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We present a central finite volume method and apply it to a new class of nonlocal traffic
flow models with an Arrhenius-type look-ahead interaction. These models can be stated
as scalar conservation laws with nonlocal fluxes. The suggested scheme is a development
of the Nessyah–Tadmor non-oscillatory central scheme. We conduct several numerical
experiments in which we carry out the following actions: i) we show the robustness and
high resolution of the suggested method; ii) we compare the equations’ solutions with local
and nonlocal fluxes; iii) we examine how the look-ahead distance affects the numerical
solution.
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1. Introduction

Many successful macroscopic models have been created and researched to understand the interactions
and emergent behaviors of vehicles on the road. These models explain the progress of the density
distribution of traffic as opposed to focusing on specific vehicles. The Lighthill–Whitham–Richards
(LWR) model is one of the most well-known models of macroscopic traffic flow [1],

∂tρ+ ∂xf(ρ) = 0, f(ρ) = ρv(ρ), v(ρ) = vmax(1− ρ), (1)

where ρ(t, x) is the local traffic density, v is a traffic velocity function that only depends on density,
and f is the flux.

The flux in (1) is concave and symmetric. However, statistical evidence from traffic networks in
the real world indicates that neither a concave nor symmetric flux is expected. Instead, as the density
increases, the measured empirical fluxes become right-skewed and convex, as seen in [2].

There are several extensions to the LWR model (1). Consider the nonlocal slowing effect, which
states that if there is going to be heavy traffic, drivers will slow down. This requires a nonlocal
interaction with a look-ahead distance,

∂tρ+ ∂x

(
f(ρ) exp

(
−
∫ η

0
κη(y)ρ(t, x+ y)dy

))
= 0, f(ρ) = vmaxρ(1− ρ), (2)

where κη is a kernel function. The model was initially published by Sopasakis and Katsoulakis (SK)
in 2006 [3] with κη = 1, and in 2009, Kurganov and Polizzi proposed a modified version in [4].

Another source of concern is the SK model’s fundamental schematic (2). The flux

f(ρ) = vmaxρ(1− ρ) (3)

is a concave function with even symmetry (concerning ρ = 1
2 ), which contradicts experimental re-

sults [2]. A non-concave, right-skewed flux appears to be a better fit,

f(ρ) = vmaxρ(1− ρ)α, α > 1. (4)

In (4) the flux f is right-skewed and switches from concave to convex at a point ρ = 2
α+1 .
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To account for these impacts, we are interested in the following class of traffic models [5]:
∂tρ+ ∂x(f(ρ) exp(−κη ∗ ρ)) = 0, f(ρ) = vmaxρ(1− ρ)α, α > 1, (5)

where

κη ∗ ρ(t, x) =
∫ x+η

x
κη(y − x)ρ(t, y) dy, η > 0.

The kernel κη is a decreasing function such that κη ∈ C1([0, η];R+) and
∫ η
0 κη(x) dx = 1 (in the

numerical section, three different non-negative decreasing kernel functions will be considered: κη(x) =
1
η , κη(x) =

2
η

(
1− x

η

)
and κη(x) = 3

2η

(
1− x2

η2

)
). Therefore, we define the convolution product as being:

U(t, x) = κη ∗ ρ(t, x),
and the flux as being:

F (ρ, U) = f(ρ) exp(−U).

The formula (5) can be rewritten as follows:

∂tρ(t, x) + ∂x(F (ρ, U)) = 0, x ∈ R, t > 0, (6)

with the following initial data:
ρ(0, x) = ρ0(x) ∈ [0, ρmax]. (7)

In this paper, we attempt to study the effect of the nonlocal flux when eta is large (or small
enough). We do this by developing an accurate numerical method for the equation (6). Since this
model is an extension of (1) with (4), methods designed for scalar conservation laws may be used for the
nonlocal flux equation (5). The main methods are finite-volume methods (see, for example, [6–8]), more
specifically a class of projection-evolution techniques known as Godunov-type schemes. Godunov’s
schemes are split into two categories: upwind and central. The approximate solver of the Riemann
problem is used in the construction of upwind techniques. Sadly, no Riemann problem solutions exist
for the nonlocal flow model (5), therefore upwind approaches can be avoided.

