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This paper investigates the influence of slip effect on a stagnation point flow towards
a shrinking/stretching sheet in carbon nanotube. The governing system of the partial
differential equation is converted into a set of nonlinear ordinary differential equations by
using a similarity transformation. The nonlinear ordinary differential equations are then
solved numerically by Haar wavelets collocation method. The influence of the various
parameters on the characteristics of the fluid flow and heat transfer is analyzed. Results
are presented in terms of the skin friction coefficient and local Nusselt number, whereas
the velocity and temperature profiles in the form of figures and thus, discussed in details.
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1. Introduction

Research on nonlinear stretching/shrinking sheet flow has appeared as a crucial element in a heat
transfer research that concerns natural and engineering applications, such as in nanotechnology indus-
tries, metal forming, oil reservoir behavior, electronic cooling, coating and printing industry [1]. The
original problem involving a continuously stretching sheet was pioneered by Sakiadis [2,3]. This classic
problem, commonly referred to as “Sakiadis flow,” has undergone extensive development to incorporate
more intricate thermo-physical and geometric effects. Many researchers, among them Crane [4] and
Gupta [5], have contributed to the extension and broadening the scope of this fundamental flow prob-
lem, delving into various factors that affect its behavior. Meanwhile, Bachok and Ishak [6] examined
the flow around a nonlinear stretching/shrinking sheet within the stagnation region. They discovered
non-unique solutions, particularly when the sheet was undergoing shrinking towards a fixed point.
This discovery emphasized the intricate and multifaceted nature of the problem, wherein multiple
distinct solutions can coexist under specific conditions. Furthermore, numerous researchers have acon-
tributed to the exploration of nonlinear stretching/shrinking sheets, analyzing their behavior under
various physical effects. Significantly, noteworthy contributions in this field have been made by Hayat
et al. [7], Pal and Mandal [8], Rana et al. [9], Jamaludin et al. [10] and Reddy et al. [11]. Collectively,
their work has provided valuable insights into the intricate dynamics of these systems, enriching our
understanding of this complex area of study.

Nanofluids, were first introduced by Choi and Eastman [12], are defined as liquids containing dis-
persed submicron-sized solid particles, or nanoparticles. Among the various materials suitable for
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nanoparticle formation, carbon is particularly noteworthy due to its exceptional thermal, electrical,
and mechanical properties [13]. Carbon nanotubes (CNTs) are a relatively recent and highly appeal-
ing class of carbon-based nanomaterials, characterized by their high aspect ratio. They are two main
types of CNTs: Single-Wall Carbon Nanotubes (SWCNTs) and Multi-Wall Carbon Nanotubes (MWC-
NTs). In a study conducted by Choi et al. [14], focusing on oil-based carbon nanotubes (CNTs), it
was observed that even a modest addition of nanotubes (1 vol%) led to a significant increase in the
thermal conductivity of the base fluid. Garg et al. [15] explored the impact of dispersing energy on the
viscous and heat transfer characteristics of MWCNTs dispersed in water. Their observation revealed a
substantial 20% enhancement in thermal conductivity. Subsequently, numerous researchers have rec-
ognized the advantages of utilizing CNTs into their respective areas of study [16–18]. This underscores
the promising role of CNTs in enhancing thermal properties and their broad applicability in various
scientific and industrial domains.

