/ R*93,,
by = A5 0T + By /hOiTo — qu, by = Ay /R Ty + By /(Rh)2 Ty — g,
by = A /RTi + Bl /(Rh)Ty + q3, by = B};0\T1 + D1 /h 0, T> — my,
bs = Bay/R T + Dby /(Rh)0Ts — mo,
be = (Ass + BSy/R) Ti + (D5, /R + Bis) /ATy + ms.
Here

h h
{AiivBij7Dij} = / Cij{lvzvz2}dz’ {Agi’be ztz} = / ﬁfi{lvzvz2}dzy

k' is the shear factor [14]. —h —h

For the solution uniqueness of the system (8), it is necessary to impose the appropriate boundary
conditions. For the shell of a finite length, it is necessary at its ends x = 0 and = = [ to put one value
from each of the following pair: {Ni1, w1}, {Ni2,ua}, {Nig,us}, {Mi1,n1}, {Mi2, 72}, {Mis, 73}

The system of equations (8) with the boundary conditions constitutes the boundary value problem of
quasi-static thermoelasticity for inhomogeneous anisotropic cylindrical shells in terms of displacements.
By means of the known displacements, we determine the deformations of the mid-surface from the
relation (4), and the forces and moments from the equations of state
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N1 A A Az B Bro Ohuq Al B
Nay Ajg Ags Ass Bia B (Oqug +u3)/R Ab, B3,
t t 13
N3z | = | Az Az Aszz Bz Do V3 —| Ass |Ti— | Bsg 7
My Bi1 Bi2 Biz Dii Do ohm B}, Df,
Mo Bis By Bz Diz Do (0272 +73)/R Bi, Di,
< Nia ) _ ( Aes  Beo > < O1ug + doui /R > ( Ni3 > _ k’( Ayy By > < 7 + O1u3 >
Mo Bss  Des O1y2 +0mi/R )7 M3 Byy Dy 0173
( Na3 ) _ k;’< Ass  DBss ) ( Y2 + (Oauz — ug)/R > . )
M3 Bss  Dss 0273/ R

The temperature deformations and stresses in the shell are found using the formulae (3) and (5).

3.2. System of heat conduction equations

The integral temperature characteristics 77 and T, included in the absolute terms of the system (8)
and in the state equation (9) can be determined from the corresponding equations of heat conduction
under the boundary conditions imposed on the surfaces z = +h and at the ends of the shell. For
convective heat exchange on the surfaces z = +h, the system of heat conduction equations provided
the linear dependence of temperature on the transverse coordinate (2) can be written in the form:

hR

A
A( )T1 — €1T1 + A(Q)TQ +

)B—Cm&ﬂ—C@&BZ—H

Aun—@ﬂ+A@B+(ﬁ:—%§—4>n_o®@ﬂ—c@@nz_h. (10)
Here
Agy = Ag’i)afl + 122) s {Aﬁf ,C®} = / {Aij, e} > 1d2= (k=1,2,3); 0r= ({%7
f; = e+ 3+ W= Qi O)Fj(r); €t = aF — (~1)ias; tj::%(f*—(—lyqj,

h i—1
wi= [ w(3)ds =12
Aij(2) are the coefficients of thermal conductivity; c.(2) is the specific volumetric heat capacity; 7 is a
time variable; a7 are the coefficients of heat dissipation from the surfaces z = 4h; t is the ambient
temperature on these surfaces; w; is the power of heat sources.
For the solution uniqueness of the system (10) at the edges x = 0 and 2 = [ we need to specify a
combination of values agT] + a1 87; y a2l +a352 8T2 , where a; = const; and at the initial moment of time

we need to specify the value of temperature characteristics T1 and 7.

