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This paper presents a method for solving a class of inverse problems for elliptic equations
known as the data completion problem. The goal is to recover missing data on the inac-
cessible part of the boundary using measurements from the accessible part. The inherent
difficulty of this problem arises from its ill-posed nature, as it is susceptible to variations
in the input data. To address this challenge, the proposed approach integrates Tikhonov
regularization to enhance the stability of the problem. To solve this problem, we use a
metaheuristic approach, specifically, the Bat Algorithm (BA) inspired by the echolocation
behavior of bats. The performed numerical results show that the Bat Algorithm yields
stable, convergent, and accurate solutions.
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1. Introduction

The Cauchy problem, which is also referred to as the data completion problem associated with an
elliptic equation, is widely acknowledged as a prominent example that illustrates the nature of an
ill-posed problem. It involves the challenge of recovering missing data on the inaccessible part of
the boundary using available measurements from the accessible part. This problem arises in many
applications, such as cardiography [1], nondestructive testing [2], and seismology [3]. In cardiography,
the Cauchy problem allows for modeling the propagation of electrical waves within the heart, which
can aid in the diagnosis of heart conditions and monitoring treatment progress. In nondestructive
testing, the problem aids in simulating the transmission of ultrasonic waves through materials, which
can facilitate the detection of defects without causing damage. Additionally, in seismology, the Cauchy
problem enables modeling the propagation of seismic waves through the Earth, which can be used to
study earthquakes and map the Earth’s interior.

The problem at hand is a well-known example of an ill-posed inverse problem, which means that
even minor perturbations in the data can lead to substantial variations in the solution [4]. The prob-
lem under consideration exhibits a profound ill-conditioning, thereby rendering conventional numerical
techniques ineffective in achieving accurate solutions. Consequently, specialized methodologies such as
regularization methods are indispensable for addressing this predicament. To address the ill-posed of
the Cauchy problem associated with the elliptic equation, various regularization strategies have been
developed to obtain stable and reliable approximate solutions, particularly when the measured data
is inevitably contaminated by random noise. These regularization strategies encompass a range of ap-
proaches, including Tikhonov regularization methods [5], iterative regularization [6], quasi-reversibility
method [7], Lavrentiev regularization [8], truncation regularization method [9, 10], moment problem
method [11], discretization method [12], the conjugate gradient method [13], the Landweber method [14]
among others.
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The aforementioned techniques are deterministic in nature, meaning they assume the values and
relationships involved are precisely known. However, in the case of complex systems influenced by
various variables and uncertainties, deterministic models may struggle to account for all the factors
accurately, leading to inaccuracies and an incomplete understanding of the system.

In addition to deterministic techniques, there is a complementary class of methods known as stochas-
tic techniques. Stochastic techniques deal with randomness, uncertainty, and probability, offering a
different perspective and approach to problem-solving. These methods are particularly useful when
addressing systems with numerous variables and uncertain parameters, enabling a more comprehen-
sive analysis that accounts for the inherent variability and randomness in the system. Metaheuristic
(stochastic) approaches use probabilistic methods to find the best solution from a pool of possible so-
lutions. These methods are particularly useful for ill-posed inverse problems, where multiple solutions
can fit the data equally well. By exploring the solution space, metaheuristic methods can find multiple
viable solutions. Noteworthy stochastic techniques encompass the bat algorithm [15], the artificial bee
colony algorithm [16], particle swarm optimization [17], the grey wolf optimization [18], and the genetic
algorithm [19].

The utilization of metaheuristic algorithms offers several advantages, especially when dealing with
inverse problems that involve non-smooth or non-convex fitness functions. These algorithms demon-
strate adaptability and robustness in tackling such complex problem landscapes. They are capable of
exploring and optimizing solutions even in the presence of irregularities or challenging function prop-
erties. Furthermore, metaheuristics are well-suited for handling noisy or incomplete data, which are
commonly encountered in inverse problems. The inherent stochasticity in these algorithms allows them
to effectively navigate uncertain or noisy information, enabling the discovery of satisfactory solutions
despite imperfect data conditions.

