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Discriminant analysis is part of statistical learning; its goal is to separate classes defined a
priori on a population and involves predicting the class of given data points. Discriminant
analysis is applied in various fields such as pattern recognition, DNA microarray etc. In
recent years, the discrimination problem remains a challenging task that has received
increasing attention, especially for high-dimensional data sets. Indeed, in such a case, the
feature selection is necessary, which implies the use of criteria of relevance, redundancy
and complementarity of explanatory variables. The aim of this paper is to present an
analysis of three new criteria proposed in this sense, more precisely based on the Principal
Component Analysis we have been able to achieve a double objective: that of studying
the harmony of these three criteria and also visualizing the class of candidate variables for
a more in-depth selection in addition to eliminating the noise variables in a discriminant
model.

Keywords: relevance; redundancy; complementarity; preordonnances theory; discrimi-
nant analysis; principal component analysis.
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1. Introduction

The objective of a discrimination problem based on a set of individuals is to infer a link between the
characteristics of each individual and their class, usually defined by a label. Currently, due to the ease
of data acquisition and storage, real problems of pattern recognition or discrimination are increasingly
complex and involve a significant number of variables, often heterogeneous characterizing an example.
Intuitively it seems natural that the increase in the number of variables should not affect the quality of
the discrimination, in practice, it turns out to be a major problem. Variable selection (VS for short) is
therefore useful in this context even if this reduction can lead to a slight loss of information. Since the
relevant variables are not known a priori, the selection is justified, in the presence of a large number
of attributes, by the possibility of the existence of interrelated variables and/or noise or redundant
variables which generally give high error rates. The selection of variables essentially makes it possible
to improve the performance of the classification models by using only the important variables for the
problem studied, to reduce the time and the cost of calculation and to facilitate the understanding of
the process generating information. VS can be categorized as filter methods (FM), wrapper methods
(WM), and embedded methods (EM). The (WM) use the learning models to evaluate the feature
subset by the classification accuracy rates. Regardless of being computationally intensive, there is a
tendency to cause overfitting [6]. (EM) use learning models to guide variable selection and is often
evaluated as classification rather than variable selection. The well-known Lasso and its variants are
examples of (EM). (FM) separate the learning model and variable selection and weigh features based
on their characteristics [8]. There exist some filters measuring the redundancy, defined as the over-
lapping information shared among variables toward predicting the target class, in addition to variable
relevance, such as minimal-redundancy-maximal-relevance (mRMR) [11], conditional mutual informa-
tion maximization (CMIM) [13|, and minimum conditional relevance-minimum conditional redundancy
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(MCRMCR) and minimum conditional relevance-minimum intra-class redundancy (MCRMICR) [14],
aimed at finding the variable subset with the maximum relevance to the target class and minimum
redundancy.

To define a powerful feature subset, some filters simultaneously take advantage of feature relevance,
redundancy, and complementarity. This later is justified by the fact that the dependence among
variables may not always affect negatively the discriminative power. Because a feature with a low
relevance but highly dependent on other variables can be useful to enhance the discriminative power of
the variable subset. Hence, neglecting the complementarity between variables can lose some valuable
information for discrimination problems. In |7], the redundancy-complementariness dispersion is taken
into account to adjust the measurement of pairwise inter-correlation of features. In [12], authors
proposed an approach to VS that explicitly characterizes and uses feature complementarity in the search
process where an adaptive cost function that uses redundancy-complementarity ratio to automatically
update the trade-off rule between relevance, redundancy, and complementarity.

