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This article investigates the modulation stability condition for the problem of wave packet
propagation in a three-layer hydrodynamic system “layer with a hard bottom – layer –
layer with a lid”. The graphs of the dependence of the modulation stability limits on the
thickness of the lower and upper layer and on the density of the middle and upper layers for
capillary and gravity waves are illustrated and analyzed. The evolution equations of the
envelope of wave packets in the form of the second-order nonlinear Schrödinger equation
for the lower and upper surfaces of the contact are obtained. The conditions of modulation
stability are derived.
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1. Analysis of literature data

The study of the properties of waves and their stability in stratified liquids and the ocean is the subject
of many modern studies.

A strongly nonlinear long wave model for large amplitude internal waves in a three-layer flow
between two rigid boundaries is considered in [1]. Solitary-wave solutions of the model are shown to
be governed by a Hamiltonian system with two degrees of freedom. Emphasis is placed on the solitary
waves of the second baroclinic mode (mode-2) and their strongly nonlinear characteristics that fail to
be captured by weakly nonlinear models.

In certain asymptotic limits relevant to oceanic applications and previous laboratory experiments,
it is shown that large amplitude mode-2 waves with single-hump profiles can be described by the
solitary-wave solutions of the MCC model. In case when the density stratification is weak and the
density transition layer is thin, the richness of the dynamical system with two degrees of freedom
becomes apparent and new classes of mode-2 solitary-wave solutions of large amplitudes, characterized
by multi-humped wave profiles. In contrast with the classical solitary-wave solutions described by the
MCC equation, such multi-humped solutions cannot exist for a continuum set of wave speeds for a
given layer configuration. The analytical predictions based on asymptotic theory are then corroborated
by a numerical study of the original Hamiltonian system.

In [2] interfacial internal waves in a stratified fluid excited by periodic free-surface perturbations
in a closed tank are studied experimentally. Barotropic-baroclinic energy conversion is induced by the
presence of a bottom obstacle. The connection between horizontal surface velocities and internal wave
amplitudes is studied, the developing flow patterns are described qualitatively, and the wave speeds of
internal waves are systematically analyzed and compared to linear two-and three-layer theories.

In the article [3] the theory of long nonlinear oscillating wave packets (breathers) in a stratified
fluid with a small density difference in a gravitational field is developed. The theory is based on the
Gardner equation and its modifications, which are completely integrable by modern methods of the
nonlinear wave theory. Examples of the breather generation are given and the conditions for their
stability are presented.

Article [4] discusses a new paradigm introduced by David J. Benney (an applied mathematician
and fluid dynamicist whose highly original work has shaped the authors of the article understanding
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of nonlinear wave and instability processes in fluid flows) in the study of nonlinear phenomena, which
transcends fluid mechanics, and it highlights the common threads of his research contributions, namely,
resonant nonlinear wave interactions; the derivation of nonlinear evolution equations, including the
celebrated nonlinear Schrödinger equation for modulated wave trains; and the significance of three-
dimensional disturbances in shear flow instability and transition.

Under consideration in paper [5] is the AB system describing marginally unstable baroclinic wave
packets in geophysical fluids. By means of the n-fold modified Darboux transformation, the semira-
tional solutions in terms of the determinants of the AB system are derived. The link between the
baseband modulational instability and the existence condition of these rogue waves is revealed.

The work [6] is devoted to the study of stability and instability of periodic traveling waves for
Korteweg-de Vries-type equations with fractional dispersion and related, nonlinear dispersive equations.
It is shown that a local constrained minimizer for a suitable variational problem is nonlinearly stable
to period preserving perturbations, provided that the associated linearized operator enjoys a Jordan
block structure. The cases when the linearized equation admits solutions exponentially growing in
time are discussed.