The paper is organized as follows: Section 2 introduces the mathematical formulation of the specific
inverse problem being addressed and explains how it can be transformed into an optimization problem.
Section 3 provides a comprehensive overview of how Bat Algorithms (BA) can be employed to tackle the
aforementioned inverse problem. Section 4 demonstrates the stability, accuracy, and efficiency of the
proposed method through the examination of three numerical examples. These examples encompass
one with a regular domain and another with an irregular domain. Section 5 summarizes the conclusions
and key findings of the study, while also presenting concluding remarks.

2. Problem setting

Let Ω be an open and bounded domain in Rd (d = 2, 3) with a smooth boundary Γ. We divide the
boundary into two disjoint parts, Γ = Γi ∪ Γc, where Γi ∩ Γc = ∅ and mes(Γc) 6= 0.

Given an elliptic equation of the form:

−∆u− κ2u = 0 in Ω. (1)

Where ∆ represents the Laplace operator acting on u, and κ is the number known as the wave number
that describes the spatial frequency of a wave.
— For the Laplace equation, κ = 0.
— For the Helmholtz equation, κ ∈ R+ (positive real numbers).
— For the Yukawa equation, κ ∈ iR+ (positive imaginary numbers).

These values of κ correspond to different physical scenarios and governing equations. The Laplace
equation represents a type of stationary or equilibrium problem, while the Helmholtz equation describes
wave propagation in various fields such as acoustics, electromagnetics, or fluid dynamics. The Yukawa
equation, on the other hand, is often used in particle physics to model the interaction between particles
with a range of forces.

The following Cauchy data can be considered on the parts of the boundary:
u = g on Γc,

∂nu = h on Γc.
(2)
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u = ψ on Γi,

∂nu = ψ′ on Γi.
(3)

2.1. Direct problem

The objective of the forward problem is to determine the solution u by solving the Cauchy problem
described in Eq. (1), using the given Cauchy data u/Γc and ∂nu/Γi (or alternatively, using the given
u/Γi and ∂nu/Γc).

2.2. Inverse problem

The objective of the considered inverse problem is to estimate the values of u/Γi and ∂nu/Γi on the
inaccessible part of the boundary Γi, based on the available data g and h on the accessible part of the
boundary Γc.

2.3. Optimization problem

Since the ψ and ψ′ on the boundary Γi is to be determined, two direct problems are considered:

(PD) :





−∆u− κ2u = 0 in Ω,

u = ψ on Γi,

∂nu = h on Γc.

(4)

(PN ) :





−∆u− κ2u = 0 in Ω,

u = g on Γc,

∂nu = ψ′ on Γi.

(5)

It should be noted that if ψ ∈ H1/2(Γi) and h ∈ H−1/2(Γc) (resp. g ∈ H1/2(Γc) and ψ′ ∈ H−1/2(Γi)),
then there is a unique solution u(ψ, h) (resp. u(ψ′, g)) of the direct problem Eq. (4) (resp. Eq. (5))
(see [20]), and we are looking for ψ (resp. ψ′) such that:

u(ψ, h) = g on Γc, and ∂nu(ψ
′, g) = h on Γc, (6)

which leads to minimize the least-squares functional JDR and JNR defined by:

JDR(ψ) =
1

2
‖u(ψ, h) − g‖2L2(Γc)

+
α

2
‖ψ‖2L2(Γi)

, (7)

and

JNR(ψ′) =
1

2
‖u(ψ′, g) − h‖2L2(Γc)

+
β

2
‖ψ′‖2L2(Γi)

. (8)

Here, the terms α
2 ‖ψ‖2L2(Γi)

and β
2 ‖ψ′‖2L2(Γi)

correspond to the well-known Tikhonov regularization
terms. These terms play a crucial role in promoting smoother solutions and stabilizing the solutions
of ill-posed inverse problems, especially when faced with challenges such as high levels of noise or
ill-conditioned matrices.

3. On solving the Cauchy problem for an elliptic equation via the Bat algorithm

3.1. Overview of bat algorithm

The Bat Algorithm (BA), proposed by Xin-She Yang in 2010 [21], is inspired by the echolocation
behavior of bats. It specifically imitates the remarkable flight navigation abilities observed in MI-
CROBATS species, enabling them to proficiently detect, differentiate between diverse types of insects
(Figure 1), and effectively evade obstacles, even in environments with absolute darkness.

