
MATHEMATICAL MODELING AND COMPUTING, Vol. 10, No. 3, pp. 617–624 (2023)
Mathematical

M
odeling

Computing

Multi-scale hybrid and agent-based modeling of cell differentiation

Benmir M.1, Bellaj K.1, Boujena S.1, Volpert V.2

1Fundamental and Applied Mathematics Laboratory, Ain Chock Faculty of Sciences,
Hassan II University, Casablanca, Morocco

2Camille Jordan Institute, UMR 5208 CNRS, University Lyon 1,
69622 Villeurbanne, France

(Received 16 February 2023; Revised 12 July 2023; Accepted 13 July 2023)

In this work we propose a hybrid model of cell population dynamics, where cells are consid-
ered as discrete elements whose dynamics depending on the intracellular and extracellular
regulation. The model takes into account different cell types which include undifferenti-
ated cells and two types of differentiated cells. We use a simulation algorithm based on
the dynamical systems approach on the one hand, and the multi-agent approach on the
other hand. Both approaches have been implemented using NetLogo and Python. We
discuss cell choice between two types of differentiated cells and analyze the coexistence of
cell lineages.
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1. Introduction

Multi-scale models in biology actively develop in order to describe physiological processes. There are
various approaches to multi-scale modeling and numerous applications (see [1–5] and the references
therein). Cell populations in multi-scale models can be described by discrete or continuous methods.
Cellular automata (CA), lattice Boltzmann method and various particle methods are among them [6–9].
These approaches allow detailed description of cell behavior, cell-cell interaction and other aspects of
complex biological media. On the other hand, they are applicable for a relatively small number of cells
and they do not admit analytical study. Continuous models are represented by ordinary differential
equations (ODEs) and partial differential equations (PDEs) for cell concentrations. In particular, this
can be reaction-diffusion equations taking into account random cells motion and their birth and death.
Navier–Stokes equations and Darcy equations describe convective motion of the medium.

Multi-scale models include intracellular and extracellular regulations of biological cells. Intracellu-
lar regulation is particularly important because it determines the cell fate, that is the choice between
its self-renewal, differentiation and apoptosis. It can be described by ODE for intracellular concentra-
tions, Boolean approach or by probabilistic methods if a small number of molecules participate in this
regulation and their concentrations cannot be considered. Extracellular regulation can be effectuated
by various local mechanisms in the given tissue (growth factors, cytokines) or by means of global con-
trol from other organs and tissues through endocrine signaling. Extracellular substances diffuse in the
tissue and influence intracellular regulation of cells. Distribution of these substances can be described
by reaction-diffusion equations.

Hybrid discrete-continuous modeling techniques can be used to simulate the behavior of cell popu-
lations and the regulation of intracellular and extracellular factors. These models involve representing
cells as individual objects, using lattice or off-lattice methods to describe their movement and in-
teractions. Intracellular regulatory networks are modeled using ordinary differential equations, while
extracellular substances are described using partial differential equations. These models can be used
to study complex biological processes such as hematopoiesis [10–12].
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Multi-scale biological models can be categorized into continuous models, discrete models, and hybrid
models, which combine the strengths of discrete and continuous approaches. Continuous models are
based on ODEs or PDEs to describe the cell fate choice. However, in some situations, individual
and agent based modeling (ABM) approaches, treating the cells as discrete objects with predefined
interaction rules, may offer an improvement over differential equation methods.

The ABM approach provides a natural description, where ABM agents interact and influence each
other, make individual decisions, learn from their experiences and adapt their behaviors. They are
therefore better adapted to their environment. A number of ABM simulation packages have been
developed and applied to cell biological research, among them [13–16].

In this work we model cell differentiation using a hybrid agent-based approach for a multi-scale
model. In Section 2, we present a hybrid agent-based approach of cell differentiation using ABM and
PDEs. The cell behavior is described using a multi-agent model in NetLogo, while the extracellular
concentrations are described by reaction-diffusion equations. Section 3 provides results of the simu-
lations that illustrate the impact of intracellular and extracellular regulations on cell differentiation.
Finally, in Section 4, we discuss our results and future research directions.