Recently, the Haar wavelet collocation method (HWCM) has emerged as a significant and efficient
technique for obtaining numerical solutions to differential and integro-differential equations. HWCM
is a semi-numerical method that harnesses the unique properties of Haar wavelets. These wavelets are
characterized by their piecewise constant functions, occurring in pairs, and they facilitate straightfor-
ward integration. Moreover, these orthogonal Haar functions form a basis foundation for transforma-
tion, making wavelets a valuable tool for analyzing dynamic phenomena, relevance in the engineering
research. The pioneering use of Haar wavelets for solving systems of coupled ordinary differential equa-
tions (ODEs) related with boundary layer fluid problems, particularly involving high Prandtl numbers
(Pr), was proposed by Sarler and Aziz [19]. This study highlights that the Haar wavelet colloca-
tion method (HWCM) surpasses traditional methods like the Runge–Kutta method (RKM) [20] and
asymptotic techniques such as the Homotopy Analysis Method (HAM) [21]. The advantage of HWCM
is its ability to directly address boundary value problems, directly without the need to convert them
into initial value problems through shooting techniques. This direct approach enhances the stability
of the method, especially when applied to problems with extensive computational domains, marking
HWCM as a valuable tool for tackling complex boundary value problems in fluid dynamics. HWCM
has been applied in solving two-dimensional boundary-layer flow problems in the presence of a uniform
magnetic field. This approach has provided highly accurate solutions and revealed the occurrence of
dual solutions for specific ranges of physical parameters Karkera et al. [22]. Subsequent research have
consistently demonstrated the superior accuracy of Haar wavelets when compared to other numerical
methods. These confirmatory studies have been conducted by researchers such as [23–25]. These find-
ings collectively underscore the significance of Haar wavelets in numerical analysis and their potential
to deliver highly precise results across various applications.

2. Haar wavelet

The one dimensional Haar wavelet family known as mother Haar wavelet for x ∈ [0, 1) can be described
as

hi(x) =





1, for x ∈ [α, β),

−1, for x ∈ [β, γ),

0, elsewhere,

where α = k
m , β = k+0.5

m , γ = k+1
m . Integer m and k can be defined as m = 2j , j = 0, 1, . . . , J that

indicates the level of the wavelet while k = 0, 1, . . . ,m − 1 is the translation parameter. J is the
maximum level of resolution and index i is calculated by using the formula i = m+ k + 1. For i = 1,
function h1(x) is the scaling function which forms a square wave with unit magnitude stated as

h1(t) =

{
1, t ∈ [0, 1),

0, elsewhere.

By referring Karkera et al. [22], the integrals of the Haar functions are
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P1,i(t) =

∫ t

0
hi(x) dx

=





t− α, for t ∈ [α, β),

γ − t, for t ∈ [β, γ),

0, elsewhere,

P2,i(t) =

∫ t

0
P1,i(x) dx

=





1
2(t− α)2, for t ∈ [α, β),
1

4m2 − 1
2(γ − t)2, for t ∈ [β, γ),

1
4m2 , fort ∈ [γ, 1),

0, elsewhere.

Likewise, Pl+1,i(t) =
∫ t
0 Pl,i(x) dx, l = 2, 3, . . ..

3. Methodology

Consider an incompressible steady flow in the region y > 0 driven by a stretching/shrinking surface
located at y = 0 with a fixed stagnation point x = 0. The velocity of ambient fluid U∞(x) = bxn and
stretching/shrinking Uw(x) = axn are presumed to differ linearly from the stagnation point, where a
and b are constant. Both SWCNTs and MWCNTs are used with water base fluid. The boundary layer
equations can be defined as follows [26]

∂u

∂x
+
∂v

∂y
= 0, (1)

u
∂u

∂x
+ v

∂u

∂y
= U∞

dU∞
dx

+
µnf
ρnf

∂2u

∂y2
, (2)

u
∂T

∂x
+ v

∂T

∂y
= αnf

∂2T

∂y2
, (3)

and the boundary conditions are

u = Uw + L
∂u

∂y
, v = V (x), T = Tw +M

∂T

∂x
at y = 0,

u→ U∞, T → T∞ as y →∞, (4)

where L and M denotes the slip factor where defined as L = L1x
−n+1

2 and M =M1x
−n+1

2 respectively.
L1 and M1 is the slip factors initial length and V (x) is the mass transfer velocity and Tw is the
temperature of nanofluid. It should be mention that αnf , µnf , ρnf , (ρCp)nf and knf are the thermal
diffusivity, viscosity, density, capacity of heat and thermal conductivity of nanofluid that Oztop and
Abu Na-da [27] offer

αnf =
knf

(ρCp)nf
, µnf =

µf
(1− ϕ)2.5 , ρnf = (1− ϕ)ρf + ϕρCNT ,

(ρCp)nf = (1− ϕ)(ρCp)f + ϕ(ρCp)CNT ,

knf
kf

=
1− ϕ+ 2ϕ kCNT

kCNT−kf ln
kCNT+kf

2kf

1− ϕ+ 2ϕ
kf

kCNT−kf ln
kCNT+kf

2kf

,

where ϕ is the CNTs volume fraction, (ρCp)CNT , kCNT and ρCNT are the capacity of heat, thermal
conductivity and density of CNTs, and ρf and kf are the density and thermal conductivity of the fluid.