In BA, the candidate solutions are represented as a population of virtual bats. Each bat is associated
with a position vector, denoted as xi, representing a potential solution in the search space. Additionally,
each bat has a velocity vector, denoted as vi, which controls its movement during the optimization
process.
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Fig. 1. Echolocation behavior of microbats.

The algorithm incorporates the echolocation
behavior of bats to explore the search space.
Bats emit ultrasonic pulses and listen for the
echoes to detect prey. Similarly, in BA, each
bat emits an echolocation signal or pulse, rep-
resented by a frequency value, denoted as fi.
This frequency value influences the intensity of
the emitted pulse and determines the rate of
exploration around the current position. More-
over, each bat adjusts its velocity based on its
current position, velocity, and the best solution
found so far. This velocity adjustment is influ-
enced by two factors: the current velocity vi

and the difference between the current position xi and the best solution found so far, denoted as xbest.
The velocity updating process involves random walks, represented by a random vector Ai.

To effectively explore the search space, BA introduces a randomization parameter, ε, which allows
the algorithm to escape from local optima. With a probability ε, bats perform random walk movements
to explore new regions. The optimization process iteratively updates the positions and velocities of the
virtual bats using the echolocation signals and velocity adjustments. This helps guide the population
of bats towards the global optimum, making the Bat Algorithm a promising approach for solving a
wide range of optimization problems.

The standard steps of the Bat Algorithm can be outlined as follows:

— Step 1. Initialize the population: Set the initial population of virtual bats, each with a position
vector xi and a velocity vector vi. Initialize other parameters such as pulse frequency fi, loudness
Li, and pulse rate ri for each bat.

— Step 2. Evaluate fitness: Evaluate the fitness of each bat by calculating the objective function
value for its current position xi.

— Step 3. Update frequency: Update the pulse frequency fi of each bat to introduce variation
and exploration in the search process. The frequency can be updated using a formula like fi =
fmin + (fmax − fmin) · β, where fmin and fmax are the minimum and maximum frequencies, and β
is a random factor.

— Step 4. Update velocity and position: Update the velocity vi of each bat based on its current
position xi, the best solution found so far xbest, and the pulse frequency fi. Update the position
xi of each bat using the updated velocity.

— Step 5. Local search: Perform local search around the best solution found so far xbest. This can
be done by adding a random perturbation to the best solution: xi = xbest + ε ·Ai, where ε is a
random factor and Ai is a random vector.

— Step 6. Update loudness and pulse rate: Update the loudness Ai and pulse rate ri of each bat
based on their current values. This can be done using specific update rules, such as decreasing the
loudness and increasing the pulse rate over iterations.

— Step 7. Evaluate fitness and update the best solution: Evaluate the fitness of each bat’s updated
position and compare it with the fitness of the current best solution. Update the best solution if a
better fitness value is found.

— Step 8. Termination criterion: Check if the termination criterion, such as a maximum number of
iterations or a target fitness value, is met. If not, go back to Step 3 and continue the iterations.
Otherwise, proceed to the next step.

— Output: Return the best solution found by the Bat Algorithm, along with its fitness value.

Bat algorithm (BA) has been applied to various fields and problem domains due to its effectiveness
in optimization. For example, BA has been applied to optimize the design of structures, circuits,
antennas, and mechanical systems (see [15, 22]). It has also been used in image and signal processing
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to find optimal parameters and improve the quality of processed images and signals (see [15, 23, 24]).
Additionally, BA has been used to optimize the selection of relevant features, group similar data points,
and build accurate machine learning models (see [15]). In the field of renewable energy, BA has been
used to find the optimal configuration of renewable energy sources, schedule energy generation, and
improve energy efficiency (see [25]). Finally, BA has been used to find the optimal allocation of financial
resources and minimize risks in investment portfolios (see [26]).

3.2. Algorithm for solving the Cauchy problem associated with an elliptic equation

In this section, we will describe the computation steps involved in solving the inverse problem using the
Bat algorithm in conjunction with the Finite Element Method (FEM). The problem aims to reconstruct
the trace of u (ψ = u/Γi

) and its normal derivative (ψ′ = ∂nu/Γi
) based on the given Cauchy data g

and h on the accessible part of the boundary Γc.
In the Bat Algorithm, each bat represents a potential solution, and their positions are updated using

pulse emission frequency and velocity adjustments. The quality of solutions is assessed by evaluating
fitness values using the objective function.

