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Motivated by some biological and ecological problems given by reaction-diffusion sys-
tems with delays and boundary conditions of Neumann type and knowing their associated
Lyapunov functions for delay ordinary differential equations, we consider a method for
determining their Lyapunov functions to establish the local/global stability. The method
is essentially based on adding integral terms to the corresponding Lyapunov function for
ordinary differential equations. The new approach is not general but it is applicable in a
wide variety of delays reaction-diffusion models with one discrete delay or more, distributed
delay, and a combination of both of them. To illustrate our results, we present the method
application to a reaction-diffusion epidemiological model with time delay (latency period)
and indirect transmission effect.

Keywords: reaction-diffusion system with delay; Lyapunov function; epidemiological
model; latency period; number Ry.
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1. Introduction

Many biological and ecological systems use the Lyapunov function as a key to show the local and global
stabilities of the corresponding mathematical models, for example, see [1,2]. Many methods have been
developed for constructing such functions associated to ordinary differential equations without/with
delay, reaction-diffusion systems without/with delay, and many other systems, see [3-9]. But it was
rare and difficult to determine a rigorous and general approach or method to find the Lyapunov
function, and there are numerous works in the literature attempting to find Lyapunov function for
various systems.

In [10], the authors introduce a survey constructing the Lyapunov function for reaction-diffusion
systems defined from the corresponding one of ordinary differential equations. In [4], the author gave
an approach for determining the Lyapunov function for ordinary differential equations with perturbed
delay terms, which is applicable to many biological models.

In this work, we extend the two last approaches to the reaction-diffusion systems with discrete
or distributed delays or an of both of them and with Neumann boundary conditions. To prove the
effectiveness of the obtained approach, we apply our result to an epidemiological model with a reservoir
of infection.

The organization of the paper is as follows, in Section 2 we survey the construction of Lyapunov
function for various perturbed reaction-diffusion systems with specific delay terms. In Section 3, we
apply our results to a reaction-diffusion epidemiological model with delay and indirect transmission.

This research was supported by CNRST (Cov,/2020,/102).

(© 2023 Lviv Polytechnic National University 965
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2. Constructing a Lyapunov function

Let f: R®™ — R" be a C! vector field of the following ODE

dU
= f(U) (1)
and U* be a positive equilibrium of (1) (i.e. f (U *) = 0) and V be its associated Lyapunov function,

which is bounded below and U* is a strict minimum and satisfies

DV <0.
Let I" be a bounded domain of R™ and D = diag(d;)}_; with d; > 0, and the corresponding reaction-
diffusion equation of (1)

% _ DAU(t, X) + f(U(t, X)), XeT,
ou =0 on JI, (2)
ov

U(0,X) = Up(X) in T,

where A is the Laplacian operator and %—g is the outward normal vector derivative on JI'.
Let the hypotheses

(Hy) V(U)= Z%(Ui — U n(Uy)),
ov )
(Hy) /VU VaU dX >0, Vi=1,...,n,

(Hy

Lemma 1. IfV is deﬁned as a Lyapunov function of (1), satisfying one of the hypotheses (Hy) or
(Hy), then the function

/ C(1-C*(U))dX, (C >0), and C* continuously depends on U.

W(U(t, X)) :/FV(U(t,X))dX

is a Lyapunov function of (2), and one can deduce the stability of the homogeneous steady state U*.
Let us considering the following perturbed system of (2) by a delayed term g(U(t — 71, X), U(t, X))

Lg;X) = DAUt, X))+ f(Ut, X))+ g(U(t —7,2),U(t, X)), X eT,
i—g =0 on JI', (3)

U0, X) = Up(X) in T,

where g(U*,U*) = 0 and Uy(s,z) = U(t + s,z) for s € [-7,0] and g: C([~7,0],R") x R® — R" is a C!
function.