In the article [7] the modulational instability of two-dimensional nonlinear traveling-wave solutions
of the Whitham equation in the presence of constant vorticity is considered. It is shown that vorticity
has a significant effect on the growth rate of the perturbations and on the range of unstable wavenum-
bers. Waves with kh greater than a critical value, where k is the wave number of the solution and h
is the fluid depth, are modulationally unstable. This critical value decreases as the vorticity increases.
Additionally, it is found that waves with large enough amplitude are always unstable, regardless of
wavelength, fluid depth, and strength of vorticity. These results are in qualitative agreement with
those obtained by considering fully nonlinear solutions of the water-wave equations.

In the article [8] the scenario of resonant interactions as a result of which there can arise rogue waves
modeled as special breathers (pulsating modes) for internal waves in the fluid stratified on density is
considered. The properties of these rogue waves, such as the polarity, amplitude and stability, are
studied, and it is shown that they critically depend on the specific density stratification and the choice
of the participating modes. Three examples, namely, a two-layered fluid, a stratified fluid with constant
buoyancy frequency, and a case of variable buoyancy frequency are examined.

It is shown that both elevation and depression rogue waves are possible, and the maximum displace-
ments need not be confined to a fixed ratio of the background plane wave. Furthermore, there is no
constraint on the signs of nonlinearity and dispersion, nor any depth requirement on the fluid. All these
features contrast sharply with those of a wave packet evolving on water of finite depth governed by the
nonlinear Schrodinger equation. For the case of constant buoyancy frequency, critical wave numbers
give rise to nonlinear evolution dynamics for “long wave – short wave resonance”, and also separate
the focusing and defocusing regimes for narrow-band wave packets of the nonlinear Schrödinger equa-
tion. Numerical simulations are performed by using baseband modes as initial conditions to assess the
robustness of these rogue waves in relation to the modulation instability of a background plane wave.

The study [9] is concerned with the large time behavior of the two-dimensional compressible Navier–
Stokes–Korteweg equations, using to model compressible fluids with internal capillarity. Based on the
fact that the rarefaction wave, one of the basic wave patterns to the hyperbolic conservation laws is
nonlinearly stable to the one-dimensional compressible Navier–Stokes–Korteweg equations, the planar
rarefaction wave to the two-dimensional compressible Navier–Stokes–Korteweg equations is derived
firstly. Then, it is shown that the planar rarefaction wave is asymptotically stable in the case that
the initial data are suitably small perturbations of the planar rarefaction wave. The proof is based
on the delicate energy method. This is the first stability result of the planar rarefaction wave to the
multi-dimensional viscous fluids with internal capillarity.

In [10], the modulation instability of two obliquely interacting waves in the presence of a thin pycn-
ocline is investigated. Nonlinear evolution equations, correct up to the fourth order in wave steepness,
are derived for a pair of obliquely interacting wave packets in the presence of thin pycnocline. These
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evolution equations are then employed to perform stability analysis of a pair of obliquely interacting
uniform wave trains. Figures plotted here reveal that the growth rate of instability decreases with
the increase in pycnocline depth and also with the increase in density difference across the pycnocline.
When the angle of interaction between the two wave packets is less than certain critical value the
growth rate of instability decreases with the increase in angle and beyond this critical value the result
is reversed.

The article [11] is devoted to the problem of propagation of weakly nonlinear wave-packets along
contact surfaces in a three-layer hydrodynamic system “half space – layer – layer with rigid lid”. The
condition of solvability of the problem in the third-order approximation is obtained, the evolution
equation is derived in the form of a nonlinear Schrodinger equation and the modulation stability
condition for its solutions is obtained. The stability diagram and its analysis are presented for the
solution which takes place in the case of the balance between dispersion and non-linearity.

In article [12] the stability of wave packets propagation on the contact surface and free surface of
hydrodynamic system “layer with rigid bottom – layer with free surface” was studied. The diagrams for
nonlinear modulational stability for different thicknesses of lower layer were constructed. The presence
of large regions of nonlinear modulational stability for capillary and gravitational waves for the different
ratios of density and different thicknesses of two fluid layers was obtained. It was noted that the region
of modulational nonlinear instability of the wave packet increased with decreasing of thickness of the
lower layer.