In this paper, three main concepts are considered: relevance, redundancy, and complementarity.
The relevance is defined as the univariate association strength of a variable with the target class. The
more relevant variable is, the larger relevance measure value is. The redundancy refers to the over-
lapping information shared among features toward predicting the target. Finally, complementarity
quantifies the extent to which several variables are strongly associated with the target class jointly.
There are several definitions of the relevance of a characteristic. According to |9], a characteristic (vari-
able) is classified as strongly relevant, weakly relevant, or irrelevant. A strongly relevant characteristic
implies that the variable is indispensable in the sense that its removal leads to a loss of prediction
accuracy. A characteristic is weakly relevant if it is not ‘strongly relevant’ and there is a V' subset such
that the performance of V' U {Xi} is significantly better than the performance of V. Features that
are neither ‘strongly relevant’ nor ‘weakly relevant’ represent irrelevant features. These features will
generally be removed from the starting set of characteristics. For the redundancy notion, it is widely
accepted that two features are redundant to each other if their values are completely correlated. In
what follows, we describe the main preliminary concepts that are used in this framework using the
preordonnances theory which has attracted the attention of many researchers lately [2-5].

2. Evaluation criteria based on preodonnances theory

Since feature selection, in the context of discriminant analysis, involves the elimination of irrelevant
and redundant features and highlights the recognition of complementary features using preordonnance
theoretics, we give the definitions of relevance, redundancy, and complementarity in this section.

2.1. Relevance measure

The relevance of a variable signifies its explanatory power to predict a target class, and is a measure of
variable worthiness, separately from other variables. In the context of variable reduction, we can con-
clude that the larger relevance, the stronger discriminative power of the feature. Hence, the relevance
between the feature and the target class can be defined as in Eq. (1). In particular, let £ = {1,2,...,n}:
a sample of size n and E, a set defined by E, = {(i,j) € E?/i < j}. A preordonnance is a transitive
and reflexive binary relation defined on FE,.

Definition 1 (Refs. [2,4,5]). The relevance of a variable f with respect to the target Y is given
by: ¥((i,4), (k1)) € (Ep)?;
U(f) = cor(Tr;, Tp,) = Yeor(Py, Py)
2T (4,5, k,0)Tpy (i, 5, k1) (1)
VI TR, k0[S TR g kD)
where Py and Py are the preordonnances induced respectively by the features f and Y, while Tp, and
Tp, their associated coding. The symbol > covers all ((i,7)(k,1)) € E, x (Ep \ (i,7)).
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A higher relevance value means that the feature will have a larger effect to predict the target, that is,
the feature is relevant. A negative relevance value (¥(f;) < 0) means that the feature is irrelevant.
Furthermore, let Py and Py, be two preordonances induced by two variables, fi and fo, respectively,
and the rank variables induced on E, by these preordonances are denoted by TPy, and TPy, respec-
tively. In [1] authors have demonstrated equality between the association measure ¥ applied to the
preordonances, Py, and Py,, and the Kendall’s 7 coefficient applied to the rank variables, TPy, and Tfx,
and in [2], the same association measure ¥ is demonstrated equal to the Lerman association coefficient
between two variables. Hence, the relevance of the variable f can be defined differently as in Eq. (2).

U(f) =7(rp;rpy) = L(f,Y) (2)

2.2. Redundancy

As mentioned previously, an optimal feature subset should not only contains the variables having
greater relevance to the target class, but also should have lower redundancy within variables. For that,
a partial correlation is used to define the redundancy measure.

Definition 2 (Ref. [2]). The redundancy of a variable f,, to another variable fq (fo € X \ {fm}) is
defined by the agreement intensity between the variable f,, and the target variable Y, after ignoring
the impact of the variable f,, and is evaluated as:

‘Il(fm7 fa) - /l/}COT(mea PY).Pfa = Tl(TmearPy).Tpfa7 (3)

where (71). is the partial rank correlation coefficient.

The greater the value of W (f,,, fu) is, the less redundant the variable f,, to the variable f, is.