4. The method of solving the basic systems of equations

Let us consider a cylindrical shell being antisymmetric relative to the middle surface, composed of an
even number of orthotropic layers with the same thickness and properties, the material axes of which
are oriented at the angle of 0° or 90° to the axis of the shell. Let the edges x = 0 and « = [ of the shell
be hinged and assumed to have a zero temperature. Then we have the following boundary conditions
for the defining functions:

(11)
Ty =15 =0. (12)

At the initial moment of time, the temperature characteristics 17, T5 are given as coordinate functions:
Ti(2,0,0) = TY(x,0), To(x, 0,0) = T9(x, ). (13)
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4.1. Finding the temperature field
The equations (10), after applying the double finite Fourier transformation with respect to the coor-
dinates (z, ), according to the boundary conditions (12), take the form:

dT mn
dl + 91T 1mn + 92T2mn = from,
1
dT: mn
d’27'1 + 93T 1mn + 9aT2mn = fomn- (14)
Here gy = L\ 2 + L) 62m2 +Biy, gy = L p2 + L) 62m2 — 5+ Big, g5 = C(LY 2 + L) 62m? 4+ Biy),
(1) (1)
— (¥ 2 (3) 52, 2 : _ mnh _h _ Ay 5_C
94—C(L11Mn+L225 m +B11+1)7 Hn = I 0= R T = mﬂ C= relOk
; A(j) th2 B2
L == Biy= " fun = Quan (@ 0) (1) = Bitth, + Bist, + W5,
A A A
33 33 33

Lz Lz h?
famn = Qamn(z,0)F2(T) = <B12t1mn + Bitt3,,, + Won, W) c.
33
The solution of the system (14) under the initial conditions (13) is obtained by the method of the
integral Laplace transform in the form:

{0y~ 0@ ZP(0) 4 0 Qs Z0) 4 (03— 9T+ 95T] 7 )

2
Tlmn = Z ] )

Jj=1 Pj — Dk
k#j
> {03~ 9@ Z87) + 95@u0nZ0) + (1~ 90) T + 95T o] 7}
j=1 Pj — Pk
k#j
Here
+ . _ 2
pj =220 (-1 \/M + 9293,
2 4
0 ¢ [T 0 . TN 1, m=0,
{anma,’r]nm} = ﬁ o ). {Q],,_T] } (1’, 9) sin T.Z' cos mb dx d@, ¢ = 27 m 7& 07 (16)
() _ " —pj(T1—u) -
Zy = Fy(u)e du, (k,j=1,2). (17)
0

The temperature characteristics 17, T5 through the Fourier coefficients 11,5, Tomn are described
by formulae

{1, T,} = Z Z {T1mns Tomn } sin ?x cosmb. (18)

n=1m=0

4.2. Finding the generalized displacements

The solution of the system of equilibrium equations (8), which satisfies the boundary conditions (11),
under the known temperature field (18) is found by the method of finite double Fourier transforms with
respect to the coordinates x, g. As a result, we obtain a system of algebraic equations for determining
the Fourier coefficients yg,., of the sought functions. Let us write this system in a matrix form:

AY = STimn + Glomn. (19)
Here the matrices A = (ark)ox6, ¥ = (Ykmn)ox1, S = (Sk)ex1, G = (gk)ex1, while yimp = Uimn are
the Fourier coefficients for displacements w;, and y34imn = L'imn are the Fourier coefficients for «;

(1 =1,2,3). The coefficients a,, sx and g of the specified matrices we calculate from the expressions
of the differential operators of the system (8).
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From the system (19), we obtain the solution:
6
1
Ykmn = W Z (srTImn + ng2mn) By, (k =1,2,... 76)7
r=1

where |A] is the determinant of the matrix A, and B, is the algebraic adjunct to the element a, of
this matrix.
The generalized displacements in terms of Fourier coefficients are given by the formulae:

{ur,m} = Z Z {Utmns T'imn } cos @ cos me,

n=0m=0

{uz, 72} = Z Z {U2mn, Domn } sin Tm sinm#,
n=1m=1

{us,v3} = Z Z {Usmn, Dgmn } sin Ta: cosmb. (20)
n=1m=0

Based on the known generalized displacements (20) and the temperature field (18), all other char-
acteristics of the stress-strain state of the shell are determined by the formulae (3), (4), (5) and (9)
given above.