The algorithm achieves a balance between exploration and exploitation by conducting local searches
around promising solutions, allowing efficient traversal of the search space.

As the algorithm progresses, the pulse rate and loudness of each bat are adapted, influencing their
exploration and exploitation strategies.

Upon completing a predefined number of iterations, the algorithm identifies the bat with the best
fitness value as the optimal solution, representing the solution to the missing data problem. The
algorithm 1 provides a summary of the steps.

This procedure is designed to determine the Dirichlet condition on Γi. However, if we need to find
the Neumann condition instead, we can modify the procedure by making an adjustment. Specifically,
in line 1, we should replace ψi with ψ′

i and use JNR(ψ′
i) instead of JDR(ψi).

4. Numerical results

The domains under consideration are a unit square domain Ω1 = (0, 1)2 with the boundary ∂Ω1 divided
into two parts: Γi = {(0, y) : 0 < y < 1}, and Γc = ∂Ω1 \ Γi (see Figure 2a).

Additionally, there is a unit disc Ω2 = {(x1, x2) : x21 + x22 < 1} with the boundary ∂Ω2 divided into
two parts: Γi = {(x(r, θ), y(r, θ)) : x2 + y2 = r2, θ ∈ [0, π/2]}, and Γc = ∂Ω2 \ Γi (see Figure 2b).
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Fig. 2. Domains of study.

We consider that meas(Γc) > meas(Γi).
To facilitate the comparison and illustration of the accuracy of the method, we will consider the

following analytical solutions.
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Algorithm 1 Algorithm for solving the Cauchy problem associated with an elliptic equation.

1: Objective function JDR(ψi), where ψi = (ψi1, . . . , ψiD)
T

2: Initialize the bat population ψi and velocities vi for i = 1, 2, . . . ,Number of Bats
3: Define pulse frequency fi ∈ [fmin, fmax]
4: Initialize pulse rates ri and the loudness Li
5: while t < Tmax

6: Generate new solutions by adjusting frequency and update velocities and locations/solutions
7: fi = fmin + (fmax − fmin) · β
8: v

(t+1)
i = v

(t)
i + (ψ

(t)
i − ψ∗) · fi

9: ψ̃
(t+1)
i = ψ

(t)
i + v

(t+1)
i

10: if rand(0, 1) > ri then
11: Select the best solution in the current population:
12: ψ∗ = best(ψ̃(t+1)

i )
13: Generate a local solution around the best solution:
14: ψ̃

(t+1)
i = ψ∗ + ε · randn(0, 1)

15: if (rand(0, 1) < Li and JDR(ψ̃(t+1)
i ) < JDR(ψi)) then

16: Accept the new solution:
17: ψ

(t+1)
i = ψ̃

(t+1)
i

18: Increase ri and reduce Li:
19: ri = ri × (1− exp(−γt))
20: Li = αLi
21: Update the current best solution
22: if (JDR(ψ̃(t+1)

i ) < JDR(ψ∗)) then

23: ψ∗ = ψ̃
(t+1)
i

24: t = t+ 1
25: Output the reconstructed trace of ψ based on the best solution ψ∗ obtained.

— Example 1. This example involves solving Laplace’s equation on Ω1, where κ2 = 0. The analytical
solution uex(x, y) is given by: uex(x, y) = cos(x) cosh(y) + sin(x) sinh(y).

— Example 2. Consider the Helmholtz equation on Ω1 with κ2 = 5. The analytical solution uex(x, y)
is chosen as: uex(x, y) = exp(2x− y).

— Example 3. In this example, we address the modified Helmholtz equation (Yukawa) on Ω2, with
κ2 = −2. The analytical solution uex(x, y) is given by: uex(x, y) = sin(x) sin(y).

Figure 3 illustrates the analytical solutions for three examples.
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Fig. 3. The analytical solution for three examples.
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The parameters used for the bat algorithm in evolving each bat population are as follows:

• Population size Psize = 60;
• Loudness L = 1.0;
• Pulse rate r = 1.0;
• Parameter alpha α = 0.97;
• Parameter gamma γ = 0.1;
• Frequency minimum Fmin = 0.0;
• Frequency maximum Fmax = 2.0;
• For case 1 and 2 we take

◮ Lower boundary: Lb = −5;
◮ Upper boundary: Ub = 5;

• For case 3 we take
◮ Lower boundary: Lb = −3;
◮ Upper boundary: Ub = 3.