Next, we write U = U(t,X) and Uy = U(t — 7, X).
Proposition 7. Suppose that V' is a Lyapunov function of (1) satisfying one of the hypotheses (Hy)
or (Hy) and [ VV(U)-g(U,Uy) dX < 0, then W defines a Lyapunov function of (3).

Proof. A direct computation yields the result. ]
In what follows, we denote by V' the Lyapunov function of (1).

2.1. One delay and one non-vanishing component perturbation

Next, we will give a delayed Lyapunov function for some particular perturbation term g(U, Uy). Let ¢;
be the ith canonical basis vector of R* and

9(U,Ut) = (W(Ut) = h(U))ei
with % be a C! function such that; h(u) > 0! for all u € R7.

LU* is still an equilibrium of (3).
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Let the hypothesis holds
h(Ut)

(Hs) Ch(U*)/Fa (C*h(U*)> dX <0.

Then we have the following result.

Proposition 8. Suppose V satisfies (Hy) or (H;) and (Hz) and (Hs), then the function
H(U,U,) = W(U) + Ch(U™) / WA (U, Up) dX
r

determines a Lyapunov function for (3) where

Proof. By differentiating the function H over the solutions of (3), we have

Dy H(U,Uy) = /vv U, — h(U))es dX

and « is the Volterra function?.

= Dy W (U) + (WU, — h(U)) dX.

r an

(h(U*) - h(U*>> (1-07)dx

From (Hj), we obtain

Disy H(U,U) = Dy W(U) + Ch(U”) /
I

= DyW(U)
o 88) () 20) -
/W U, Uy)dX = // dt <7*)C)>dCdX

// ( <<>>d<dX
— - (o (i)~ (i) o

D(5)H(U,Ut):D(g)W(U)—i—Ch(U*)/F( ( ) ( o ))>>dX

From Lemma 1 and (Hs), and sine o > 0, we have — [« ( h U ))dX < 0, then we deduce the
results. |

2.2. Multi-delay and one non-vanishing component perturbation

Let 7 > 0,0 <7 <7,4=1,...,n and 8 be an integrable non-negative function and 3; > 0

(¢ =1,...,k) such that i
/ Bls)ds+ 3 Bi=1
i=1

and we define the following operator 7' (linear) by

w= [ Bt ds+§jﬂz )

Consider the case when

2a(s) = s — 1 —In(s) defines the Volterra function.

Mathematical Modeling and Computing, Vol. 10, No. 3, pp. 965-975 (2023)
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9(U,Up) = (T(h o Up) = T(ho Up))es,
which is equivalent to
g(U,Up) = (T(hoU) = T(hoU(t)))e
since
T(hoUQ) = h(U(t)).
Proposition 9. Suppose V satisfies (Hy) or (H;) and (Hz) and (Hs), then the function

H\(U,Uy) = W(U Up) + C’h(U*)/ wlu,uy)dx
r

)z [[o()

oV
D(5)W:D(3)W+/F(T(hoUt) T(ho U(t)) 5 dX.

determines a Lyapunov function for (3), where

UUt//ﬁdl<

and « is the Volterra function.

Proof. From system (3), we have

From (Hj), we obtain

D(5)W = D(g)W + /F

enr) [[stc) (MUED HUON 1y

t
h(U*) U*)
k
) (=7))  hU)) )
+ Ch(U") z; ( om h(U*)>(1—C)}dX
Ut

h(U;
- h(
s = enan [ [0 s (4552) - (315)
(@) e G )«
" Z:& (o (M2 ) ~ o () - (Miler) o (Bgaler) ) Jax.
Next, we evaluate & [ W}(U,Uy;) dX over the solutions of (3). Let
WU, Up) = WU, Up) + WU, Uy),

wilu,u,) = /OT /CT B(1)dl x o (h(gf(U_*)O)) d¢
WU, 0)) Z@/ o <%) .
vy [ [ oo (40«
Integrating by parts, we get

b~ v (49) ()

Then, in the same way, we compute dth(U U;), and we find
d ho Uy ho Uy
= T 2ot
0 =7 [a (3575 )| -7 [a (375

DsyW = Dy W + Ch(U¥) /FT [a <Z€UU§ c)} -T [a <Z&JU§ C>] dX

Mathematical Modeling and Computing, Vol. 10, No. 3, pp. 965-975 (2023)
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— DigyW + Ch(U*)/Fa (h}:(g*(;) C*> -7 [a (Z(‘;]U; cﬂ dXx.