2. Multi-scale model by intracellular and extracellular regulations

In this section we consider the problem of lineage choice based on the one in [1], where undifferentiated
cells differentiate into one of two types of differentiated cells. There are three cell types, undifferentiated
cells A, differentiated cells B1 and B2. Cells A contain two intracellular proteins, p1 and p2, which
determine their differentiation into cells B1 or B2. Their concentrations are described by ordinary
differential equations:

dp1
dt

= F1(p1, p2) + b11u1 + b12u2, (1)

dp2
dt

= F2(p1, p2) + b21u1 + b22u2. (2)

The functions F1 and F2 will be specified below. Extracellular concentration u1 is produced by differ-
entiated cells B1, and u2 is produced by cells B2. Concentrations u1 and u2 influence production of
intracellular proteins p1 and p2, and they are described by the equations

∂u1
∂t

= d1∆u1 +W1, (3)

∂u2
∂t

= d2∆u2 +W2. (4)

Cells of type A, cells B1 and/or B2 are located at space x in the environment Ω(t). If p1 > p∗1, then
cell A changes its type to B1, if p2 > p∗2, then cell A changes its type to B2. Each cell is represented
as a circle on the plane and the governing rules for cell behavior are described in Section 3.

We introduce concentration cA of cells A, concentration c1 of cells B1 and concentration c2 of cells
B2. At each space point x these three concentrations can have only two values, 0 or 1 depending on
whether this point belongs to one of the cell types. We set

W1 = k1c1, W2 = k2c2.

This means that cells B1 produce u1, cells B2 produce u2. The rates of production are zero if the
concentrations of the corresponding cells are zero.

2.1. Bistable kinetics

In order to study lineage choice, we introduce intracellular regulation with bistable kinetics.
We set

F1(p1, p2) = k1p1(1− a11p1 − a12p2), F2(p1, p2) = k2p2(1− a21p1 − a22p2).
If the extracellular variables vanish, u1 = u2 = 0, then system (1), (2) is a closed system of two ordinary
differential equations for intracellular variables p1, p2. It has four stationary points, P0 = (0, 0),
P1 = (1/a11, 0), P2 = (0, 1/a22) and P3 = (p01, p

0
2), where p01 and p02 is a solution of the system

a11p1 + a12p2 = 1, a21p1 + a22p2 = 1.
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We will suppose that it has a positive solution. The point P0 is always unstable, the points P1 and
P2 are stable and P3 is unstable if a21 > a11 and a21 > a22. The point P3 is stable if these inequalities
are opposite. In this case P1 and P2 are unstable. Let us consider the case where the points P1 and
P2 are stable. If the initial condition of this system belongs to the basin of attraction of one of them,
then the trajectory approaches this stationary point. If it is P1, then the value p1 will reach the critical
value p∗1 and the cell will differentiate into cell B1. If the trajectory approaches the stationary point
P2, then the value p2 will reach the critical value p∗2, and the cell will differentiate into cell B2. These
cells will produce extracellular substances u1 or u2 which will diffuse in the extracellular matrix and
influence intracellular regulation of other cells.

2.2. Coexistence of cell lineages

In this section we consider the intracellular kinetic functions in the form
F1(p1, p2) = k1p

2
1(1− a11p1 − a12p2)− s1p1,

F2(p1, p2) = k2p
2
2(1− a21p1 − a22p2)− s2p2.

(5)

The stationary points of the corresponding system
dp1
dt

= F1(p1, p2),
dp2
dt

= F2(p1, p2) (6)

are as follows: P0 = (0, 0), P10 =
(
p
(1)
1 , 0

)
, P20 =

(
p
(2)
1 , 0

)
, where p(1)1 and p

(2)
1 are solutions of the

equation

p1(1− a11p1) =
s1
k1
,

P01 =
(
0, p

(1)
2

)
, P02 =

(
0, p

(2)
2

)
, where p(1)2 and p(2)2 are solutions of the equation

p2(1− a22p2) =
s2
k2
,

and also up to four stationary points with positive coordinates which can be found as solutions of the
system of equations

p2 =
1− a11p1

a12
− s1
a12k1

1

p1
, p1 =

1− a22p2
a21

− s2
a21k2

1

p2
.

