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1. Introduction

Studying the link between a scalar response variable Y given a new value for the explanatory variable
X is an important subject in nonparametric statistics, and there are several ways to explain this link.
For examples, the conditional expectation, the conditional distribution, the conditional density and
the conditional hazard function.

We are interested in estimating the nonparametric regression for surrogated scalar response. We
are based on the following model:

Y =m(X)+e¢,
where m is the regression operator, X is a functional covariate which belongs to a semi-metric space
(F,d), Y is scalar response variable and ¢ is a random error satisfies E(¢]X) = 0.

The problem we are addressing in this work i.e., the unavailability of some data in the response
variable, can be motivated both from a practical and a theoretical point of view. In fact, it may be
difficult or expensive to exactly measure some response observations Y. Our goal is then to improve
the modeling by filling /recovering some of the information missed in the response variable with this
surrogate variable. In this case, one solution is to use the help of validation data to capture the
underlying relation between the true variables and surrogate ones. Some examples where validation
data are available can be found in Duncan and Hill (1985) [1], Carroll and Wand (1991) [2] and Pepe
(1992) [3].

To estimate the generalized regression function for surrogate data mp(x) we adopt an approach
based on validation data ideas. In fact, the idea is to introduce the information contain in the validation
data and surrogate variable Y of Y. Inside the simulation study of Section 4, the surrogate variable
Y; of Y;, for all i € Iy was generated from Y, = pZ; + g;, where Z; is the standard score of Y; and
g; ~ N(0,/1 — p?), in such a way that the correlation coefficient between Y; and Y; is approximately
equal to p which would not be controllable in practice but we can clearly notice that the quality of our
mp depends on the size n of the validation data and p. Specifically, our estimator greatly better as
the value of n and p increases.

The main objective of this paper is to purpose the uniform almost complete convergence (with rate)
of our estimator mp and we study its performance against my in term of prediction section 4.

Section 3 is dedicated to some probability tools for functional variable and the uniform rates of
convergence are stated therein. The remark 1 show that the rates of convergence of our estimator
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generalizes the results given by Ferraty and Vieu (2006) [4] and F. Ferraty, A. Laksaci, A. Tadj, P. Vieu
(2010) [5]. This paper begins with the construction of the estimator of mpg(x) in section 2, in section 3
we present the almost-complete, then we study the performance of the estimator by computing the
relative mean squared error (RMSE) by using a testing data. Finally, we display the superiority of our
estimator in term of prediction when we are lacking complete data by using simulated data.

The choice of Y (the surrogate variable of Y') in practice is difficult but it is important for the
quality of our estimator in effect we can cite as an example two diseases (Y and f/) presenting similar
symptoms, more that there is a strong correlation between these two diseases, more our estimator is
better. So, there exists a wide scope of applied scientific fields for which our approach could be of
interest for examples Biometrics, Genetics or Environmetrics and this approach can be helpful for lot
of statistical models when we are lacking complete data.

2. Estimation procedure

Let (X,Y) € F x R denotes a random vector, where (F,d) is a semi-metric space equipped with the
semi-metric d, we are concerned with the estimation of a generalized regression function defined as
following:
m(z) =E[p(Y)| X =2] VrelF. (1)

Where ¢ is a known real-value Borel function. The model 1 has been studied by [6] when p(Y) =Y.
Therefore, let (X1,Y7),...,(Xn,Yn) be a random sample consisting of independent and identically
distributed (i.i.d) variable from the distribution of (X,Y).

Let o (x) be the classical kernel estimator which is obtained with the complete data (Ferraty and
Vieu (2006) [4])

N
o) =Y YiW ni(x),
=1

where
e (452)

S K ()

with (X1,Y7),...,(Xn,Yn) is a random sample consisting of independent and identically distributed
variable from the distribution of (X,Y’). But the problem here is the unavailability of some data in

Wini(z) = (2)

the response variable:
(X1 (t); Y1)

(Xi(t); 777)

(Xj(t:); 77)

(Xk(t);777)

(Xn(t); Yn)
Consequently, we are concerned with the estimation of a regression function for surrogate functional
response, we can write:

m(z) =E[p(Y)|X = 2] =E[E(p(Y)|X,Y)|X =2] VzeF.