2.3. Complementarity

The relevance and the non-redundancy are necessary conditions of optimality but not sufficient. Indeed,
two interdependent features may be complementary to each other and possibly have a high discrimi-
native power when they serve as a group. Then, to quantify the extent to which two or more features
are strongly associated with the response variable jointly, we use Wy as the association between more
than two variables. It will be used to evaluate the agreement between preordonnances induced by the

variables under study. In particular: Let f1, fo,..., f;n be m heterogeneous variables, Py, Ps,..., Py,
denote the induced preordonnances and let r1,7r9,...,7, be the associated rank variables defined on
the set of pairs F,. We define the multiple concordance coefficient between Py, P, ..., Py, as follows:

\Ifw(Pl,PQ,...,Pm) :W(Tl,T‘g,...,T‘m), (4)

where W is Kendall’s multiple concordance coefficient.

The coefficients cited above can deal with continuous and categorical features either separately or
in a mixed fashion. Their expression is not complicated and thus their implementation is not difficult.
Kendall’s empirical coefficients 7 and W can be obtained from almost any statistical software.

3. Analysis of three evaluation criteria

To analyze the behavior of three evaluation criteria, the Principal Component Analysis (PCA)
method [10], is used to summarize and visualize information for a given data set, in which quantita-
tive variables may be inter-correlated. The principal component analysis is a dimensionality-reduction
method that extracts the important information from the data and expresses this information as a set
of summary indices called principal components. PCA is based on some mathematical concepts such
as variance, covariance, and eigenvalues. The steps for PCA algorithm can be summarized as follows:

1. Standardizing the data.

2. Calculating the covariance.

3. Calculating the eigen values and eigen vectors.
4. Sorting the Eigen Vectors.
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5. Calculating the new features Or Principal Components.
6. Remove fewer or unimportant features from the new dataset.
7. Recast the data along the axes of the principal component.

Based on the proposed evaluation criteria and PCA method with 2 principal components, the data
points can be projected into a set of linearly uncorrelated criteria with the help of orthogonal trans-
formation, where a criterion represents one coordinate axis and the remaining criteria represent the
second coordinate axis. For example, if the z-axis represents the relevance and the redundancy, to
some extent, and the y-axis represents the complementarity, we can categorize the variables into 4
subsets:

— Strongly favorable: subset containing variables strongly relevant, with lower redundancy within
each other, and with high complementarity which means that the combination of considered vari-
ables can yield more information with respect to the target class.

— Favorable but inhomogeneous: subset containing variables strongly relevant to the target class
and with lower redundancy within each other, but fail to explain the target class when serving as
a group.

— Homogeneous but infavorable: subset containing variables with lower relevance, with a certain
redundancy within each other, but their combination can provide additional classification informa-
tion.

— Noise: subset containing irrelevant variables, with higher redundancy, and they can not add any
additional classification information as a combination.

This categorization allows us to easily detect the subset containing candidate variables that predict
as much as possible the target class (the subset in the top right in Figure 15). On one hand, these
variables are strongly relevant (with a positive relevance value) and not redundant, which promote the
strength of their link with the target class. On the other hand, the combination of these variables is
homogenous; this means that this group of variables has a high discriminative power to predict the
target class jointly. On the other hand, the cluster (placed at the bottom left in Figure 1b) can be
considered as the set of non-candidate variables to form the optimal or suboptimal subset of explanatory
variables predicting the target class. Indeed, this cluster contains irrelevant variables, with considerable
redundancy among them, and which do not accurately explain the target when represented as a group.
This subset of variables must be firmly rejected. It should be noted that the redundancy in this study
computes the agreement intensity between a variable f,, and the target variable Y, after ignoring the
impact of the variable f(;) where f(;) is the more relevant variable (maximizing the ¥ measure) and
the complementarity criteria computes the agreement intensity between a variable fy,, the variable f)
and the target Y.
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Fig.1. (a) Representation of variables on factor map, (b) Variables categorization.
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To better understand this categorization, two scenarios are analyzed in the following.