On the other hand, central schemes integrate conservation laws over space-time cells selected in such
a way that each Riemann fan is completely contained inside the cell (this is possible due to the finite
speed of propagation). As a result, no approximate Riemann problem solution is needed, and central
schemes may be expanded to solve our proposed problems. The Lax–Friedrichs (LxF) scheme, [9],
is a central scheme prototype. Although it is the much more well-known numerical approach for
time-dependent PDEs, despite having a limited resolution. As a result, to improve the LxF scheme’s
performance, we expand it to a second-order central scheme using the MUSCL (Monotonic Upstream
Conservation Laws) approach, which meets the total variation-diminishing (TVD) property.

The following is the manner in which this document is structured: in Section 2, we explain and
clarify the second-order central scheme in more detail; in Section 3, we compare the approximate
solutions constructed by the proposed central scheme for the problems 6 and 7 with a similar problem
but with local flux to show how the calculated solution is dependent on the look-ahead distance. Lastly,
in Section 4, we offer some concluding remarks.

2. Central scheme

In this section, we construct the proposed schemes for the new model. We first consider uniform grids
and use the following notation: let xj = j∆x, xj+ 1

2
= (j + 1

2)∆x, t
n = n∆t, for ∆x, ∆t > 0.

Given the cell average of the initial data

ρ0j =
1

∆x

∫ x
j+1

2

x
j− 1

2

ρ(0, x) dx

and the cell average for the exact solution ρ(t, x) of (6) in each cell, [xj− 1
2
, xj+ 1

2
] at the time level tn,

ρnj ≈
1

∆x

∫ x
j+1

2

x
j− 1

2

ρ(tn, x) dx, j = 1, 2, . . . , N.

Mathematical Modeling and Computing, Vol. 10, No. 4, pp. 1100–1108 (2023)



1102 Belkadi S., Atounti M.

Second-order accuracy is obtained with the following linear reconstruction from the cell averaged
(center) value:

ρ̃n(x) = ρnj + δnj (x− xj), j = 1, . . . , N, (8)

where δnj is a gradient centered on a cell. These gradients are assumed to be constants in each cell,
and, therefore, the presence of shocks requires the limitation of the cell-centered gradients in (8).

The choice of adequate limiters is essential in order to obtain accurate and non-oscillatory shock
capture. In our numerical tests, we use a generalized minmod limiter (as in [10–12]) with:

δnj = mm

(
θ ×mm

(
ρnj − ρnj−1

∆x
,
ρnj+1 − ρnj

∆x

)
,
ρnj+1 − ρnj−1

2∆x

)
, θ ∈ [1, 2], (9)

where the minmod function (denoted as mm) is defined as

mm(E) =





min(E) if E ⊂ R+,
max(E) if E ⊂ R−,
0 otherwise,

and the number θ may be utilized to regulate the numerical viscosity in the final scheme.
We integrate (6) over the space-time cells [tn, tn+1[×[xi, xi+1[ and divide two parts by ∆x yielding:

1

∆x

∫ xj+1

xj

ρ(tn+1, x) dx =
1

∆x

∫ xj+1

xj

ρ(tn, x) dx

− 1

∆x

(∫ tn+1

tn
F (ρ(t, xj+1), U(t, xj+1)) dt−

∫ tn+1

tn
F (ρ(t, xj), U(t, xj)) dt

)
. (10)

Defining

ρn
j+ 1

2
=

1

∆x

∫ xj+1

xj

ρ(tn, x) dx.

The staggered averages, ρn
j+ 1

2

can be computed exactly as

ρn
j+ 1

2
=

1

∆x

∫ xj+1

xj

ρ̃(tn, x) dx

=
ρnj + ρnj+1

2
+

∆x

8

(
δnj − δnj+1

)
.