Where Y is a surrogate variable of Y. So, we propose the regression function for surrogate functional
response as following:

(@) =Y e(Vi)Wini@) + > UX;, V) Win(@), 3)
eV jev
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Generalized regression function for surrogate scalar response 627

where

E o(Y; WQMXJ,Y]) VieV, (4)
. eV
with

w ([ 4X5Xi Yi—Y;
( ( ;L )7 . J)
2,71,7;( j’ j)

d(X;,X;) Y-V
Zzevw<%v%>

Where K is a kernel function and both h = hy, b = by are a sequence of positive reals that tends
to zero when N goes to infinity. Let us introduce the integer n (n < N) that corresponds to the size
of the validation set V. Let V be the complementary set of V in the set {1,2,..., N}. Where W is
a kernel function which is defined on R? and b is sequence of real numbers which tends to zero. For
sake of simplicity, we will use only one kernel. In sense that W (-,-) = K(-)K(-). This consideration
is because the choice of the kernel has less influence in the performance of the estimator. Remarkably
our goal is then to improve the modeling by filling/recovering some of the information missed in the
response variable with this surrogate variable as following;:

(Xa(): Y1) (Xa():Y) (X1(2); Y1)

(5)

CG0:777) (G0 (X U(XL )
KG@0:707) (G0 (G0:UX,7))

K0:777) (Xu(®:Y)  (Xk(t) U(Xes T2)

3. Some asymptotic properties

In the sequel, when no confusion is possible, we will denote by C' and C’ some strictly positive generic
constants, F is a semi metric space and:
m?(ac) =E[p(Y)|X =2,Y].
Recall that a semi-metric (sometimes called pseudo-metric) is just a metric violating the property
[d(z,y) = 0] = [z = y].

Now S is a fixed subset of F and for n > 0 we consider the following n-neighborhood of Sz:

S}:{xe]:ﬂx d(z', ) 77}
Definition 1. One says that the rate of almost complete convergence of (X, )nen to X is of order
uy, if and only if

Jeg > 0, ZP(|Xn — X| > gqup) < 00,
neN

and we write

Xn — X = Og.co(tn).

We define the Kolmogorov’s entropy as follows.

Definition 2. Let Sr be a subset of a semi-metric space f and let ¢ > 0 be given. A finite set of
point x1,xa,..., Ty, in F is called an e-net for Sy if S C Uk 1Bz, €).

The quanmty s, = log(N;), where N, is the minimal number of open balls in F of radius € which
is necessary to cover S, is called the Kolmogorov’s e-entropy of the set Sr.
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This concept was introduced by Kolmogorov in the mid-1950’s see [7], it represents a measure of the
complexity of a set, in sense that, high entropy means that much information is needed to describe an
element with an accuracy €. Therefore, the choice of the topological structure (with other words, the
choice of the semi-metric) will play a crucial role when one is looking at uniform (over S) asymptotic
results. For more examples see [5].

We consider the following assumptions:

(H1) For all x in the subset S,

0<Co¢(h) < P(X € B(z,h) <C'¢(h) <
0<CM%)<P( €[g—bg+10]) < M()
Co(h)o(b) < E[K (h~'d(z, X;)) K (b7} (§ — Y1))] < C’¢>< )6 (b);
(H2) Vzi,22 € Sr and Vie N ]
(¥ (1) Ki (1) — m¥(22) K(22)| < C|Ki(21) — Ki(x2)],
and there exists 81 > 0 such that Vxq,x2 € S¥ and
Im(z1) — m(z2)| < Cd (a1, 22);

(H3) Vm =2, E(|e(Y)|"X) < C < oo;
(H4) K is a bounded and Lipschitz kernel on its support [0, 1], such that —oco < C' < K'(t) < C’" < 0,
(H5) The functions ¢ and g, are such that:

(H5a) 3C >0, 3o > 0, Vn < no, ¢'(n) < C, and

n
30 >0, T > 0, Y0 < 1 < o, / $(u) du > O (1),
0

(H5b) for n large enough:
(logn)* _ (logn)* logn) _ ng(b)p(h) _ ne(h)
nolh) ~ no) ok ~ V5 < T logn " logn
(H6) The Kolmogorov’s e-entropy of Sr satisfies

Zexp{ B)s <logn>} < o0, for some > 1.