When dealing with inverse problems in the real world, the boundary data is obtained through ex-
perimental measurements, which makes it susceptible to measurement errors. In our testing scenarios,
we use the following equation to produce synthetic noisy data:

Uper = U × (1 + ν × θ) on Γc. (9)

The variable θ is a random number that follows a uniform distribution between −1 and 1. The level
of noise is determined by the parameter ν. In our current study, we implement the random variable ν
by utilizing the FreeFem++ function randreal1(). This approach aimed to replicate real-world scenarios
and account for inaccuracies in the measured boundary data.

4.1. Reconstructing the Cauchy data ψ and ψ′ on Γi for the example 1

Figures 4a and 5a show how the Cauchy data changes as the iterative process progresses, compared to
the exact solution. At the beginning of the iterative process, there is a significant difference between
the numerical solution and the exact solution. However, this difference decreases rapidly with each
subsequent iteration. This shows that the iterative method is effective at finding the solution missing
Cauchy data, even when the initial data is far from the exact solution.
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Fig. 4. The reconstruction ψ subject to different iterations.

Moreover, Figures 4b and 5b illustrate that the objective functions JDR(ψ) and JNR(ψ′) exhibit
a rapid decrease during the initial iterations, indicating that the algorithm is steadily approaching
the minimum of the objective function. As the iterations continue, the convergence of the objective
function becomes slower, but it eventually reaches a low value by k = 200. This outcome signifies
that the obtained solution is highly accurate and effectively captures the underlying data, providing
an excellent fit.
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In Figures 6a and 7a, a comparison is presented between the numerical solution and the analytical
solution under various levels of noise in the measurement data. As the noise level increases, there is a
slight deviation between the numerical and exact solutions. However, it is important to note that even
at high noise levels, such as 6%, the discrepancy between the numerical and exact solutions remains
relatively small. This indicates that the numerical solution maintains its accuracy and reliability,
providing a good approximation to the exact solution.
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Fig. 6. The reconstruction ψ subject to different level of noise.
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Fig. 7. The reconstruction ψ′ subject to different level of noise.

Moving on to Figures 6b and 7b, these plots illustrate the behavior of the cost function under
different noise levels, specifically ν = 1%, 2%, 4%, and 6%. As the noise level increases, the cost
function also increases, indicating a less precise fit to the data. Nonetheless, even with higher noise
levels, the cost function remains relatively low, suggesting that the numerical solution still exhibits a
good fit to the data.
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4.2. Reconstructing the Cauchy data ψ and ψ′ on Γi for the example 2

Figures 8a and 9a depict the evolution of the Cauchy data throughout the iterative process in compar-
ison to the exact solution. Initially, a notable disparity exists between the numerical solution and the
exact solution. Nevertheless, as the iterations progress, this disparity diminishes rapidly. These figures
clearly demonstrate the efficacy of the iterative method in recovering the solution’s missing Cauchy
data, even when the initial data significantly deviates from the exact solution.
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Furthermore, Figures 8b and 9b demonstrate the behavior of the objective functions JDR(ψ) and
JNR(ψ′) throughout the iterative process. These figures reveal a rapid decrease in the objective
functions during the initial iterations, indicating that the algorithm steadily approaches the minimum
of the objective function. As the iterations progress, the convergence of the objective function becomes
slower, but eventually, by k = 200, it reaches a low value. This outcome signifies that the obtained
solution is highly accurate and effectively captures the underlying data, resulting in an excellent fit.
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Figures 10a and 11a depict a comparison between the numerical solution and the analytical solution
for different levels of noise in the measurement data. As the noise level increases, a slight deviation
between the numerical and exact solutions can be observed. However, it is worth noting that even
at high noise levels, such as 6%, the difference between the numerical and exact solutions remains
relatively small. This indicates that the numerical solution retains its accuracy and reliability, offering
a reliable approximation to the exact solution.