From Lemma 1 and (Hs), we deduce the result. |

2.3. Non-vanishing multi-component perturbation
In this section, we assume that the functional g takes the form of multi-component perturbation.

2.3.1. One delay
Suppose g takes the following form

l
9(U,U) = (h(Us) = hi(U)) e,
k=1

where jp € {1,...,n}.
Let the hypothesis holds

l
(Hy) kZ:lehk(U )/Foz (Ck hk(U*)> dX <0,

where Cj, and Cj} are defined as in hypothesis (H3).

Proposition 10. Suppose V satisfies (Hp) or (H;) and (Hs) and (Hy), then the function
l

UU,U) =W (U)+ Y Crhy(U”) /W’“UUt)d
k=1

define a Lyapunov function for (3), where
T (e (UH(=C)
Wk, U :/ a<7 dc.
.0) 0 hi(U*) ‘

Proof. Differentiating the function U over the solutions of (3), we have

l
DU(U,U,) = Dy W(U) + /F YV -3 (ha(U0) = hie(U)) e5dX

l
=Dy W(U) + Z/ VV - (hi(Ur) — hi(U)) ejrd X

= DzW -I-Z/ank (he(Us) — hi(U)) dX.

By a similar computation as in Section 2.1, we obtain
l

. * a * hk(Ut)
D U(U,U;) = DgyW (U) + kZ:l Crhi(U )/F <Ck hk(U*)> dX.

2.3.2. Mutlti-delay

Let Ty, K = 1,...,1 be a family of linear operator defined as the T in the last section, and Sy,
k=1,...,0 a family of function defined as the function 3 defined before, and hy, k = 1,...,[ be the
differentiable functions defined as h with hg(U*) > 0 and

l

g(U,Up) =Y (Te(hi o Uy) — hi(U (1)) €,
k=1

where ji € {1,...,n} and the functions C}, and hy, satisfying the hypothesis (Hy).
Proposition 11. If V satisfies (Hy) or (H) and (Hz) and (Hy), the function
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UL (U, Uy) = W(U,U,) +Z/C’khk (UHWkwW, )

determines a Lyapunov function for (3), where

vt~ [ [ Anas () S o (450

and « is the Volterra functlon

Proof. The proof is similar to one given in Section 2.2. ]

3. Application

Next, we apply the obtained results to an epidemic model describing the diseases spreading dynamics
with direct and indirect transmission [11,12]. The direct transmission is caused by contact between
people and the indirect transmission is caused by the environmental virus concentration caused by
propagation of Influenza, Respiratory syncytial virus (RSV), Shingles, Ebola, Covid19, etc. The model
is given by

aS({;;X) =dgAS(t, X))+ A —B:S(t, X)I(t — 7, X) — BwS(t, X)W (t, X) — usS(t, X),

% =diAI(t, X) + B S, X)I(t — 7, X) + Bw St X)W (t, X) — (v + pur)I(t, X),
%:dRAR(t,X)+7[(t,X)—#RR(t,X)7 "
% =uwlI(t,X)—eW(t,X),

@_g_(‘)R ow
on v v ov
S(0,X)=50(X) >0, I(0,X)=®(0,X) >0, W(0,X) =Wy(X) >0, X eI',0 € [-71,0],

where S(t, X), I(t,X) and R(t, X) are the total number of susceptible, infectious and recovered popu-
lations at location X = (x,y) and time ¢, respectively. W (¢, X) is the concentration of virus particles.
All parameters are supposed to be positives and are defined as follows: dg, d; and dr are the diffusion
coefficients of susceptible, infected and recovered populations, respectively. A is the birth rate of the
S population, (s is the transmission rate from I to S, Sy is the transmission rate from W to S,
is the recovery rate, us, ur and ugr are the death rates of S, I, and R populations, respectively, upw
is the virus production rate, % is the lifetime of the virus in W, 7 is the latency period. As the state
variable R depends only on the state variable I, the study of (4) can be reduced to the study of the
following system