Note that (Hb5a) implies that for n large enough

0 < é(h) < Ch. (6)
The condition (H5b) implies that:
Y5z (€) sz (€)
wotn) 0 gerem "
The condition (H6) implies that:
> N(SF)F < o (8)

The following Theorem states the rate of convergence of mpg(x) and mg(x) for the surrogated scalar
response, uniformly over the set Sz. The asymptotics are stated in terms of almost complete conver-
gence (denoted by a.co.) which imply both weak and strong convergences (see Section A-1 in Ferraty

and Vieu (2006) [4])
Theorem 1. Under the hypotheses (H1)—(H6), we have

wS logn wS log N wS loi n
sup [rig(z)~m(z)| = O (hﬂl)+0a.co.< %)wa.m( %)wam( W)

z€SFE

where h is the concentration of the probability measure of the functional variable X in the ball with

center x and radius h and g, (105"

) is the entropy function.
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Remark 1. This paper has stated uniform consistency results in functional setting. The fact to be
able to state results on the quantity sup,cg, |m r(x) —m(az)‘ allows directly to obtain result on quantity
!mR(m) — m(a:)! The entropy function represents a measure of the complexity of a set, in sense that,
high entropy means that much information is needed to describe an element with an accuracy € = 10%,
in fact the quality of the prediction of this estimator depends on the size n of the validation data. For
N = n (without surrogate data) we get the estimator presented by F. Ferraty, A. Laksaci, A. Tadj,

P. Vieu (2010) [5]:

5 _ B1 wsf(lo%)
sup |mg(x) — m(z)| = O(h™) + Oq.co. —si |-

z€SFE

By building a suitable projection-based semi-metric, the entropy function becomes g, (bg”) =

n

O(logn) and for N = n (without surrogate data) we get the estimator of Ferraty and Vieu (2006) [4]
(@) = m(@)] = O) + Oues (/2505

4. Numerical examples

Let my (z) be the classical kernel estimator which is obtained with the true observations in the vali-
dation data set V

o ey K (hTHd(, Xi)) (Vi)
my(x) = — 9)
Yiev K(h™d(w, X3))
And 7 (x) the classical kernel estimator which is obtained with the complete data for (such as an
example with N = 300 in the simulation below)

e (z) = ity K (h” (e, X)) (Vi)
0 SV K (hld(z, X))

Within this section we will evaluate the interest of using mg(z)
over mmy (x). We choose K the Gaussian kernel as follow: <

K(u) = \/12_7rexp{—%2}.

We generate 400 observations (X;,Y;); using following model:
Y = m(X;) +¢,
where the errors ¢; are i.i.d. according to the normal distribu-
tion N(0,5). More precisely, the functional regressors X, (t) are
defined, for any t € [0,1] by
X;(t) = sin(2nW;t) cos(2nWit) + Wit + by,

where b; ~ N(0,4) and W ~ U(0,4).

The response variable Y is generated by taking as a regres- <
sion operator:

15

Xi(t)
0

05

. : : :
m(z) = 71/0 22 (t) dt. e

Fig. 1. The panel presents 100 smooth
Let In = {1,...,300} and I; = {301,...,400} be two subsets curves of Xj.

of indices. Then, we choose A = (X;,Y;) as the learning sample and I' = {(X;,Y;)}ier, as the

i€lp
testing sample. The surrogate variable Y; of Y;, for all i € Iy was generated from Y; = pZ; + €,
where Z; is the standard score of Y; and ¢; ~ N (0, 1-— p2), in such a way that the correlation
coefficient between Y; and Y; is approximately equal to p which would not be controllable in practice. In
the sequel of this simulation study, we take p = 0.75. From the learning sample containing N = 300
functional data, we randomly choose a set V' of n validation data {(X;,Y;)}iev which allows to build
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the estimator 7y (x) of m(x). The estimator mp(z) is then constructed by using the surrogate data
{(Xi,Yi)},ep with the help of the validation data, where VUV = {1,...,N}. It should be pointed
out that for N = n (complete observations), we have my (x) = mpg(z) = mc(z). We evaluate the
performance of the estimator mpg(x) in terms of prediction, by computing the relative mean squared
error (RMSE) on the test sample:

RMSE (1) — \/Eier (he(Xi) — mr(Xi))”

n

We have run 100 replicates of the simulation process for various values of n. We computed, for
two estimators 7mpr(z) and 7y (x) the mean and relative mean squared error (RMSE) over this 100

replications. The comparison study results, for different values of percentage of validation data in
sample:
card(V) n
p(V) N 00% N 00%