It can have from zero to four positive solutions depending on the values of parameters.
It can be easily verified that the point P0 is stable. Indeed, the corresponding matrix has negative

eigenvalues. Let us assume that 0 < p
(1)
1 < p

(2)
1 and 0 < p

(1)
2 < p

(2)
2 . Then the points P20 and P02 are

also stable. In case of four stationary points with positive coordinates, one of them is stable.
There are two different patterns of solutions depending on parameters bij . Let us consider two

specific examples. If b11, b22 > 0 and b12 = b21 = 0, then the substances ui, i = 1, 2 produced by cells
Bi stimulate production of intracellular substances pi. In their turn, they lead to differentiation of
cells A into cells Bi. Therefore we observe here a positive feedback between intracellular regulation,
extracellular regulation and cell differentiation. One of the cell lineages B1 or B2 dominates another
one. It expands on the whole space environment. All cells differentiate into only one cell lineage.

In the second example, b11 = b22 = 0 and b12, b21 > 0. This means that the substance u1 produced
by cells B1 stimulate production of the intracellular substance p2, while u2 stimulates production of p1.
Hence there is a negative feedback, and cells B1 upregulate production of B2, while cells B2 promote
productions of cells B1. Behavior of the system is qualitatively different in this case compared with
the previous one. Both types of differentiated cells can coexist here.

3. Hybrid agent-based approach

In this section, a hybrid model for cell differentiation is presented. The governing rules for cell behavior
are modeled using NetLogo: a programming language and modeling environment for agent-based
systems. The substances diffusion in the cell environment is done through a diffusion equation and
solved using Thomas algorithm with Python. The interaction between Python and NetLogo is ensured
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by an extension implemented in NetLogo which allows the exchange of data between two programs.
The biological rules governing the cell behavior in Netlogo according to their environmental conditions
are presented below.

The differentiation environment Ω in NetLogo is modeled as a square grid divided into patches
where the agents move randomly: Ω = ∪kPatchk. The evolution of the cell differentiation is followed
in a time interval [0, T ]. Each agent represents a cell. Two different cellular states are defined: the
undifferentiated state A and the differentiated states B1 and B2. The substances u1 and u2 are
diffused through Ω, each Patchk has its own level of substances concentrations. The cells move
randomly without collision between them within the patches and meet the biological criteria listed in
the paragraph below.

3.1. Cellular automata rules

At each time iteration, two concentrations of proteins p1 and p2 for each undifferentiated cell are
calculated and the following rules are applied to each cell:
— B1 and B2 cells produce the substances u1 and u2 respectively in a circle with radius 1 around the

cell center.
— Each A cell consume the substances u1 and u2 stimulating the production of the intracellular

proteins p1 and p2.
— A cell can differentiate into B1 or B2 cell:

if p1 > p∗1, then A differentiate into B1,
if p2 > p∗2, then A differentiate into B2.

3.2. Hybrid model implementation

The hybrid model uses the equations for extracellular substances, intracellular regulation and for the
agent-based model defined through the cellular automata rules. The algorithm acts as follows:

— The first step is the initialization of the model on NetLogo:
1. N undifferentiated cells and N1 and/or N2 differentiated cells are created in the environment.
2. Each Patchk is supplied with its initial substances concentration u01 and u02.

— At each time iteration t:
1. The substances concentrations ut1 and ut2 are collected from the patches and sent to Python as

the initial conditions.

2.

{
∂tu1 − d1∆u1 = 0,
∂tu2 − d2∆u2 = 0

are solved in Python.

3. The new values of the concentrations ut+1
1 and ut+1

2 , are sent back to NetLogo and redistributed
to the patches.

4. The cells interact with their environment according to the cellular automata rules.
5. The substances levels in each patch are reduced by the amounts of substances consumed by the

undifferentiated cells.

4. Simulations

Let us study how the dynamics of undifferentiated cells change when the substances are introduced.
We assume that the substances u1 and u2 diffuse through the tissue and they are consumed by undif-
ferentiated cells. According to the initial cell distribution, we consider two cases: case 1 where only
one type of undifferentiated cell B1 is considered, and case 2 with two types of undifferentiated cells
B1 and B2. In the case 2, we treat the lineage choice, in the case of positive feedback, only one lineage
of differentiated cells will finally appear and in the case of negative feedback, both of them can coexist.