=0 on JT,

) — g0, ) + A~ G50, X)1( — 7, X) — BurS(t, W (5 X) ~ oS0, ),

O] — Gy A, X) + 5,86 X010~ 7,X) + B S( W (1 X) — (3 + )8, %),

M = I(th)_‘SW(th)y (5)
oS ol Z?W

W o =0 on JI,

S(0,X) =50(X) >0, I(s,X)=P(s,X) >0, W(0,X)=Wy(X) =20, X €T, se€[-1,0].
Using the next generation matrix, the basic reproduction number is given by

A(eBs + Bwpw)

pse(y + pur)
and the following result gives the existence conditions of the possible equilibrium points of (5).

Ry =
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Proposition 12. (i) Under the hypothesis Ry < 1, (5) has only one equilibrium point Fy = (S, 0,0)
(called disease free equilibrium). (ii) Under the hypothesis Ry > 1, (5) has the equilibrium Ej and a

positive equilibrium E* = (S*, I*, W*) (called endemic equilibrium), where Sy = uAs’ S* = %,
* _ Bworx o 7x _ A Eps
W= € = Ytur  eBstBwuw

Next, we apply our results to find the corresponding Lyapunov functions associated to Ey and E*.

3.1. Global stability with delay and without diffusion

In this section we consider 7 > 0, dg = d; = 0.

Proposition 13. (i) Suppose Ry < 1, then the disease free equilibrium FEj is globally asymptotically
stable. (ii) Suppose Ry > 1, then the endemic equilibrium E* is globally asymptotically stable.
Proof. (i) Consider Ry < 1 and 7 = 0 and put the following Lyapunov function

—BsSo + v+ pr
mw

Vi(S,I,W) =Sy <£—1n£> +1+

S S w. (6)

Then avy (S, I,W S S
Mzusso 92 20 +M(
dt So S W
We deduce that, the disease free equilibrium FEjy is stable, and % =0if S=5y, W=0and I =0.
Applying LaSalle invariance principle [13], we conclude that Ej is globally asymptotically stable.
Now, suppose Ry < 1, 7 > 0 and let the following Lyapunov function

Ry — D)W.

Wi (S, I,W) =Vi(S,[,W) +Q(S,I,W) (7)
where N
as.1w) = [ fssult - 0.
0
Fhen dVi(S, I, W S S
% = psSo (2 B §0> + BsSoly — BsSol + W(Ro - W (t)
and dQ(S, I,W) d [
HEL - assane—gac
T d
= psso [ SIt=Q)dc
T d
= — B34S —I(t—-0)d
gsso [ 1= Qe
= BsSo(I — Iy).
Then, we get
dWy (S, I,W) S Sy e(y + pr)
—dt = ,uSS(] (2 — S_O — §> + —,UW (RO - 1)W

Since Ry < 1 and applying the LaSalle invariance principle [13], Ey is globally asymptotically stable.
(ii) Suppose Ry > 1, 7 = 0 and define the Lyapunov function
S gx KL *
1 w w
VQ(S,I,W):S—S*—/ S prro( L) SV ,
x 2 I* € W

where ¢ is the Volterra function. Differentiating V' over the solutions of (5), we obtain
; B S*\ dS I\ dI  pwS* W*\ dW
i) = (1- S YIS (1 Lydl s iy
As pwI* =eW*, A = ugS* + (v + ur)I*, we obtain

Vo(S, I,W) = BgS*I <2 g S*) + usS <1 S*) <1 S)
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Jpp— <3_ S* SWI* W [>