The use of the term for knf

kf
was taken from the Maxwell’s theory model that considers the effects of

CNTs space distribution on thermal conductivity.
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Equations (2) and (3) are reduced by the similarity transformation and the variables of similarity
can be introduced as follows

η =

(
(n+ 1)b

2vf

) 1
2

y x
n−1
2 , ψ =

(
2bvf
n+ 1

) 1
2

x
n+1
2 f(η), θ(η) =

T − T∞
Tw − T∞

(5)

where η is the variable of similarity, ψ is the function of stream described as u = ∂ψ
∂y and v = −∂ψ

∂x which
comply with equation (1). Equations (2) and (3) can be reduced to these ODEs by using equation (5)

1

(1− ϕ)2.5
(
1− ϕ+ ϕρCNT

ρf

)f ′′′ + ff ′′ + β(1− f ′2) = 0, (6)

1

Pr


 knf/kf

1− ϕ+
ϕ(ρCp)CNT

(ρCp)f


 θ′′ + fθ′ = 0. (7)

Thus, subject to the boundary condition equation (4) we have
f(0) = 0, f ′(0) = ε+ σf ′′(0), θ(0) = 1 + σtθ

′(0),

f ′(η)→ 1, θ(η)→ 0 as η →∞, (8)
where β = 2n

n+1 is the nonlinear parameter which varies from 1 to 2 as n grows from unity to infinity,
ε = a/b is the stretching/shrinking parameter where ε < 0 is shrinking ε > 0 is stretching, Prandtl
number Pr = vf/αf , σt and σ are thermal slip and velocity parameter, respectively.

3.1. Numerical solution by Haar wavelet collocation method (HWCM)

The semi-infinites physical domain [0,∞) must be changed to suitable Haar wavelet context where
it can be reduced to [0, 1] by introducing the coordinate transformation ξ = η/η∞ and changing the
variable to F (ξ) = f(η)/η∞ and θ1(ξ) = θ(η)/η∞ to satisfy all the boundary conditions. Then,
Equations (6) and (7) can be transformed to

1

(1− ϕ)2.5
(
1− ϕ+ ϕρCNT

ρf

)F ′′′(ξ) + η2∞F (ξ)F
′′(ξ) + βη2∞

(
1− (F ′(ξ))2

)
= 0, (9)

1

Pr


 knf/kf

1− ϕ+
ϕ(ρCp)CNT

(ρCp)f


 θ′′1(ξ) + η2∞F (ξ)θ

′
1(ξ) = 0. (10)

The boundary conditions of equation (3) are transformed to

F (0) = 0, F ′(0) = ε+ σ
F ′′(0)
η∞

, θ1(0) =
1 + σtθ

′
1(0)

η∞
,

F ′(η)→ 1, θ1(η)→ 0 as η → η∞. (11)

The higher order of derivatives for equations (9) and (10) are approximate by Haar wavelet,

F ′′′(ξ) =
2J+1∑

i=1

aihi(ξ), (12)

θ′′1(ξ) =

2J+1∑

i=1

dihi(ξ) . (13)

The corresponding lower order of derivatives are derived using equation (12) and (13)

F ′′(ξ) = A(1− ε) +
2J+1∑

i=1

ai[P1,i(ξ)−ACi], (14)

F ′(ξ) = ε+A(1− ε)
(
ξ +

σ

η∞

)
+

2J+1∑

i=1

ai

[
P2,i(ξ)−A

(
ξ +

σ

η∞

)
Ci

]
, (15)

F (ξ) = ξε+A(1− ε)
(
ξ2

2
+
ξσ

η∞

)
+

2J+1∑

i=1

ai

[
P3,i(ξ)−A

(
ξ2

2
+
ξσ

η∞

)
Ci

]
, (16)
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θ′1(ξ) =
2J+1∑

i=1

di[P1,i(ξ)−DCi]−D, (17)

θ1(ξ) =

2J+1∑

i=1

di[P2,i(ξ)−DCi(ξ + σt)]−D(ξ + σt) + 1, (18)

where

Ci =

∫ 1

0
P1,i(t) dt, A =

η∞
σ + η∞

, D =
η∞
σt + 1

,

Then, equations (14)–(18) are substituted into equations (9) and (10). By applying collocation
point,

ξl =
1

2J+1

(
l − 1

2

)
, l = 1, 2, . . . , 2J+1,

we obtain numerical solutions for the ODEs to system nonlinear equations with 2J+1 unknown wavelet
coefficients.