The initial setup used for case 1 is shown in Figure 1 and the numerical values of the parameters
used are given in Table 1, and for case 2, the numerical values of the parameters used are given in
Table 2.
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Table 1. Summary of the parameters used
in the cell differentiation process.

Table 2. Summary of the parameters used
in the cell differentiation process.

a11 a22 a12 a21 k1 W1 p∗1
0.5 0.5 0.1 0.1 0.1 0.1 1.5
b11 b22 b12 b21 k2 W2 p∗2
0.1 0.1 0 0 0.1 0.1 1.5

a11 a22 a12 a21 k1 W1 p∗1
1 1 0.5 0.5 0.1 0.1 1.5
b11 b22 b12 b21 k2 W2 p∗2
0.1 0.1 0.1 0.05 0.1 0.1 1.5

Fig. 1. Left: initialization using NetLogo: N undifferentiated cells and N1 and/or N2 differentiated cells are
created in the environment, with N = 100, N1 = 40 and N2 = 0. Middle: the distribution of cell types,
different colors to each cell depending on its type are assigned, the A cells are green, the B1 cells blue and the
B2 cells red. Right: the distribution of the substance concentrations, the patches have a gray scale proportional
to the substance concentration. A patch with the maximal concentration is white, while a patch with zero

concentration is black.

Fig. 2. Evolution of cell differentiation at iterations t = 30 (top) and t = 50 (low). Left: A number of cell
population for different cell types. Middle: undifferentiated cells A differentiate into cells B1. They produce
extracellular substance u1. It stimulates production of the intracellular substance p1. When it reaches the
critical value p∗1, the cell differentiate. Differentiated cells gradually fill the plane. The stationary points P1

and P2 are stable, concentration p2 in the intracellular regulation remains zero. Right: the background color of
the patches begins to lighten as the substance u1 levels increases. Cells A therefore differentiate into B1 in the
patches where the substance u1 level is extremely high, that stimulates production of the intracellular substance

p1, when it exceeds its critical value p∗1.

Due to the choice of initial condition, the intracellular variable p1 grows and approaches its value at
the stationary point P1. When it reaches the critical value p∗1, the cell differentiates into cell B1. Cells
B1 produce the extracellular substance u1 which diffuses along the radius of 1 around it, and stimulates
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further production of the intracellular variable p1. Since the initial concentration p2 equals zero, it
remains zero, and the model is reduced to a single intracellular equation and a single extracellular
equation. The simulations results are presented in Figure 3.

Fig. 3. Evolution of cell differentiation at iterations (from the top to the low) t =
50, t = 90 and t = 145. Left: A cell population for different cell types. Middle:
undifferentiated cells A differentiate into cells B1. They produce extracellular
substance u1. It stimulates production of the intracellular substance p1. When it
reaches the critical value p∗1, the cell differentiate. Differentiated cells gradually
fill the plane. The stationary point P3 is stable. Both concentrations p1 and p2
converge to some positive values. Depending on which of the critical values is
reached first, the cell A will differentiate into B1 or B2. However, for the value
of parameters in Table 2. The cells A differentiate only in cells B1. Right: the
background color of the patches begins to lighten as the substances u1 and u2

levels increases.

For other choice of
initial conditions and pa-
rameters, two types of
differentiate cells can be
present in the begin-
ning. However one of two
cell lineages will dom-
inate another one and
will expand on the whole
environment. Therefore
undifferentiated cells will
differentiate only in one
cell lineage. Two cell lin-
eages cannot coexist in
this model. This conclu-
sion remains true even in
the case where the sta-
tionary point P3 is sta-
ble. The intracellular
concentrations p1 and p2
will converge to this sta-
tionary points. If the
critical values p∗1 and p∗2
are less than the values
at this stationary point,
then cells will differenti-
ate. Depending on which
of the critical values is
reached first, the cell will
differentiate into B1 or
B2. As before, only one
cell lineage is obtained.
Figure 4 shows the dis-
tributions of intracellular
variables p1 and p2 for

the values of parameters in Table 2. Though p2 grows and reaches the same final value as p∗2, it
reaches its critical value after p1. Therefore cells differentiate only into cells B1.