S S*WHI  WI*

Va(S, I, W) = pugS* <1 - sﬁ> <1 — %) — BsS*I* [qb (%) +¢ (Siﬂ
~ows w0 (%) + 0 (1) + ¢ (Svpr )|
e (1-3)(-%)
S*

o (3) v (3) oo () o 20
%)

As ¢(z) 2 0 for z > 0 and (1 — %) ( < 0 and by LaSalle’s invariance principle, E* is globally
asymptotically stable.
For Ry > 1 and 7 > 0, let us considering the Lyapunov function

W2(S717W):‘é(sv[)W)—l_ﬁSS*I*H(SvI)W)’ (8)

H(S,I,W) = /OT¢ <I(tI: O) d¢.

d‘/é(T>0) (Sa I, W) . d‘/2(7':0) (Sa I, W)
dt B dt

Thus,

where

Then

I I
+ BgS*I, — BgS*T — 551*S—t + 1*555

I(t)
= BsS” <1—555[*>( —1)
e o5 (1) (£25)(22)
uere(8) () () (2]

dH(S,LW) d [T (I{t—{)
WALt [ (1029

/\/—\

and

dt

By computation, we get

w:u35*<1_£> <1_§>

dt
—s () ve (i) <o () + 0 ()|
As (1 — %) (1 — %) < 0 and using LaSalle invariance principle [13], we get the global asymptotic
stability of E*. ]
3.2. Global stability with diffusion and without delay
Let 7 =0, dg > 0 and d; > 0, then we have the following proposition.
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Proposition 14. (i) Consider Ry < 1, then Ej is globally asymptotically stable. (ii) Consider
Ry > 1, then E* is globally asymptotically stable.

S\t S0\
Proof. (i) Let u = <V{/) , Ug = < I > and consider the Lyapunov function

Wo

L (u(t, X)) = /F Vi (ult, X)) dX

where V] is defined in the equation (6). After differentiating with respect to time ¢, we get

dLy(u(t, X)) / Vi (u(t, X)) / oV
AVt X)) V5|2
= /F g AX —ds | g dX

<0.

From LaSalle invariance principle, we obtain the desired result.
(ii) Let us considering the following function

. [Ss (1IN BwSTWE (W
Va(S,I,W) =S -8 —/S*jdz—i—l ¢<F>+f¢<w*>’

V4 is a Lyapunov function of (5) without diffusion and from [10], we deduce that

H(u(t, X)) :/FVQ(u(t,X))dX

is a Lyapunov function for system (5). By a direct computation and Green formula, the time derivative
of H satisfies the following properties

U . § ’
dH (u(t, X)) g’X)) :/FVQ(u(t,X))dX—dss*/F%dX—dﬂ*/F%dX<0.

LaSalle invariance principle to imply the global stability of the endemic equilibrium E*. [

3.3. Global stability with diffusion and delay

Let 7 > 0, dg > 0 and d; > 0. Then we have the following proposition.

Proposition 15. (i) Suppose Ry < 1, then Ej is globally asymptotically stable. (ii) Suppose Ry > 1,
then E* is globally asymptotically stable.

Proof. Applying the result presented in Subsection 2.3.1, with hy (U, (t)) = BsS(t)I(t—7), hi(U(t)) =
BsS(t)I(t) and hg = —h; and considering the following Lyapunov functions

Ky (u(t, X)) :/FWl(u(t,X))dX
and
Ka(ult, X)) = /F Wa(u(t, X)) dX,

where W7 and Wy are defined in the equations (7) and (8), respectively. By differentiation with respect
to time variable, we get

Kt X)) _ /F WX gy /F vs(x) 00D 4

_ [ dWi(u(t, X)) /IVSI2
= /F o 0X —dsSo | o dX

<0

and
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X)) _ [ XD g [ )y XD o
I r

dt dt a8
_ [ @ (ult, X)) i/|VSP a/lvﬂz
_A; G AX —dsSt | S dX —dist | S dx

2
- dlﬁsS*I*/ @dx
I It

<0.
Applying the LaSalle invariance principle [13], we deduce the results (i) and (ii). |
In the present work, we gave an approach to constructing Lyapunov functions for some kinds
of perturbed reaction-diffusion systems by delay terms based on the method presented in [4]. This
approach is based essentially on finding the original Lyapunov function for the corresponding reaction-
diffusion system and generalizing it to delay cases by adding some spatio-temporal integral terms.