In [13], the stability of wave packets propagating along the interface of two liquid layers with
different densities taking into account surface tension forces is studied. The analysis is performed by
the method of multiscale developments to the third order approximation. Characteristic diagrams of
nonlinear stability as a function of the thickness of the lower layer are given. A significant redistribution
of the regions of nonlinear stability with a change in the ratios of the thicknesses of the liquid layers
was revealed.

In the study [15] the method of multiple scales is used to derive two partial differential equations
that describe the evolution of two-dimensional wave-packets on the interface of two semi-infinite, in-
compressible, inviscid fluids of arbitrary densities, taking into account the effect of the surface tension.
These differential equations can be combined to yield two alternate nonlinear Schrödinger equations;
one of them contains only the first derivatives in time while the second contains the first and second
derivatives in time. The first equation is used to show that the stability of uniform wavetrains depends
on the wave length, the surface tension, and the density ratio. The results show that gravity waves
are unstable for all density ratios except unity, while capillary waves are stable unless the density ratio
is below approximately 0.1716. Moreover, the presence of surface tension results in the stabilization
of some waves which are otherwise unstable. Although the first equation is valid for a wide range of
wave numbers, it is invalid near the cutoff wave number separating stable from unstable motions. It is
shown that the second Schrödinger equation is valid near the cutoff wave number and thus it can be
used to determine the dependence of the cutoff wave number on the amplitude, thereby avoiding the
usual process of determining a new expansion that is only valid near the cutoff conditions.

As can be seen from the above review, the study of wave motions and their characteristics in
three-layer hydrodynamic systems is an urgent task of modern hydromechanics. The use of different
approaches to modeling wave motions in three-layer systems makes it possible to analyze various
aspects of the propagation of internal and surface waves. However, many unsolved questions remain,
in particular the question of the modulation stability of wave packets in three-layer liquids.

This article is devoted to the study of modulation stability for the model of propagation of wave
packets in a three-layer hydrodynamic system “layer with a solid bottom – layer – layer with a cover”.

2. Problem statement and research method

The problem of propagation of wave-packets of finite amplitude in a three-layer hydrodynamic system
“layer with a hard bottom – liquid layer – layer with a cover” taking into account the force of surface
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tensions on the contact surfaces is presented. Fluids are considered incompressible. The mathematical
formulation of the problem is:

ϕj,xx + ϕj,zz = 0 in Ωj, j = 1, 2, 3;

η1,t − ϕj,z = −ϕj,xη1,x at z = η1(x, t), j = 1, 2;

η2,t − ϕj,z = −ϕj,xη2,x at z = h2 + η2(x, t), j = 2, 3;

ρ1ϕ1,t − ρ2ϕ2,t + g(ρ1 − ρ2)η1 +
1

2
ρ1(∇ϕ1)

2 − 1

2
ρ2(∇ϕ2)

2

− T1(1 + (η1,x)
2)−3/2η1,xx = 0 at z = η1(x, t);

ρ2ϕ2,t − ρ3ϕ3,t + g(ρ2 − ρ3)η2 +
1

2
ρ2(∇ϕ2)

2 − 1

2
ρ3(∇ϕ3)

2

− T2(1 + (η2,x)
2)−3/2η2,xx = 0 at z = h2 + η2(x, t);

ϕ1,z = 0 at z = −h1;
ϕ3,z = 0 at z = h2 + h3;

ϕj (j = 1, 2, 3) are velocity potentials; η1, η2 are deviation of contact surfaces; T1, T2 are surface
tension coefficients; g is acceleration of free fall; ρ1, ρ2, ρ3 are densities of lower, middle and upper
layers, respectively.