The resulting central scheme (10) is then written as follows:

ρn+1
j+ 1

2

=
ρnj + ρnj+1

2
+

∆x

8

(
δnj − δnj+1

)

− 1

∆x

(∫ tn+1

tn
F (ρ(t, xj+1), U(t, xj+1)) dt−

∫ tn+1

tn
F (ρ(t, xj), U(t, xj)) dt

)
. (11)

Because of the finite propagation speed, the solution is smooth in the neighborhood next to the
points xj for all j if the following CFL condition is satisfied:

β <
1

2βmax
, β :=

∆t

∆x
,

where

βmax < vmax max
ρ∈[0,ρmax]

∣∣∣∣
d (ρ(1− ρ)α)

dρ

∣∣∣∣ .

Therefore, the numerical flux is approximated by the second-order mid-point rule:
∫ tn+1

tn
F (ρ(t, xj), U(t, xj)) dt ≃ ∆t F

(
ρ(tn+

1
2 , xj), U(tn+

1
2 , xj)

)
, (12)

where the corresponding functions can be evaluated by Taylor’s expansion:

ρ
(
tn+

1
2 , xj

)
= ρ(tn, xj) +

∆t
2 ρt(t

n, xj), (13)

U
(
tn+

1
2 , xj

)
= U(tn, xj) +

∆t
2 Ut(t

n, xj). (14)
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Compute the terms in (13) and (14). Firstly, from equation (8), we get:
ρ̃nj (t

n, xj) = ρnj .

The time derivative ρt in (13) is computed with the help of (6),
ρt(t, x) = −Fx(ρ(t, x), U(t, x)),

where the spatial derivative Fx is approximated by the minmod limiters,

Fx = mm

(
θ ×mm

(
Fnj − Fnj−1

∆x
,
Fnj+1 − Fnj

∆x

)
,
Fnj+1 − Fnj−1

2∆x

)
, (15)

where
Fj = F (ρj , Uj) = vmaxρj(1− ρj)α exp(−Uj).

We use the midpoint and the composite trapezoidal rule to calculate the terms in (14), and we obtain:

U(tn, xj) =

∫ xj+η

xj

ρ(tn, y)κη(y − xj) dy

=

N−1∑

k=0

∫ xj+k+1

xj+k

ρ̃n(y)κη(y − xj) dy

=

N−1∑

k=0

∫ x
j+k+1

2

xj+k

ρ̃n(y)κη(y − xj) dy +
N−1∑

k=0

∫ xj+k+1

x
j+k+1

2

ρ̃n(y)κη(y − xj) dy

=
N−1∑

k=0

[
κη(xk)ρ

n
j+k + κη

(
xk+ 1

2

)(
ρnj+k + δnj+k

∆x

2

)]
∆x

4

+

N−1∑

k=0

[
κη
(
xk+ 1

2

)(
ρnj+k+1 − δnj+k+1

∆x

2

)
+ κη(xk+1) ρ

n
j+k+1

]
∆x

4

and

Ut(t
n, xj) =

∫ xj+η

xj

ρt(t
n, y)κη(y − xj) dy

= −
∫ xj+η

xj

Fy (ρ(t
n, y), U(tn, y)) κη(y − xj)dy

= −
[
κη(y − xj)F

(
ρ (tn, y), U(tn, y)

)]xj+η
xj

+

∫ xj+η

xj

κ′η(y − xj)F (ρ(tn, y), U(tn, y)) dy

= κη(0)F (ρ
n
j , U

n
j )−κη(xN )F (ρnj+N , Unj+N ) +

∆x

2

[
F (ρnj , U

n
j )κ

′
η(0) + F (ρnj+N , U

n
j+N )κ

′
η(η)

]

+∆x

N−1∑

k=0

F
(
ρnj+k, U

n
j+k

)
κ′η(k∆x).