This method has been applied to several delayed reaction-diffusion biological models, for example,
see [14-24].
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Ornsap nobynosn dyHkuii JlanyHosa ans peakuiiHo-andysiviHnx
CUCTeM i3 3ani3HeHHAM Ta 1X 3acTocyBaHHA B bGiosorii

Hasoxm @1 Sdis P.1, Asiz-Amnayi M. A2, Arpiuge A3, Myccayi A.4

L Kagedpa mamemamuru, darysvmem npupodnuvus nayk, Yuisepcumem Ion Todain,
Vnisepcumemcvre micmeuko, BP 133, Kenimpa, Mapoxxo
2 Hopmandcvrut ynisepcumem, Ppanuyis; F-76600 Taep,
FR-CNRS-3335, ISCN, 25 eya. @iain Jlebon, 76600 TI'asp, Ppanis
3 Kagedpa mamemamuru ma ingopmamuru, Hauionarvna wrora npuriaonus Hayx,
Vuisepcumem Cyamana Myasas Caiman, Beni Amip, n.c. 8106, 25000 Xypibea, Mapoxko
4 Kagedpa mamemamuru, daxysvmem nayx, Yrisepcumem Tremcena, Ansrcup

JocutizkeHHs BMOTUBOBAaHE JIEAKUME OIOJIOTIYHUMHU Ta €KOJIOTIYHUMHU MPOOJEMAMHU, IO
BUHUKAIOTH Y€pe3 PeakIliitHo-1udy3iiiHy cucreMy i3 3aTpuMKaMy Ta KPAHOBUMHI yMOBAME
tuny Heiimana; 3raroun moB’s3ani 3 HuMu QyHKI JIsmynoBa s 3Budaitaux qudepen-
MiaJbHUX PIBHAHB i3 3aTPUMKOIO, PO3TJIIHYTO METOJI BU3HAUEHHs 1XHIX dyukmiit Jlsmy-
HOB& JIsi BCTAHOBJIEHHS JIOKAJILHOI/TiI06aJbHOI cTifikocTi. 3a CyTTIo, MeTOo/| 3aCHOBaHUI
Ha JIO/IABaHHI iHTErpaJbHUX UJIeHiB 710 BimmosigHol dyukiii JIsmyHnoBa st 3BUYIATHIX
mudepeH iaabHuX piBHsHb. HOBMIT miaxin He € 3araJpbHUM, aje BiH 3aCTOCOBHUN Y IITHPO-
KOMY CITEKTPi peakIiitHo-audy3iitHux Mojeseit 3 oguiero abo OiIbIle TUCKPETHOIO 3aTPIM-
KOIO, PO3IOJIiJIEHOI0 3aTPUMKOI0 Ta ix Kombinariieio. I[Tlo6 mpoimocTpyBaTu oTpuMaHmit
pe3ybTaT, MOAAHO 3aCTOCYBAHHS J0 €I1i/IeMioJIorivaHol Mojiesti peakiiil audysil 3 1acoBoiO
3aTPUMKOIO (JaTeHTHuUil nepion) i HenpsiMuM eeKTOM Tepeiadi.

Knrouosi cnoBa: peaxuitino-dugysitina cucmema i3 3ampumroro; Gynryis Jlanynosa;
enidemiono2iuna modeasv; aamenmuut nepiod; wucao Ry.

Mathematical Modeling and Computing, Vol. 10, No. 3, pp. 965-975 (2023)