The results are summarized in Table 1 obviously the quality of the prediction of two estimators depends
on the size n of the validation data.
Specifically, RMSE decrease as the value of

Table 1. mpz(x) and My (x) whereas me(x =0.75).
= (@) v(@) c@) ) n increases. On the other hand, for n = 180

0.09

0.08

0.07

0.06

estimator _p(V) Mean  RMSE that means the percentage of validation data in
iy () 60%  23.44264  0.082 sample is 60% our estimator mpg(z) is better
mp(z) 60% 24.31731  0.079 than my (z) in term of RMSE inferior.
1o () — 24.34636 _ In addition for n = 240 that means that we
my(x)  80% 244267 0.076 know 80% of data, our mpg(x) still greatly better
g(z) 80%  24.3352  0.066 as result of RMSE = 0.066. Nearly with the
el€) - 24.34636 same mean of mo(z).

mc(testing)

mR(80%) MR mV(60%) mV

testing sample

23.5330 23.5340

23.5320

1
° Ho o,

40 60 80 100

testing

=40

mR(testing) for V:

Cond. Expect.: MSE= 0.107326996798123

24.6055 24.6060 24.6065 24.6070 24.6075

Cond. Expect.: MSE= 0.116326587563139

° Jo o,

N
S
» |
S
@
S

80 100

testing

=40

mv(testing) for V:

24692 24.694 24.696 24.698 24.700 24.702

A\

&
o
o
&
T
0

20 40 60 80

testing

100

Fig. 2. A boxplots of
the SE of my and mg.

Fig. 3. Prediction by 7y (right panel), rip (middle panel) and e (left panel).

Figure 3 shows the Prediction of a scalar response from testing curves.

It can be noticed from Figure 3 that our mpg(z) is closer than my (z) to the curve e (x) which
represents the estimator with the complete sample and consequently, even the percentage of validation
data in sample is 60% our estimator mp(z) performing better than 7y ().

We present in this paper the almost-complete convergence of Generalized regression function for
surrogate scalar response given a functional random by using validation and simulated sample set. In
addition we show the performance of our estimator to reduce RMSE by employing testing data. That
verifies the effectiveness of the theoretical results, this latter gives us an exact rate of convergence of
estimator.

However, lot of issues are possible, such comparison of our estimator to other estimator for missing
data, additionally we can extend these results to the linear model.
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Generalized regression function for surrogate scalar response 631
5. Proof of Theorem 1
Firstly, note that:
ieV=ie{l,...,n},
jeV=je{n+1,...,N},
mY (z) = E[p(Y)|X = ,Y].
From now on, we will denote by C' is a generic nonnegative real constant, and we will take
__logn
- —
Observe that, according to (H1) and (H4) we have
Ve e Sr Co(h) <E[K:(z)] < C'¢(h). (10)
Note that (Hb5a) implies that for n large enough
0< ¢(h) <Ch. (11)
The condition (H5b) implies that:
b5, (0) log n
d . 12
nqﬁ(h)_)O and —= — 0 (12)
The condition (H6) implies that:
D N(SF)'F < o0 (13)
n=1

Firstly, we write

) = m(e) = D e Wini(w) = D m" (@) Wani(w) = 3 m (@) Wi (@)

1% i€V jev
N ~
+ Y UK, Y)W j(@) + Y mY (@)W pi(x) — mo(z)
jev i=1
with B
El - Z‘:/ (SD(Y;) - mYZ (Xz))Wl,n,z(x)a
1€ 5
By = 3 (U(X},Y;) —mYi(X;))Win(2),
JeEV
N v
Es=5" (m (X;) — m(x))Wlm(x)
i=1
Furthermore, we put
(25
Ai(x) E[K<d(X]f,x)>]
and we define ) )
Fi(z) = — >0 Ai(x),
ey