5. Numerical analysis of the thermoelastic state of a two-layer cylindrical shell of a
regular antisymmetric structure

We assume that the shell is heated by the temperature field given at the initial moment of time:
Tl(o) (x,0) = ¢(x,0), TQ(O) = 0, or the shell is heated by the environment with temperature ¢} (z,6,7) =
d(x,0)S,(7), t; (x,0,7) = 0 given respectively on the surfaces z = +h of the shell by convective heat
exchange. There are no heat sources.

As the function of temperature distribution depending on the coordinates (x,#), we choose the
function ¢(z,0):

x — x0)> 2
ola,0) = T° (1 - %) (1 - §—> 1S (¢ — 20+ d) — Sy (& — w0 — D] [S_(0+ 1) — 50— )]

Here T* = const, 2d and 27 are the width and angle of the heating area, respectively; (xg,0) are the

>
1, >0, S_(x):{ 1, x =20,

are asymmetric
0, z <0, 0, 2<0 Y

coordinates of the middle of this area, Sy (z) = {

unit functions.
Fourier coefficients T . Qinm included in the solution (15) are calculated according to the for-

mula (16). We obtained the expressions:

Bi) 16 nT* 1  md d md\ . Ty
0 _ 0
{Tan,Qmo} = {1, 5 } 3 Tn2(d/I)? <7m sin T TCOS ; > sin T 15,0 =0,
{Thum Qunm} = {1, 3} iy (7 sin % — ¢ cos %) (55 sinma — ncos mn) sin =42, T3, =

0, (m # 0). Accordingly, the function of time Zlij )(T), which is determined by the formula (17), will
have the form:

29 (7) = piju — exp(—p;m1)) S+ (7).

The layers of the shell are made of orthogonal reinforced composite with the following physical and
mechanical properties [1,2]: Er = 150 GPa, Ep = 110GPa, Grp = 35GPa, Gpr = 41 GPa, vip =
vrr = 0.33, ap, = 7.6 - 1079 1/K, ar = 14.0- 1075 1/K, A\, = 105 W/m-K, Ay = 75 W/m-K, where the
indices L and T indicate the parallel and perpendicular direction to the fibers of reinforcement.

The values of the other parameters are as follows: h/R = 0.05, [/R =5, n = n/4, d/l = (R/l)sinmn,
z0=1/2, k' =5/6, Bi = 1.
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During the numerical experiment, there are calculated: the dimensionless temperature field 77 =

L1 the deflection w' = Tar7e: and the stresses 0] = 2w, 053 = 22 (i = 1,2) for the four
values of dimensionless time 7/ = ;\T—hz: 0.01, 0.1, 0.4, and 1.
€
T

0.8

0.6

0.4

0.2

1 | 1 | 1
0 60 120 0° 0 60 120 0°

Fig. 1. Change in average temperature T; along guid- Fig. 2. Change of radial deflection w’ along guiding
ing line =’ = 0.5. line 2’ = 0.5.

-1.2 . l L | : -9 I | L | !
0 60 120 6° 0 60 120 0°
Fig. 3. Change in axial stress o} along guiding line Fig. 4. Change in circular stress o/, along guiding line
' = 0.5. ' = 0.5.

In Figures 1-4, the changes in the average temperature 77, in the radial deflection w’, as well as in
the axial o} and circular o/, stresses along the guiding line 2’ = 0.5 from the middle of the heated area
to the middle of the unheated area (0 < 6 < 7) are illustrated.
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The maximum values of temperature and ra- s
dial deflections are observed in the middle of
the heated area. The values of deflections along
the guiding line alternate between positive and 0.01
negative values, and along the generator they
monotonically decrease to zero. The normal
stresses 0}, o4 are calculated on the outer sur-
face 2/ = z/h = 1, where at the initial mo-
ment of time in the heated area the stresses are
compressive, and their maximum values are ob-
served at the point (0.5;0). Over time, stresses -0.01
and displacements in the heated area and out-
side it are equalized.