Figures 10b and 11b provide insights into the behavior of the cost function under varying levels
of noise, specifically ν = 1%, 2%, 4%, and 6%. As the noise level increases, the cost function also
increases, indicating a less accurate fit to the data. However, even with higher levels of noise, the cost
function remains relatively low, implying that the numerical solution still maintains a good fit to the
data.
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Fig. 11. The reconstruction ψ′ subject to different level of noise.

4.3. Reconstructing the Cauchy data ψ and ψ′ on Γi for the example 3

Figures 12a and 13a illustrate the evolution of the Cauchy data throughout the iterative process, in
comparison to the exact solution. Initially, a notable disparity exists between the numerical solution
and the exact solution. However, as the iterations progress, this disparity diminishes rapidly. These
figures clearly demonstrate the effectiveness of the iterative method in finding the solution for missing
Cauchy data, even when the initial data significantly deviates from the exact solution.
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Fig. 12. The reconstruction ψ subject to different iterations.

Furthermore, Figures 12b and 13b depict the behavior of the objective functions JDR(ψ) and
JNR(ψ′) throughout the iterative process. These figures reveal a rapid decrease in the objective
functions during the initial iterations, indicating that the algorithm steadily approaches the minimum
of the objective function. As the iterations progress, the convergence of the objective function becomes
slower, but eventually, by k = 200, it reaches a low value. This outcome indicates that the obtained
solution is highly accurate and effectively captures the underlying data, resulting in an excellent fit.
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Fig. 13. The reconstruction ψ′ subject to different iterations.

Figures 14a and 15a provide a comparison between the numerical solution and the analytical solu-
tion for different levels of noise in the measurement data. As the noise level increases, a slight deviation
between the numerical and exact solutions can be observed. However, it is worth noting that even at
high noise levels, such as 4%, the difference between the numerical and exact solutions remains rela-
tively small. This indicates that the numerical solution maintains its accuracy and reliability, offering
a good approximation to the exact solution.
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Fig. 14. The reconstruction ψ subject to different level of noise.
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Fig. 15. The reconstruction ψ′ subject to different level of noise.

Figures 14b and 15b show how the cost function behaves under different noise levels. The noise
levels are 1%, 2%, 4%, and 6%. As the noise level increases, the cost function also increases. This
indicates that the fit to the data becomes less precise as the noise level increases. However, even with
higher noise levels, the cost function remains relatively low, suggesting that the numerical solution still
fits the data well.
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5. Conclusion

This paper addresses a challenging ill-posed inverse problem related to the Cauchy problem for elliptic
equations. The proposed approach combines the Bat Algorithm with the well known Tikhonov reg-
ularization, implemented using the finite element method. Numerical simulations are conducted on
both irregular and regular domains to evaluate the effectiveness of the approach, even in the absence of
prior information. This indicates that the algorithm has significant potential for solving various types
of inverse problems.
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Розв’язування задачi Кошi для елiптичного рiвняння
за допомогою алгоритму кажанiв

Даудi Дж., Таянi Ч.

Команда SMAD, Полiдисциплiнарний факультет Лараш,
Унiверситет Абдельмалека Ессаадi, Тетуан, Марокко

У цiй статтi подано метод розв’язування класу обернених задач для елiптичних рiв-
нянь, вiдомих як проблема заповнення даних. Мета полягає в тому, щоб вiднови-
ти вiдсутнi данi на недоступнiй частинi межi за допомогою вимiрювань з доступної
частини. Внутрiшня складнiсть цiєї проблеми виникає через її некоректну природу,
оскiльки вона чутлива до змiн у вхiдних даних. Щоб вирiшити цю задачу, запропоно-
ваний пiдхiд включає регулярiзацiю Тихонова для пiдвищення стiйкостi задачi. Щоб
вирiшити цю задачу, використовується метаевристичний пiдхiд, зокрема, алгоритм
кажанiв (BA), заснований на ехолокацiйнiй поведiнцi кажанiв. Виконанi чисельнi ре-
зультати показують, що алгоритм кажанiв дає стiйкi, збiжнi та точнi розв’язки.

Ключовi слова: обернена задача; рiвняння Гельмгольца; рiвняння Лапласа; опти-
мiзацiя; регулярiзацiя Тихонова; алгоритм кажанiв.
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