1
a(ey) = 1 T (p04) = m¥ (X)) Aute).
Fala) = o 3 (7 (X)) — m(a) ()
=1
By the definition of #; and 7s:
_ 1 Folx — E(#o(x E(A2(x7y))
Ey = 7ql(a:)( 2( 7y) E( 2( 7y))) + fl(x) )
_ 1 Falx — E(fa(z E(fi))(x?y))
E3 = fl(x)( 3( 7y) E( 3( 7y))) + fl(x)
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Lemma 1. Under the hypotheses (H1) and (H4)-(H6), we have
R g (P8
sup [71(2) = 1] = Oaco ( %)
z€SF

and
P f <1 )
Z <m1€nsfm 2) <o

Proof of this lemma is detailed in [5].
Lemma 2. Under the hypotheses (H1), (H2) and (H4)-(H6), we have

sup [E[fa(2)]] =0, sup [E[f5(2)]| = O(h™).

zeSFE zeSFE

Proof. By stationarity,

|E[Fo(2)] | = ‘E [Al(l’)E[(Cﬁ(Yi) —m" (Xl))’Xl]H
= |E[A1(2)E[p(Y7)| X1] — m(X1)]|
=0,
and
E[f3(2)]| = |E[A (z)E[(m (Xl) —m(z))|X1]]|
E[p(Y:)|X1] — m(a)]]]
= !E[Al(aj)m(Xl) — (:E)]] ‘
Under (H2) we obtain
Vo € Sr, E[fg(x)” gChﬁl. |
Lemma 3. Under the assumptions (H1)-(H6), we have
sup |r2 E[fg(ac)ﬂ = Oq.co. < %:gn)) , sup ‘7‘3 E[fg(x)]‘ = Og.co. < %) )

z€SFE r€ESE

Proof. We treat only the first case, the second result can be treated by the same arguments. Firstly,
to do that, we simplify the notation by denoting for all i =1,...,n,

Ki(z) = K(h 'd(z, X;)).
Observe that, according to (H1) and (H3)
Vre Sy C¢(h) < E[Ki(x)] < C'¢(h). (14)

Next, we denote by x1,...,2n.(s,) an e-net (see Kolomogorov and Tikhomirov (1959) [7]) for Sx.
Furthermore, for all z in Sx we put

k() = i d(w, zx).
() = 218, MR 5y )

Now we use the following decomposition

|Po(x) — Elfa(2)]| < sup |fo(x) — Pol@r())| + sup |Po(@y(m) — Elf2 (@)
TrESF zeSF

T1 T2

+ xsellsp |E T9 ij( ))] E[fg(x)” .

T3
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For the term T7:

T, = sup Z

(é (V) [Ki() — Ki(en)] + [m(on) Kiar) — mR(w)Ki(w)])>‘

veSr nE[K (z)]
< sup Z!@ I EKi(2) = Ki (@) L a,n)uBg ).h) (Xi)-
zeSy N

Note that we have used the fact:
‘mR(xl)Ki(xl) — mR(ajg)Ki(xgﬂ < C|Kz(a:1) - Kl(xg)‘
The Lipschitzianity of the kernel K on [0, 1] gives

ep(Yi) 4
;;Z with  Z; = = Y0 LB (e h)UB (a0 h) (Xi)-

By (H3) we have
E(Je(Y)[™) = E(E (lp(Y)["]X)) < C < o0

So, we get
Ce™
Z1|™m —_ 15
B(ZI™) < gy (15)
By using the result (11) together with the definition of € we have for n large enough: # < C.
So, we get:
Cgm_l
"<
Now, By applying Corollary A.8 in Ferraty and Vieu (2006) [4] with a? = 7 qf(h), one can get;:
1 g _ elogn
;Z;Zi—EZI‘i'Oa.co. ( nhqb(h))'
Finally, applying (15) for m =1
_ E elogn
T, =0 (h) + Oa.co, ( nhd)(h)) .
Using (H5b) together with (12) and the fact that:
Vs ( 1% (logn)
{ ZZ F(h)} {n§ > ¢(h)>}’
we get:
Vs (e)
T1 = Oq.co. ( nsg(hi > . (16)
Similar steps allow to get:
Ysx(e)
Ts = O < e ) : (17)

It remains to evaluate T5. Indeed, we write

P (Tg > wsf(gf))) =P ( max ‘fz(xk) - Efz(a:k)| > _ﬁs(;(%))

ke{l,..,.N-(SF)}

< N.(SF) max P (V’z(?ﬁk) — Efg(ay)| > %)

ke{1,...,N-(S5)}
wS]:(E)
ng(h) |7

ZFZ->

< N:(SF) max P < 1
eV

ke{l,..,.N-(S7)}
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where

ol
E[K:(x)]
The same argument as those invoked for proving Lemma 6.3 in Ferraty and Vieu (2006, p.65) [4]
can be used to show that E|T;|™ = O (¢(h)_m+1). By applying the exponential inequality given by
Corollary A.8.ii in Ferraty and Vieu (2006) [4].