Finally, the substitution of (12), (13), and (14) in (11) results in our central scheme, which can be
written in the following form:

ρn+1
j+ 1

2

=
ρnj + ρnj+1

2
+

∆x

8

(
δnj − δnj+1

)
− β

(
F
(
ρ
n+ 1

2
j+1 , U

n+ 1
2

j+1

)
− F

(
ρ
n+ 1

2
j , U

n+ 1
2

j

))
. (16)

Remark 1. If δj = 0, ρ
(
tn+

1
2 , xj

)
= ρnj for all j, thus the second-order central scheme is simplified

to the first-order staggered LxF scheme. The resulting first-order scheme is as follows:

ρn+1
j+ 1

2

=
ρnj + ρnj+1

2
− β

(
F
(
ρnj+1, U

n
j+1

)
− F

(
ρnj , U

n
j

))
, (17)

where

Unj = ∆x
N−1∑

k=0

κη(k∆x)ρ
n
j+k and F (ρnj , U

n
j ) = f(ρnj ) exp(−Unj ).
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3. Numerical tests

In this section, we provide a variety of numerical tests to demonstrate how the second-order
schemes (16) perform and are particularly appealing for the traffic flow model under consideration.
Our objectives are as follows:

— Using a variety of tests, we compare the performance of the proposed central scheme to that of the
Lax–F scheme (17).

— Compare the non-local solution to the local solution when the kernel support is large (or small
enough).

— Investigating how the computed solution varies with the look-ahead distance

In all our numerical tests, we impose the condition η = N∆x; the CFL number is 0.5; vmax = 1;
we use periodic boundary conditions for simplicity; and we use a generalized slope limiter with θ = 2.
We indicate the form of boundary conditions that are applied for each numerical test. Assuming a
uniform partition of [a, b], {Cj}mj with ∆x = (b−a)

m , we define ρnj in the ghost cells for j = 1, . . . ,m as
follows:

ρn0 = ρnm, and ρnj+m = ρnj for j = 1, . . . , N.

Since we can not explicitly compute the exact solution, we refined the grid to get a reference solution.
Regarding the Lax–Friedrichs schemes, if ρ∆x(T, x) and ρ∆x

2
(T, x) are the solutions calculated with m

and 2m grid cells, respectively, the L1 error for the cell average ρ∆x is given by

e(∆x) =
∥∥∥ρ∆x(T, ·)− ρ∆x

2
(T, ·)

∥∥∥
L1

=
m∑

j=1

∫

I2j

∣∣∣ρ∆x(T, x)− ρ∆x
2
(T, x)

∣∣∣ dx+

∫

I2j−1

∣∣∣ρ∆x(T, x)− ρ∆x
2
(T, x)

∣∣∣ dx

=
∆x

2

m∑

j=1

(|ρj − ρ2j |+ |ρj − ρ2j−1|) ,

where
Cj = I2j−1 ∪ I2j and ρ∆x

2
(T, x) =

{
ρ2j−1, x ∈ I2j−1,
ρ2j, x ∈ I2j .

The integrals in the second-order central schemes are calculated using a high-order quadrature method;
therefore, the L1 error is determined as

e(∆x) =
∥∥∥ρ∆x(T, ·)− ρ∆x

2
(T, ·)

∥∥∥
L1

= ∆x
M∑

j=1

∣∣∣∣ρj −
9

16
(ρ2j + ρ2j−1) +

1

16
(ρ2j+1 + ρ2j−2)

∣∣∣∣
∆x

2
.

In both situations, the convergence order is specified by

γ(∆x) =
ln(e(∆x)) − ln

(
e
(
∆x
2

))

ln(2)
.

3.1. Test 1. Comparison of the schemes

We consider the equation (6) with the following initial data:

ρ0(x) =

{
1 if 0 6 x 6 10,
0 otherwise.

(18)

This is appropriate when the traffic light is at x = 10 and changes from red to green at the start
of the time interval. We compute the numerical solution of (2)–(18) at time T = 5 using κη = 1

η ,

κη(x) = 2
η (1 − x

η ) and κη(x) = 3
2η (1 − x2

η2
). We fix ∆x = 1

10 and compare the numerical results
produced with the second-order central scheme to those obtained with the first-order Lax–Friedrich’s
scheme. The results are displayed in Figures 1a, 1b, and 1c are compared to the reference solution,
which was obtained with the second-order central scheme.