Let us note that the patterns with two lineages of differentiated cells can be obtained only in the
case where the stationary point P0 of system (5) is stable. Otherwise, if it is unstable, then only
one cell lineage will be obtained even in the case of negative feedback between cell differentiation and
production of intracellular proteins. This phenomena can explained by the fact that when two cell
lineages appear, they produce the extracellular substances u1 and u2 which diffuse and influence undif-
ferentiated cells where production of intracellular proteins p1 and p2 begins influence undifferentiated
cells where production of intracellular proteins p1 and p2 begins. Even if the concentrations of u1
and u2 are small, they are sufficient to initiate intracellular reactions since the point P0 is unstable.
Therefore even small extracellular concentrations determine the future choice of undifferentiated cells
between two cell lineages far ahead the front of differentiated cells. One of them will finally win this
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competition, and all differentiated cells will belong to the same type. If the point P0 is stable, then
small concentrations u1 and u2 will not be sufficient to start intracellular reactions. They will begin
only when differentiated cells are sufficiently close. If these are cells B1, then they will stimulate
production of p2 and vice versa. This negative feedback results in the coexistence of two cell lineages.

Figure 4 shows, for the case b11 = b22 = 0 and b12 = b21 = 0.1, the coexistence of cell lineages in
the case where undifferentiated cells are stable from the point of view of intracellular regulation and
where the feedback between cell differentiation and intracellular regulation is negative.

5. Conclusion

Fig. 4. A snapshot of solution. Evolution of cell differentiation at iteration t = 296.
Left: A number of cell population for different cell types. Middle: Undifferentiated
cells coexist with both types of differentiated cells B1 and B2. Right: the substance
u1 produced by cells B1 stimulate production of the intracellular substance p2, while

u2 stimulates production of p1.

The aim of this work
is to present a hybrid
method to multi-scale
modelling of cell dy-
namics with intracel-
lular and extracellular
regulations. We used
agent-based modeling
to simulate the be-
havior of cells, while
the diffusion of sub-
stances in the envi-
ronment is described
using reaction-diffusion
equations and the intracellular regulation is decribed using ODEs. The simulations show how the in-
teraction of these regulations determine the cell fate.

Coexistence of various cell lineages in hematopoiesis is crucial for maintaining healthy blood cell
production. The process starts with hematopoietic stem cells, which differentiate into different blood
cell types such as red blood cells, platelets and white blood cells. The differentiation process involves
multiple decision points where cells choose into which lineage they differentiate. Therefore, understand-
ing the conditions that allow for coexistence of different cell lineages is important for understanding
the regulation of blood cell production.

The results of this work show that coexistence of two cell lineages requires some particular condi-
tions. If we have a uniform population of undifferentiated cells, and we initiate their differentiation,
then usually only one cell lineage persists. Another one disappears even if both of them were initiated
at the same time. In order to preserve both cell lineages we need to have stable undifferentiated cells
from the point of view of intracellular regulation and negative feedback between cell differentiation
and intracellular regulation.

The hybrid model developed in this work can also be extended to take into account the choice of
cell fate between self-renewal, differentiation and apoptosis.
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Багатомасштабне гiбридне та агентне моделювання
клiтинного диференцiювання
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2Iнститут Камiлли Джордан, UMR 5208 CNRS, Унiверситет Лiона 1,
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У цiй роботi пропонується гiбридна модель динамiки клiтинної популяцiї, де клiти-
ни розглядаються як дискретнi елементи, динамiка яких залежить вiд неперервної
внутрiшньоклiтинної та позаклiтинної регуляцiї. Пропонується гiбридна модель, яка
враховує внутрiшньоклiтиннi та позаклiтиннi регуляцiї бiологiчних клiтин i рiзних
типiв клiтин, якi включають недиференцiйованi клiтини та два типи диференцiйо-
ваних клiтин. Використовується алгоритм моделювання, який заснований на пiдходi
динамiчних систем, з одного боку, i багатоагентному пiдходi, з iншого боку. Обидва
пiдходи реалiзовано за допомогою NetLogo та Python. Обговорюється процес того, як
клiтина, яка диференцiюється, вибирає мiж двома типами диференцiйованих клiтин,
i розглядаються лiнiї спiвiснування клiтин.

Ключовi слова: диференцiювання клiтин; багатомасштабна гiбридна модель; ба-
гатоагентне моделювання.
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