3.1. Scenario 1
A dataset is generated with 200 observations and 150 variables from this model:
Z=Xv+a,

where the matrix’s rows are generated from N(0,,1I) as a multivariate normal distribution, where
IT € M,»,, is a block diagonal matrix set by:

1 if 5=l
0. — p if 7 <50, 1<50 and j #1,
T7Yp it 51<i<100, 51<j<100 and j #1,
0 otherwise,
where p is the correlation parameter between features. The elements of «, afs, for i = 1,...,n are

simulated independently following a normal distribution with mean zero and variance o? = 2.52. The
vector of coefficients, ~, takes the form:

7v; =~ Unif[0.9, 1.1], if 1<5 <25
v; ~ Unif[-1.1,-0.9], if 51 <j < 75;
v =0 otherwise.

Finally, the binary response Y is simulated as follows:
logit(P(Y = —1)) = Z.

In particular, we have 100 features distributed over two subsets of 50 features, 25 of which are cor-
related to the target variable, and the other 25 form noise. The remaining 50 features are generated
independently of the first 100 features and the target variable.

From PCA outputs, we can extract a matrix containing the coordinates of the active variables.
Table 1 summarizes the PCA coordinates for different values of p.

Table 1. Dimensions using PCA method on datasets with different p values.

Criteria p=04 p=0.6 p=0.8 p=0.95
Dimensions Dim 1 Dim 2 Dim 1 Dim 2 Dim 1 Dim 2 Dim 1 Dim 2
Relevance 0.9852998 | -0.1708330 | 0.9901019 | -0.1403307 | 0.9978113 | -0.06591778 | 0.9999410 | 0.001712412
Complementarity | 0.8642104 | 0.5031306 | 0.7820116 | 0.6232636 | 0.7032425 | 0.71094605 | 0.7116317 | -0.702508407
Redundancy 0.9607623 | -0.2773724 | 0.9265917 | -0.3760638 | 0.8648223 | -0.50206146 | 0.6768299 | 0.736100714

According to Table 1, we can notice that the reading of the results depends heavily on the considered
dataset. For example, for the dataset with p = 0.4, three variables have high values for the first
dimension. Therefore, their reading is significantly reduced to Dim 1-axis. However, for the dataset
with p = 0.8, the variable ‘Complementarity’ may be interpreted on Dim 2-axis and the remaining
variables are interpreted on Dim 1-axis. The same case is for the variable ‘Redundancy’ in the dataset
with p = 0.95.

In PCA method, the eigenvalues measure the amount of variation retained by each principal com-
ponent. In our analysis, and for all p-values, two principal components explain 100% of the variation.
Indeed, these two principal components correspond to the directions with the maximum amount of
variation in the data set (see Figure 2). In the same context, the squared cosine determines the quality
of representation for variables on the factor map, where a high squared cosine indicates a good repre-
sentation of the variable on the principal component. In this case, the variable is positioned close to the
circumference of the correlation circle, this is the case in our example (see Figure 2), which reconfirms
the quality of the presentation built on three criteria: relevance, redundancy and complementarity
based on preordonnnances theory.
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Fig. 2. Correlation circles for datasets with (a) p =0.4, (b) p = 0.6, (¢) p = 0.8, and (d) p = 0.95.