Figure 5 illustrates the change in the shear

-0.02 1 I 1 I 1 I 1

stress along the guiding line. The shear stresses 0 90 180 270 0°
are calculated on the middle surface of the shell.  Fig.5. Change in shear stress b, along guiding line
It was found that these stresses reach their max- ' =0.5.

imum values at the interface of heated and unheated areas. When passing through the middle of these
areas, these stresses change their sign.

6. Conclusion

Based on the equations of the six-modal linear shear theory of the first order, the algorithm for
determining the stress-strain state of a layered orthotropic circular closed cylindrical shell, which
is heated by the temperature field specified at the initial moment, is proposed. Using the integral
Fourier transforms of spatial variables and Laplace transform with respect to the time variable, a
closed solution of the non-stationary problem of thermal conductivity and the quasi-static problem
of unbound thermoelasticity for a finite hinged cylindrical shell supported at the ends is written.
A numerical analysis is performed for a two-layer shell of a regular antisymmetric structure. The
regularities of temperature, deflection, and stress dependence on the circular coordinate at different
moments have been established.
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Bu3HaydeHHsA i aHaNi3 TepMONpy>KHOro CTaHy wapyBaTUX OPTOTPONMHUX

UnaiHapn4Hnx 000/10HOK

Myciit P., 2Kunuk V., Csinpax 1., [Hurmgep B., Mopcbka H.

Havionarvruti ynisepcumem “JIvsiscora nosimexnixa’,
eyn. C. Bandepu, 12, Jlveis, 79013, Yrpaina

3alucaHo BUXIiJIHI CIIIBBIIHOIIEHHS KBA31CTATHYHOI 331891 TEPMOIIPYKHOCTI JJjIsl CKiHYeH-
HOI MIApyBaTOl OPTOTPOMHOI MWIHAPUIHOI OOOJIOHKH AHTUCHMETPUIHOI CTPYKTYpH. 3a
KOHBEKTHUBHOI'O TEIIOOOMIHY Ha ITOBEPXHAX JAHOI 0OOJIOHKH 1 JIHIHHOT 3a71€2KHOCTI TeMIIe-
paTypH Bif ITOmepevHOl KOOPIMHATY IIPUBEJIEHO BUXIIHY CHUCTEMY PiBHAHBb Ha iHTErpasbHi
XapaKTEPUCTUKH TEMIIEPATypU. 3AIPOIIOHOBAHO METO/] PO3B’si3yBaHHs C(DOPMYJIHOBAHUX
3a/1a4 TEPMOIIPY2KHOCTI 1 TEIJIONPOBIIHOCT1, IKUIT BUKOPUCTOBYE IO/IBiiiHEe CKiHYEHHE 1HTe-
rpaJsbHe reperBopentst Pyp’e 3a BiAMOBIIHUMI KOODIMHATAME TIepeTBOpeHHs i Jlamraca 3a
qacoM. [IpuBeseHO pe3ysIbTaTH YUCIOBOTO aHAJI3y TeMIEpaTypU, MPOTUHIB I HANPYKEHb
JJIS POBIJISIYBAHOI JBOIIAPOBOI MMAPHIPHO 00IEPTOl MO KpasX OOOJIOHKU 33 JIOKAJIBHOTO
HarpiBy IOYaTKOBO 33JJaHUM TeMIIepATyPHUM IIOJIEM.

Knio4oBi cnoBa: opmomponha; wapysama; UusiHOpuuHG 000A0HKG; MEMNEPAMYPa;
MEPMOHAMPYAHCEHUT CTNAH,; MENAO0OMIMH.
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