Using the method of multiscale developments for this problem, the first three approximations are
obtained. The solutions of the first two approximations are also found and the solvability conditions for
all three approximations are checked, the results are presented in article [14]. The evolution equation
of the envelope on the lower surface of the contact has the form:

iA,t + ω′A,x − 0.5ω′′A,xx = −α2LA2A,

where A is the envelope of the wave packets on the lower surface of the contact; A is complex conjugate
to A. Taking into account that

B = K5A,

where

K5 = −
sinh(kh2)((1 − ρ2)k + T1k

3 − ω2 coth(kh1)− ρ2ω2 coth(kh2))

ω2ρ2
the evolution equation for the upper contact surface is obtained:

iB,t + ω′B,x − 0.5ω′′B,xx = −α2 L

K2
5

B2B

According to recent works [11–13, 15], the modulation stability conditions on the lower and upper
surfaces, respectively, are as follows:

Lω′′ < 0, (1)

L

K2
5

ω′′ < 0. (2)

Since the coefficient K2
5 is a non-negative expression that depends on the parameters (h1, h2, h3,

ρ2, ρ3, T1, T2), it does not affect the change of the sign in inequality (1)–(2). Therefore, to study
modulation stability, we can limit ourselves to the study of condition (1).

3. Analysis of the modulation stability dependence on various physical parameters for
the first pair of roots

Consider the graphs of the dependence of modulation stability limits and instability on the thickness of
the lower layer h1 = 1, 4, 7, 10 in the coordinate system (ρ3, k) for the first pair of roots ω1 (Figure 1).
Other system parameters acquire the following values: ρ2 = 0.9, h2 = 1, h3 = 1, A = 1, A = 1, T1 = 0,
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T2 = 0. In all cases, the modulation stability regions are designated “MSi”, the modulation instability
regions are designated “MIj”.

a

4

b

7

c

10

d

Fig. 1. Dependence of modulation stability on the thickness of the lower layer h1.

The graphs of the curves separating the regions of modulation stability and instability are described
by equations Lω′′ = 0 and Lω′′ →∞. In the figures, these curves are marked “I” and “II”, respectively.

The graphs show that for h1 = 1 (Figure 1a) there are two regions of modulation instability
(MI1 and MI2) and four regions of modulation stability (MS1, MS2, MS3, MS4). At h1 = 1 for
long gravitational waves there is a region of modulation stability MS4. Also, the gravitational waves
correspond to the region MI1, MI2 and MI3 at k < 1. Capillary waves correspond to the region
of stability MS1, MS2 and MS3 at k > 1. At h1 = 4 (Figure 1b), the modulation stability regions
MS1 and MS4 are connected (the formed region is denoted by MS1), then at h1 = 7 (Figure 1c)
and h1 = 10 (Figure 1d) the boundaries of the modulation stability regions do not change. Therefore,
there are three areas of modulation stability. For the stability regions MS2 and MS3 the situation for
gravitational and capillary waves is similar to case 1a.

43

a
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b

103

c

Fig. 2. Dependence of modulation stability on the thickness of the upper layer h3.
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Fig. 3. Dependence of modulation stability
on thicknesses h1 and h3.

Figure 2 shows graphs of modulation stability and in-
stability for the following values of the thickness of the
upper layer h3 = 4, 7, 10, respectively. Other system pa-
rameters acquire the following values: ρ2 = 0.9, h1 = 1,
h2 = 1, A = 1, A = 1, T1 = 0, T2 = 0. The graphs
show that for h3 = 4, 7, 10 there are two regions of mod-
ulation instability (MI1 and MI2) and three regions of
modulation stability (MS1, MS2, MS3).

The limits of modulation stability and instability at all
three values of the thickness of the upper layer h3 do not
change. Moreover, comparing these graphs with the case
in Figure 1a, it is seen that two regions of modulation sta-
bility MS3 and MS4 merge into one (denoted by MS3).
The lower part of the modulation stability regions MS1,
MS2 and MS3 where k < 1 corresponds to the gravita-
tional waves. For all three values of h3 the capillary waves correspond to the regions of stability MS1,
MS2 and MS3 at k > 1. In the region of stability MS3 with increasing ρ3 gravitational waves turn
into capillaries.

a b

Fig. 4. Dependence of modulation stability on density thickness ρ2.

a

7

b

Fig. 5. Dependence of modulation stability on ρ3.