3.2. Method of solution

In this research, the quantities of physical interest are the Nusselt number Nux and the coefficient of
skin friction Cf , given by Malvandi et al. [28]:

Nux =
xqw

kf (Tw − T∞)
, Cf =

τw
ρfU2∞

,

in which the surface heat flux qw and the surface shear stress τw are likely identified as

qw = −knf
(
∂T

∂y

)

y=0

, τw = µnf

(
∂u

∂y

)

y=0

with knf is the thermal conductivity of the nanofluids and µnf is the viscosity of the nanofluids.
Physical interests that we acquire after the transformation are

Cf Re
1
2
x =

1

(1− ϕ)2.5
√

1

2− β f
′′(0), (19)

Nux

Re
1
2
x

= −knf
kf

√
1

2− β θ
′(0), (20)

where

Rex =
U∞x
vf

, f ′′(0) = A(1− ε)−A
2J+1∑

i=1

aiCi, θ′(0) = −D
2J+1∑

i=1

diCi −D.

4. Results & discussions

The ODEs (9) and (10) with boundary conditions (11) are solved and obtained the numerical solutions
via Maple Software. Water is used as the base fluid for both SWCNTs and MWCNTs. By following
Norzawary et al. [29], the selection of ϕ is 0 6 ϕ 6 0.2, where ϕ = 0 is regular fluid with Pr = 6.2
(water). The researchers also mentioned the base fluid’s and CNTs’ thermophysical properties as shown
in Table 1.

Table 1. Thermophysical properties of CNTs.

Physical properties Base fluids
Nanoparticle

SWCNT MWCNT
ρ (kg/m3) 997 2600 1600
cp (J/kgK) 4179 425 796
k (W/mK) 0.163 6600 3000
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a (f ′′(0)) b (−θ′(0))
Fig. 1. f ′′(0) and −θ′(0) with ε and ϕ for water–SWCNTs.

a (f ′′(0)) b (−θ′(0))
Fig. 2. f ′′(0) and −θ′(0) with ε and σ for water–SWCNTs.

a (f ′′(0)) b (−θ′(0))
Fig. 3. f ′′(0) and −θ′(0) with ε and β for water–SWCNTs.

Figures 1a and 1b show the f ′′(0) and −θ′(0) graphs for some values of stretching/shrinking pa-
rameter ε and different values of ϕ when Pr = 6.2 for water–SWCNTs. Both figures show that we
obtained a unique solution when ε > −1, dual solutions when εc < ε 6 −1, and no solutions when
ε < εc. Next, Figures 2a and 2b present the f ′′(0) and −θ′(0) graphs for some values of ε and different
values of velocity slip parameter σ for water–SWCNTs. Both graphs show that the range of ε values
where the solution exists get bigger (ε > εc) when σ increases at the boundary.

Figures 3a and 3b illustrate the f ′′(0) and −θ′(0) graph for certain values of ε and three different
values of β which are β = 1, 1.5 and 2 for water base fluid when ϕ = 0.1 and σ = 0.2. Both graphs
conclude that the range of solutions given by β is bigger compared to ϕ and σ. This also shows that
the boundary layer separation is postponed when the values of β increase.
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Figures 4a and 4b show the Nux(Rex)
−1/2 and Cf (Rex)1/2 as functions of Reynolds number, given

by the equations (19) and (20) using ϕ and σ with set ε = 0.5. It can be concluded that the coefficient of
skin friction decreases while the local Nusselt number increases when σ increases. The presence of slip
enhances the convective heat transfer on the surface. By referring to Table 1, since SWCNTs have higher
density and thermal conductivity than MWCNTs, result in elevated values for both Cf (Rex)