Mathematical Modeling and Computing, Vol. 10, No. 4, pp. 1100–1108 (2023)



Central finite volume schemes for non-local traffic flow models with Arrhenius-type . . . 1105

x
0

ρ

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

LxF
S.order
Ref

1 2 3 4 5 6 7 8 9 10

a (κη(x) =
1
η )

LxF
S.order
Ref

x
0

ρ

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8 9 10

b (κη(x) =
2
η (1 − x

η ))
x

0

ρ

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8 9 10

LxF
S.order
Ref

c (κη(x) =
3
2η

(
1− x2

η2

)
)

Fig. 1. Comparison of numerical solutions computed with the second-order central scheme and Lax–Friedrich’s
scheme using ∆x = 1

10 and η = 0.1 at T = 5, corresponding to the initial condition (18) and different kernel
functions. The reference solution is computed using a second-order central scheme with ∆x = 1

100 .

Figure 1 shows the results for different kernel functions. The numerical results obtained by the
second-order central scheme are appropriate approximations of shocks and rarefaction waves. The
second-order central schemes are better than Lax–Friedrichs schemes at capturing the reference solution
for the shock waves, while the former’s solutions are more diffusive.

3.2. Test 2. Convergence order

To determine the correct rating of the schemes (16) and (17) in terms of accuracy, we now examine
the initial data given below:

ρ0(x) =

{
0.8 if − 1/3 6 x 6 1/3,
0.2 otherwise,

(19)

for x ∈ [−1, 1] and compute the approximate solutions at T = 1 for various kernel functions with
η = 0.1. The results are given in Table 1.

Table 1. L1 error and convergence orders using various kernel functions and η = 0.1 for the initial condition (19).

Scheme κη = 1
η κη = 2

η (1− x
η ) κη = 3

2η (1− x2

η2 )

1
∆x L1 error γ(∆x) L1 error γ(∆x) L1 error γ(∆x)

40 5.8914e-04 — 5.6440e-04 — 5.6564e-04 —
80 1.7837e-04 1.72 1.4507e-04 1.96 1.4358e-05 1.97

S.order 160 4.2055e-05 2.08 3.4213e-05 2.08 3.5470e-05 2.01
320 1.1782e-05 1.83 9.0058e-06 1.92 9.2867e-06 1.93
640 2.9148e-06 2.01 2.3252e-06 1.95 2.4753e-06 1.90
40 5.6300e-02 — 5.9000e-02 — 5.8200e-02
80 3.7600e-02 0.58 3.9900e-02 0.56 3.9400e-02 0.56

Lax–F 160 2.3300e-02 0.69 2.4600e-02 0.69 2.4400e-02 0.69
320 1.5900e-02 0.55 1.6900e-02 0.54 1.6700e-02 0.54
640 9.8000e-03 0.69 1.0500e-02 0.68 1.0300e-02 0.69

Table 1 shows the L1 errors and numerical accuracy orders γ(∆x) for both schemes. We computed
numerical approximations with 1

∆x = 10 × 2k for k = 2, 3, . . . , 6. The L1 error of the second-order
schemes is smaller than the Lax–Friedrichs errors for each step of refinement, which is a clear indication
that the error of the second-order central schemes diminishes as the mesh is refined. In conclusion, we
may compare the performance of the second-order schemes with that of the first-order scheme when
the solution has discontinuities.