If we change the parameters h1 = 5 and h3 = 5 at the same time (Figure 3), then there is only one
area of modulation instability MI1 and two areas of modulation stability MS1 and MS2. Gravitational
waves correspond to both regions of modulation stability at k < 1. Capillary waves correspond to the
regions of stability MS1 and MS2 where the value of the wave number k > 1.
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Figure 4 shows the graphs of modulation stability at different values of the density of the middle
layer ρ2. For this case, there are two areas of modulation instability MI1, MI2 and four areas of
modulation stability MS1, MS2, MS3 and MS4. In both graphs, the gravitational waves correspond
to the region of modulation stability MS4 and part of the regions MS2 and MS3 at k < 1. The
capillary waves correspond to the stability region MS1 and the regions MS2 and MS3 where k > 1.

Figure 5 shows diagrams of modulation stability and instability in the system (ρ2, k) at the following
values of the density of the upper layer ρ3 = 0.1, ρ3 = 0.7. The graph shows that in the case of ρ3 = 0.1
(Figure 5a) there are four regions of modulation stability and two regions of modulation instability. The
gravitational waves correspond to the modulation stability regions MS2, MS3 and MS4 for k < 1 and
the region MS1. In the area MS2 gravitational waves turn into capillaries. The regions of modulation
stability MS2, MS3 and MS4 correspond to capillary waves for k > 1. Areas of modulation instability
do not intersect. In the case of ρ3 = 0.7 (Figure 5b) there are two regions of modulation instability
and four regions of modulation stability. The regions of modulation stability MS1, MS2 and MS3 for
k > 1 correspond to capillary waves. The gravitational waves correspond to the regions of stability
MS1, MS2, MS3 at k < 1 and the region of modulation stability MS4.

a b

7

c

10

d

Fig. 6. Dependence of modulation stability on thickness h1 in the system (ρ2, k).

Figure 6 shows the dynamics of changes in the boundaries of modulation stability and instability
at different values of h1 = 1, 4, 7, 10 in the system (ρ2, k), ρ3 = 0.8, h3 = 1, h2 = 1, A = 1, A = 1,
T1 = 0, T2 = 0 are fixed system parameters.

At h1 = 1 there are four regions of modulation stability and two regions of modulation instability.
In this case, the region of stability MS4 corresponds to gravitational waves. The regions of modulation
stability MS1, MS2 and MS3 correspond to capillary waves at k > 1, which turn into gravitational
ones when k < 1. At h1 = 4, 7, 10 (Figures 6b–6d) it is noticeable that two regions of modulation
stability MS3 and MS4 merge into one (in Figures 6b–6d the formed region of stability is denoted by
MS3). Thus, the number of areas of modulation stability is reduced to three: MS1, MS2 and MS3.
Also at h1 = 4, 7, 10 the graphs of the limits of modulation stability and instability are the same.
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a b c

Fig. 7. Dependence of modulation stability on h3 in the system (ρ2, k).

Figure 7 shows the dependence of the limits of modulation stability on the change in the thickness
of the upper layer h3. The graphs show that for all three values of the thickness of the upper layer
h3 = 4, 7, 10 there are three areas of modulation stability and two areas of modulation instability.
There is no change within the regions MS1, MS2 and MS3. Capillary waves correspond to all regions
of stability at k > 1, gravitational waves correspond to all regions of stability at k < 1. If we compare
these graphs with the case 6a (h3 = 1), we see that two regions of modulation stability MS1 and MS4
merge into one, it is denoted by MS1.

4. Analysis of the modulation stability dependence on various physical parameter for
the second pair of roots

a b c

Fig. 8. Dependence of modulation stability on ρ3.

Consider the graphs of the dependence of modulation stability limits and instability on the density
of the middle layer ρ2 in the coordinate system (ρ3, k) for the second pair of roots ω2 (Figure 8). The
following values are assigned to the fixed system parameters: h1 = 1, h2 = 1, h3 = 1, A = 1, A = 1,
T1 = 0, T2 = 0. The regions of modulation stability and curves Lω′′ = 0 and Lω′′ → ∞ are marked
similarly to the previous paragraph.