For all n > 0:

I = Ki(xr)p(Ye) — E(Ki(zr)o(Ys)) + E(mp(ze) Ki(zg)) — mp(ee) Ki(zg)].

P <\f2(:13k) —Efy(zy)| > n %) < 2exp {—Cn*Ys,(e)} .
Therefore, by choosing Cn? = j3

. ) Vs (€) ; ; sz (©)
P <\r2(mk) — Eiy(r)| > ny ) 57 > <Ne(SF),  max P <\T2($k> —Eda(en)| > m [ 55w >

< O (N(SF)) 7O
By (13), 3250, N.(SF)!~C" < 00, we obtain:

Ty = Opco. ( ffgé?) . (18)
For the term 73(z,y) — E[f3(z,y)] we use the same decomposition and we fix ¢ = IOgN to get:
sup. sup [7s(,) ~ Elfste, )] = Ouco. 1/ 5050507 ).
zeSF yeSR g
So, this Lemma can be easily deduced from (16)—(18) . [
Lemma 4. Under the assumptions of Theorem (H1)-(H6), we have Vj € V
'll} ogn
Sup |m (X;) = U(X},Y; ‘_ O(h™) + Oa.co. < %)
z€SFE

Proof. To simplify we put X; = z, ffj = ¢. The proof is based on the following decomposition

Ve 5) — ) — [2@:0) ~BO@ 9] | B o) = me@] | mala)

Ul(x7g) Ul(x7g) le("ljvg)7
where
N 1 -1 —1/~ <7
Uied) = R e X K G~ T0)] 2 (A XK (7@ = Ya).
and
5 = 1 -1 L5 V) oY
Us(x,7) = R (e XK —T) Z;K d(x, X;)) K (b7 (5 — Vi) e (Yi).

Once again the proof is based on separate treatment of the different terms. In particular, we use the
same ideas of Lemma 3

U1 (z,§) — E[U1(z,9)]| < sup |Ur(z,§) — Ur(zk, §)| + sup |Ur(zk, §) — E[U1 (2, 9)]|

r€ESFE z€S¢
R Ry
+ sup |E[Uy(zx, )] — E[U1(,7)]].
zeSE
R3

For the term R; we employ the Lipschitzianity of the kernel K on [0,1] with (H1) and (H2) lead
directly

ZZ Wlth ZZ h¢( )qb( ) B(w,h)UB(wk(z),h)(Xi) H[g—bgﬁgg—l—b]
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It is clear that the assumption (H1) permits to write that

Z1=0 (W) , E[Z1]=0(%) and var(Z)=0 (

E2
h2¢(b) ¢(h)) ’
So, we get
E(|Z|™) € —— " —=
o o))"
By using the result (11) together with the definition of ¢ we have for n large enough: + < C. So, we

get:

m Camfl

Now, by applying Corollary A.8 in Ferraty and Vieu (2006) [4] with a? = m, we get:

1 - _ elogn
- z_; Zi=FEZ1 + Oq.co. ( W) .
Finally, applying (19) for m = 1 one gets
Ry =0 () + Ouco (\ 555055 ) -
h a.co- nh é(h) ¢(b)

Using (H5b) together with (12) and the fact that:
1 " ] Vs 1(€) (logm)2
{ w 2 Zil >\ wath o ¢(b)} < { >V Gom om |
— ¥sx(€)
1 = Oa.co <\/ w(h) ¢(b)> '
Thus, we deduce that

Ysx(e) | bsz(e)
Rl = Oa.co. < W) and Rg =0 < W) . (20)

It remains to evaluate R3. Indeed, we write

1 n
w2 Zi
=1

we get

Ys£(e) - ~ Ys£(e)
P<Rz>?7 ﬁ%)zp< max )}|U1(xk,y)—EU1(ﬂ?k7y)|>?7 %ﬁih))

ke{l,...,Ng(S]:
S NE(S]:) max P ‘Ul(xk Q) _EUl(JIk g)| > M
ke{1,..,Ne(SF)} ’ ) np(b) G(R)
< Ne(SF) max P(|: 3 ;| >n _Ysz(e)
ke{l,...,N:(SF)} ] n¢(b) p(h) |~

where

1
—~KZJZ KZ'N—EKZ'(L' Ki~ .
It follows from the fact that the kernel K is bounded, that E|I;|?> < C (¢(b)é(h))~t. Thus, we apply
the Bernstein exponential inequality we obtain:

I; =

P <|U1(33k7§) —EUi(zk,9)] >n %) < 2exp{ — Cn*vs, ()}

Therefore, by choosing Cn? = 3, we have:

~ ~ Vs (e) ' 1-Cn?
N.(SF) ke{lv_r_r}%((sf)}P <\U1($k,y) —EU (21, 5)| >n m> < C'(N(SF)) :
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Finally, we obtain by (H5) and (13)

Vs x(e)
Ry = Oq.co. < W) . (21)
We get
w logn
sup ‘Ulwy —1| aco,( %)
rESE

The first lemma 1 allows to conclude
1
P f Ui( < oo0.
Sr (g e e3) <
By using the same decomposition:

|U2(x7y7§) _E[UQ(wayayN)H < SuSp ‘U2(‘T7yay) UQ(‘T/wy y |+ sup |U2 Tk, Y, y) E[UQ(.Z'k,y,gH
TESF

z€SFE
S1 32
+ sup |E U2 :Ek) Y, y)] - E[U2(:E7 Y, g)H :
zeSF
S3
For the term Si:
$1 = sup ( . (0 [Ri) = K]+ [ ) ) = o) i) )
TESFE icV n y)]
< xseuSI; o ) 262‘; (V)| [ Ki(x) — Ki(@ria)| Lo nyuBey ) .m (Xi) Ly pevicgro)-

The Lipschitzianity of the kernel K on [0, 1] and (H2) implies that:

, ele(Ya)|
<o ZZi with  Z; = ] Lo myUB(aegan) (Xi) L[5 pevicqie]-

2 7 o(h) 6(6)
So, we can follow the same steps as 17 and T3 to get:
Psx(€) ¥sx(€)
S1 = Oy.co. < W) and S3=0 < W) . (22)
Following same idea of T5 to get:
52 Oa co ( nifﬁfﬁ?@) s (23)
[EUs(2,5,9)] — mr(@)| < CE K (4552) K (552 ) E[(jp(¥:) - m?(@)]) [(X1,5)]]]
<CE|K (Y52 K (555 E [Je()] [(X1,9) - m7(2)]) |
< CE [K (d@’“) K (—b) E [jm(X;) — my(w)]]]
By (H2) we have
|E[Ua(z, y,7)] (z)] = (hﬁl) (24)
So, the Lemma 4 can be easily deduced from (20) (24). [
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V3aranbHeHa pyHKLis perpecii gNnsi CyporaTHOI CKaJsipHOI peaku,ii

Bymaxai M.', Vaccy 1.}, Paxai M.?

1 Vuisepcumem Kadi Atiada, Hauionanrvra wrona npukiadnux nayk, Mappakew, Mapokko
2 Vuisepcumem I'penobab-Anvnu, I'pernobav Hedexc 09, Ppanuyia

V miit crarTi po3pobIISEThCA Ta y3araJbHIOETHCH OIIHKA (DYHKINI perpecil [ijisi cyporar-
HOI CKaJIIPHOI 3MIiHHOT BifIOBifi, siKa 3a/aHa (pyHKIIOHAILHO BUNAIKOBOO. Ilicis mporo
KOHCTPYIOIOTHCS JIeIKi aCUMIITOTUYHI BJIACTUBOCTI B T€pMiHAX Maii?Ke MOBHOI 3012KHOCTI,
3aJIE2KHO BiJ PE3Y/IbTATy HOKA3YEThCs IlepeBara 3allpollOHOBAHO! OIIHKUA B TEpMiHax Iie-
penbadeHHs.

Knw4osi cnosa: cypozamma 6i0n06idv; GyrHKUIOHAALHA 3MIHHG; MGTHCE NOSHA 301dC-
HICMb; OUIHKY A0PA; CKAAAPHUL 6102YK; EHMPONIsA; HANIBMEMPUUHUL NPOCTID.

Mathematical Modeling and Computing, Vol. 10, No. 3, pp. 625-637 (2023)