1/2 and
Nux(Rex)

−1/2. Moving on to Figures 5a and 5b illustrate various β for Nux(Rex)−1/2 and Cf (Rex)1/2.
These figures show that both Nux(Rex)

−1/2 and Cf (Rex)
1/2 increase when β increases, displaying a

clear linear correlation with ϕ.

a (Cf (Rex)
1/2) b (Nux(Rex)

−1/2)

Fig. 4. Variation of Cf (Rex)
1/2 and Nux(Rex)

−1/2 with ϕ and σ for water base fluid.

a (Cf (Rex)
1/2) b (Nux(Rex)

−1/2)

Fig. 5. Variation of Cf (Rex)
1/2 and Nux(Rex)

−1/2 with ϕ and β for water base fluid.

The velocity and temperature profiles for different values of ϕ for water–SWCNTs are shown in
Figures 6a and 6b. It can be seen clearly that θ(η) increases within thermal boundary layer thickness
and f ′′(η) decreases within the momentum boundary layer when ϕ increases. Figures 7a and 7b show
the velocity and temperature profiles for various values of σ for water–SWCNTs. For both solutions,
f ′(η) increases within the momentum boundary layer thickness when σ increases, while θ(η) decreases
leading to a reduction in the thermal boundary layer thickness. Lastly, Figures 8a and 8b display the
velocity and temperature profiles for different values of β. Both figures show that f ′(η) increases within
momentum boundary layer thickness, while θ(η) decreases within thermal boundary layer thickness
for both the first and second solutions.
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a (Velocity profile) b (Temperature profile)

Fig. 6. Velocity and temperature profile for ϕ and water–SWCNTs.

a (Velocity profile) b (Temperature profile)

Fig. 7. Velocity and temperature profile for σ and water–SWCNTs.

a (Velocity profile) b (Temperature profile)

Fig. 8. Velocity and temperature profile for β and water–SWCNTs.
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5. Conclusion

This research analyzed the numerical study for the stagnation point flow over a nonlinearly stretching
or shrinking surface in CNTs with slip effects. The numerical solution is obtained using the Haar
wavelet method in Maple software.
— It can be concluded that a unique solution exists when ε > −1, while dual solutions exist when

εc < ε 6 −1 and no solutions are found to exist when ε < εc (εc is critical value of ε). Additionally,
it is established that shrinking sheet result in dual solutions while stretching sheet yields unique
solutions.

— Furthermore, the study explores various parameters, including CNTs volume fraction ϕ, velocity
slip parameter σ, thermal slip parameter σt and nonlinear parameter β. In this problem, raising ϕ
speeds up boundary layer separations while higher values of σ and β broaden the range of solutions,
implying that these parameters delay boundary layer separation.

— Additionally, as ϕ increases, the skin friction and Nusselt number are continuously increasing.
Moreover, SWCNTs outperform MWCNTs in terms of skin friction and local Nusselt number due
to their superior thermal conductivity.
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Метод вейвлет-колокацiї Хаара для розв’язування задачi точки
застою потоку по листi, який нелiнiйно розтягується/стискається,

у вуглецевiй нанотрубцi з ефектом ковзання
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У цiй статтi дослiджується вплив ефекту ковзання на потiк в точцi застою по листi,
який стискається/розтягується, у вуглецевiй нанотрубцi. Основна система рiвняння
в частинних похiдних перетворюється на набiр нелiнiйних звичайних диференцiаль-
них рiвнянь за допомогою перетворення подiбностi. Потiм нелiнiйнi звичайнi дифе-
ренцiальнi рiвняння розв’язуються чисельним способом методом колокацiї вейвлетiв
Хаара. Проведено аналiз впливу рiзних параметрiв на характеристики потоку рiдини
та перенесення тепла. Результати представленi в термiнах коефiцiєнта поверхнево-
го тертя та локального числа Нуссельта, тодi як профiлi швидкостi та температури
подано на графiках та детально обговоренi.

Ключовi слова: вейвлет Хаара; лист, що розтягується/стискається; МГД потiк
точки застою; вуглецева нанотрубка.
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