To highlight the harmony and the discriminating power of the proposed criteria, k-means method
with 3 clusters (k = 3) is used to determine and visualize the classes in the considered datasets, using
coordinates of the variables from PCA method. It can be seen from Figure 3 that, for all p values, the
point cloud forms three disjoint classes. As mentioned previously, the reading of results depends on the
considered dataset. From Table 1, for the datasets with p = 0.4 and p = 0.6, three measures namely
relevance, redundancy, and complementarity can be read in Dim 1-axis. Thus, the first cluster (green-
colored) is the best subset of variables that are relevant, not-redundant, and with high complementarity,
followed by the blue-colored subset containing weakly relevant variables, with a low redundancy within
variables and which has an acceptable complementarity between variables. While the last subset (red-
colored) forms the noise. For the dataset with p = 0.8, the Dim 1-axis represents the relevance and
the redundancy simultaneously and the Dim 2-axis represents the complementarity criteria. Thus, the
subset in the top right (green-colored) contains the variables with high relevance, low redundancy,
and high complementarity, this kind of subset may strongly contain the optimal subset of variables
predicting as much as possible the class target. Therefore, it can be used as input data for heuristic
methods or local searches as examples. The second subset in the bottom right (blue-colored) contains
variables that have a powerful potential individually but are not homogeneous when presented as a
group. The third subset (red-colored) still forms the noise since it contains irrelevant variables with high
redundancy. This later has positively contributed to its complementarity (a zero complementarity).
For the dataset with p = 0.95, the Dim l-axis represents the relevance and the complementarity
simultaneously and the Dim 2-axis represents the redundancy criteria. Thus, the green-colored cluster
is still the best subset containing variables with high relevance, low redundancy (a high value of the ¥
measure), and high complementarity. The blue-colored subset contains variables with high relevance,
and high complementarity but with a considerable redundancy within variables which weakens the
discriminating power of the whole. The variables in the red-colored cluster are irrelevant and cannot
predict the target class when featured as a group even if they have a lower redundancy between each
other. It should be mentioned that the greater the value of p is, the more compactness the cluster is.
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According to Figure 3, we can infer that the considered criteria, by their projection on a two-
dimension axis, allow finding the true classification of the explanatory variables: the green-colored
cluster, using any rho value, contains the variables from 51 to 100, the blue-colored cluster contains
the variables from 1 to 50, and the remaining variables are in the noisy subset as the scenario indicates.
This categorization shows the potential power of the considered criteria.

Cluster plot Cluster plot

cluster cluster

1 SR 1
(4] o) (4]
3 3

Dim.2
Dim.2

Cluster plot Cluster plot

cluster g cluster

1 1
o DL 4]
3 3

Dim.2
Dim.2

0 0
Dim.1 Dim.1

c (p=0.8) d (p=0.95)
Fig. 3. Visualization of clusters for datasets with (a) p = 0.4, (b) p =0.6, (¢) p=0.8, and (d) p = 0.95.

3.2. Scenario 2

This scenario evaluates the proposed criteria to separate classes defined a priori, to determine the
complementary variables and the redundant ones, and also to identify the irrelevant ones from multi-

class dataset. The dataset contains 100 observations and fourteen variables { f1, fa, ..., fi4} constructed
as follows:
{f1, fo, ..o, fro} ~ U0, 1],
Juu=f1i+0.1,
fiz2=f2—02, (5)
fi3 =2 x fi,
Jia =2 % fa.

The multi-label output Y is constructed by concatenating four binary outputs [Y!, Y2 Y3 Y] evalu-
ated as follows:
Yl=1 if f;,>05 and fo>0.5,
Y2=1 if f,<0.5 and fy <0.5,
Y =[Y1Y2 Y3 Y?Y such that: Y3=1 if f1 <05 and fo>0.5, (6)
Y4=1 if f,>0.5 and fy <0.5,
Yi=0 otherwise (i=1,2,3,4).
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The relevant features are {f1, fo, fi1, f12, f13, f14}. Remaining features are irrelevant for the class
variable. It should be noted that the variable f; is redundant to fi; and to fi3, the variable fs is
redundant to fi2 and to fi4, and variables fi and fy are complementary. The objective of studying
this scenario is to illustrate the potential power of the considered criteria to, on the one hand, separate
classes into relevant or noisy and, on the other hand, to identify the complementary and redundant
variables. The PCA correlation circle and the cluster plot are summarized in Figure 4. In Figure 40,
two poles are shown: the pole of the relevant variables, namely f1, fa, f11, fi12, f13, f14 (red-colored),
where the variable f1, fi1 and fi3 are redundant (similarly for fo, f12 and f14), and the variables f; and
f2 are complementary. The second pole is that of variables that do not meet any criteria (blue-colored).
Thus, these variables form noise. We can infer, from the correlation circle in Figure 4, that two principal
components explain 100% of the variation and that all criteria can be read in Dim 1-axis in this case.
Then, according to Figure 4b, we can notice that three criteria, namely relevance, redundancy and
complementarity based on preordonnaces theory and on PCA method, are able to separate classes
properly, relevant variables (red-colored) from the noise (blue-colored), to show the complementarity
of f1 to fa, and to merge confused variables (redundant ones) as the scenario indicates, and this shows
the importance of combining these three criteria to predict a target class.
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Fig.4. (a) PCA correlation circle, (b) Cluster plot according to Dim.1 and Dim.2.