In the case when ρ2 = 0.7 (Figure 8a) there is one region of modulation instability MI1, which is
closed, and two regions of modulation stability MS1 and MS2. Moreover, the region of stability MS1
surrounds the region of modulation instability MI1. Both regions of modulation stability correspond
to gravitational waves. Similarly, to the previous case, for ρ2 = 0.8 (Figure 8b) there are two regions
of stability and one closed region of instability, the region of stability, MS1 is around the region of
modulation instability MI1. For ρ2 = 0.9 (Figure 8c), the region of modulation instability is divided
into two closed regions of instability MI1 and MI2. In turn, the modulation stability regions MS1
and MS2 are interconnected (the resulting region is denoted by MS1).
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a b c

Fig. 9. Dependence of modulation stability on h1.

Fig. 10. Dependence of modulation stability
on h1 and h3.

Figure 9 illustrates the dynamics of changes in the
boundaries of modulation stability and instability at dif-
ferent values of the thickness of the lower layer h1. Com-
pared with the previous graph (Figure 8c), at h1 = 4, 7, 10
the number of regions of modulation instability decreases
to one closed region MI1. There is also one region of mod-
ulation stability MS1, that corresponds to gravitational
waves.

Figure 10 shows a graph of the dependence of the mod-
ulation stability while increasing the thickness of the lower
and upper layers by the values h1 = 5 and h3 = 5. Com-
paring the obtained graph with the previous graph in Fig-
ure 8c, it is seen that the two regions of modulation in-
stability MI1 and MI2 merge into one, which is denoted
by MI1. As in previous cases, the region of modulation
stability MS1 corresponds to gravitational waves.

a b c

Fig. 11. Dependence of modulation stability on h1.

The graphs (Figure 11) of modulation stability and instability at different values of the density of
the upper layer ρ3 in the coordinate system (ρ2, k) for the second pair of roots are given above, h1 = 1,
h2 = 1, h3 = 1, A = 1, A = 1, T1 = 0, T2 = 0 are fixed values. In this case, for all three values of the
density of the upper layer, there is one region of modulation stability and one region of modulation
instability. The region MS1 corresponds to gravitational waves. The modulation instability region is
a closed region surrounded by a modulation stability region.
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5. Conclusions

The evolutionary equations of the circumferential wave packets on the contact surfaces of the layers
in the three-layer hydrodynamic system “layer with a solid bottom – layer – layer with a cover” were
obtained. On the basis of evolutionary equations, a study of the modulation stability of wave packets
was carried out. For this, stability diagrams were constructed. The presence of areas of modulation
instability was revealed. It was established that the change in the density of the middle and upper
layers significantly affects the size of these areas.

Analytical calculations and construction of modulation stability diagrams were performed using
the Maple symbolic calculation package. The presented results were obtained for the first time among
problems of this class and can be used in research related to the study of wave processes in the ocean,
namely in areas of the ocean with three-layer density stratification.
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Модуляцiйна стiйкiсть хвильових пакетiв у тришаровiй рiдинi

Харченко Д. С., Нарадовий В. В.

Центральноукраїнський державний унiверситет iменi Володимира Винниченка,
вул. Шевченка, 1, 25000, Кропивницький, Україна

У цiй статтi дослiджується умова модуляцiйної стiйкостi для задачi поширення хви-
льових пакетiв у тришаровiй гiдродинамiчнiй системi “шар з твердим дном – шар –
шар з кришкою”. Проiлюстровано та проаналiзовано графiки залежностi меж моду-
ляцiйної стiйкостi вiд товщини нижнього i верхнього шару та вiд густини середнього i
верхнього шарiв для капiлярних та гравiтацiйних хвиль. Отриманi еволюцiйнi рiвнян-
ня обвiдних хвильових пакетiв у виглядi нелiнiйного рiвняння Шредiнгера другого
порядку для нижньої та верхньої поверхонь контакту. Виведено умови модуляцiйної
стiйкостi.
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Mathematical Modeling and Computing, Vol. 10, No. 4, pp. 1292–1302 (2023)