3.3. Test 3. Numerical comparisons between local and nonlocal solutions when η is large or small
enough

As in Test 3.1, we apply the proposed central schemes to (6), (18) and a similar problem with local
flux, and we compute its solutions on a uniform grid with ∆x = 0.1 for various η values at the time
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final T = 20.20. The solutions are shown in Figures 2 and 3. It is easy to see the impact of the
nonlocal flux that reflects the look-ahead rules. The effect is especially clear in the wave’s head, where
the density wave corresponding to the nonlocal situation visibly follows behind the local one. This
can be explained by being vigilant when cars are coming. At the same time, because the interaction
potentials for cars at the front of the wave vanish, the nonlocal and local solutions are nearly identical.
Finally, we show how the computed solution is affected by the look-ahead distance, η. Figure 4 shows
the solutions produced using the second-order central scheme for η = 0.1, 0.2, 0.4, 0.8 and η = 1, 2, 4, 8
are shown in Figure 5. As can be observed, there is a high reliance on η: as η diminishes, drivers can
see less, which reduces their sensitivity to contact and causes the initial traffic congestion to dissipate
more quickly. The nonlocal flow, however, is not very significant when η is quite large.
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Fig. 2. The effect of look-ahead dynamics: nonlocal vs. local fluxes. The solution to (6) computed with a
different kernel function and η = 8, T = 20.
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Fig. 3. The effect of look-ahead rules: nonlocal vs. local fluxes. The solution to (6) computed with a different
kernel function and η = 0.1, T = 20.
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Fig. 4. The solution to (6) computed with different kernel functions and decreasing values of η = 0.8, 0.4,
0.2, 0.1; T = 20.20.
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Fig. 5. The solution to (6) computed with a different kernel function and increasing values of η = 1, 2, 4, 8,
T = 20.20.

Table 2. L1 distances between the approximate solutions
ρL and ρη to the local model and the nonlocal model, re-
spectively, for different η at T = 20.20 with different kernel

functions for the initial condition (18).

‖ρη − ρL‖L1

η κη =
1
η κη(x) =

2
η

(
1− x

η

)
κη(x) =

3
2η

(
1− x2

η2

)

1 0.8326 0.8977 0.8776
2 0.6602 0.7628 0.7341
4 0.4028 0.5594 0.5168
8 0.2477 0.2229 0.1628

To further elucidate the dependence of
the computed solution on the look-ahead
distance η, we compute the L1 distance be-
tween the approximate solutions obtained
for the central second-order scheme ap-
plied to (6)–(18) and the solution of a tra-
ditional (LxF) scheme for the equivalent
local equation. The corresponding L1 dis-
tances shown in Table 2 decrease when η
is large enough. Figure 5 illustrates the re-
sults in more detail.

4. Conclusion

We extended and studied the central accurate numerical method for nonlocal traffic flow models with
look-ahead rules. Our numerical method extends the second-order reconstruction-based schemes for
local conservation laws in the sense that, as the nonlocal variable disappears, we regain the well-
known second-order central scheme for the local equation. We created the second-order approach that
converges to the unique solution if the convolution kernel and the look-ahead distance meet certain
conditions. We performed many numerical experiments that compared our proposed scheme to the
first-order method proposed in [13, 14]. The nonlocal solution provided by the second-order central
scheme is also more accurate than the solution obtained by the Lax–Friedrichs scheme. Hence, the
reliance on η is substantial: as η diminishes, drivers can see more, lowering their attention to contact
and causing the original traffic congestion to clear more slowly. When η is quite large, however, the
influence of the nonlocal flux is negligible. Our numerical results also showed that the choice of the
flux function influences the development of shocks in the nonlocal model.
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Центральнi схеми скiнченного об’єму для нелокальних моделей
транспортних потокiв iз правилами прогнозу типу Арренiуса

Белкадi С., Атунтi М.

Перший унiверситет Мухаммеда,
Багатопрофiльний факультет Надора, 62702 Селуан–Надор, Марокко

Представлено центральний метод скiнченного об’єму та його застосування до ново-
го класу моделей нелокального трафiку з прогнозованою взаємодiєю типу Арренiу-
са. Цi моделi можна сформулювати як скалярнi закони збереження з нелокальни-
ми потоками. Запропонована схема є розвитком неосциляцiйної центральної схеми
Несся–Тадмора. Проведено декiлька чисельних експериментiв, у яких виконано та-
кi дiї: i) продемонстровано надiйнiсть i високу роздiльну здатнiсть запропонованого
методу; ii) порiвняно розв’язки рiвнянь з локальними та нелокальними потоками;
iii) перевiрено, як вiдстань уперед впливає на чисельний розв’язок.

Ключовi слова: методи скiнченного об’єму; закони збереження; нелокальний по-
тiк; моделювання транспортного потоку; обмежувачi.
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