4. Conclusion

In this paper, a statistical analysis of three new criteria of relevance, redundancy, and complementarity
was established. To summarize and visualize information for a given data for a more in-depth selection
and to eliminate the noise variables in a discriminant model, the PCA method with 2 principal com-
ponents was used. On this basis, the considered categorization was able to divide the correlation circle
into classes. This categorization resulted in the selection of the optimal or the suboptimal subset of
explanatory variables predicting the target class and also in the determination of the noisy variables.
Both scenarios have shown the ability of the considered criteria to select the relevant variables, the
redundant ones, and to determine the most homogeneous subset of variables predicting the target
jointly.
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CraTucTn4Huii aHani3 TPpboOX HOBUX MIp pesieBaHTHOCTI,
HAAMIPHOCTI Ta KOMMNJIEMEHTAPHOCTI

Ems Mypmxki B., Hamnan X., Yagepman T.

Kagedpa mamemamuru ma ingopmamuru,
Aa60pamopis GyYHIGMERMAALHOT A NPUKAAIHOT MATEMATUKY,
daxyrvmem nayx Adn Yok, Ynisepcumem Xacana I Kacabaarxu, Mapoxko

JuckpuMiHAHTHUN aHAJI3 € YACTUHOIO CTATUCTUYHOIO HABYaHHs; fOr0 MeTa II0JIATa€ B TO-
My, 1100 PO3JLIUTH KJIaCU, BU3HAUEHI ampiopi B momysdmii, i mepegdadae IporHO3yBaHHS
KJIACY 3aJIaHUX TOYOK jaHuX. JlucKkpuMiHAHTHUI aHAJI3 3aCTOCOBYETHCS B PI3HUX 00JIaC-
THX, TAKUX SK po3mizHaBanHs 00pa3is, mikpounmu JJHK Tomro. B ocranni poku mpobiema
JIUCKPUMIHAINT 3aJUINAETHCS CKJIAIHOIO 33/1a9el0, AKifl MpuIiaseThes Bce Oibine yBary,
0CODJIMBO JIjIsI MacCHUBIB JaHuX Beaukol BuMipuocti. /[lificHo, y TakoMmy pasi HeoOXimHwmit
BUOIp O3HAK, IO Iepeadatac BUKOPUCTAHHS KPHUTEPIlB PeIeBAHTHOCTI, HAJIMIPHOCTI Ta
KOMILIEMEHTAPHOCTI MOSCHIOBAJLHUX 3MIHHUX. MeToro 1€l cTaTTi € mpejcTaBUuTH aHAJI3
TPbOX HOBUX KPUTEPIIB, 3aIIPOMIOHOBAHNX Y ITbOMY CEHCi, TOUHIIe, Ha OCHOBI aHAI3y OC-
HOBHUX KOMITOHEHTIB BJIAJIOCS JOCATHYTH MOABIHOT METH: BUBYUTHU TaPMOHIIO X TPHOX
KpUTEpIiB, & TAKOXK Bi3yaJli3yBaTh KJaC 3MIHHUX—KAHIUJIATIB /Ui OiIbII MOrInOIeHOTO
BUOODPY HA J0/IATOK JO YCYHEHHSI MTYMOBHUX 3MIiHHUX Y JAUCKPUMIHAHTHIN MOmesTi.

Knw4osi cnoBa: axmyasvhicms; HAOMIPHICTIG; KOMNAIMEHMADHICTL; Meopis nepeod-
nopAdKi6; QUCKPUMIHAHMHULT GHANI3; GHANI3 20A08HUT KOMNOHEHM.
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