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Nowadays, manufacturers must deal with huge international competition and continually
improve their performances. In this context, several essential approaches namely CBM
(Condition-based maintenance), PHM (Prognostics and Health Management), and PLM
(Product Lifecycle Management) are used for manufacturing systems to maintain and
increase their availability, reliability and performance. This implies that operational usage
data of the manufacturing equipment must then be made available to all stakeholders
concerned through efficient informational chains. However confronted with a large amount
of data, the stakeholders must be assisted in their decision-making. This paper aims to
propose a generic architecture that models the information and decision chain from the
target system to the relevant stakeholders by assisting them in their decision-making.
The proposed generic architecture is illustrated by a use case based on the LSTM (Long
Short-Term Memory) algorithm in the context of energy management for a fleet of mobile
robots.
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1. Introduction and motivations

A system during its life cycle passes through three phases: Beginning of Life (BoL), Middle of life
(MoL) and End of Life (EoL). During this time several human and/or artificial actors interact in the
value chain from design to the final removal of the system. PLM is an approach to managing and
modeling the lifecycle of a system, which has improved with the evolution of information systems
and technologies [1, 2]. PLM provides stakeholders with a set of information that helps them to
make appropriate decisions. This information allows us to locate and identify the parameters of the
degradation and to understand the past, present and future of the considered system, denoted after
the target system. In our works, a stakeholder is defined as any entity (human or artificial) in need of
information/knowledge to make decisions to improve the value chain associated with the system [1].

Decision-making support systems, or simply decision support systems (DSS), are information sys-
tems designed to assist stakeholders and support one or all phases of a user’s decision-making process.
With the progress of Artificial Intelligence (AI) in the 1980s, AI tools were incorporated into DSS to
increase the impact of management support. This led to the emergence of intelligent decision support
systems (i-DSS) as a sub-discipline of DSS research [3]. A particular technology used within i-DSS
research is Machine Learning (ML), which allows DSS to obtain new knowledge or to adapt to the user
or changing environment. An i-DSS extends traditional DSS by incorporating techniques to supply
intelligent behaviours and utilizing the power of modern computers to support and enhance decision
making [4, 5]. The i-DSS may, for example, respond quickly to new data and information, deal with
complex situations, learn from previous experience [6], use knowledge to understand the environment,
recognize the relative importance of different elements in the decision and recommend actions [7, 8].
Most ML algorithms can be grouped into two main categories [9]: supervised learning and unsuper-
vised learning. Depending on whether the data has labels or not. Supervised learning, which includes
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predictive modeling and is applied to labeled data sets, can be subdivided into classification and re-
gression algorithms depending on whether the target outcomes are categorical (classification) [10] or
quantitative (regression) [11]. Unsupervised learning can be subdivided into clustering [12] and di-
mensionality reduction [13], depending on whether one wishes to group data into categories based on
similarity, or simply reduce the dimensions of the input data. There are other types of ML algorithms,
such as semi-supervised learning and reinforcement learning [9].

As argued in [14], often in a better way than traditional approaches, Machine Learning approaches
can assist stakeholders in several facets: descriptive (give the current status of the equipment), diag-
nosis (explain past status), predictive (preview future status (e.g. Remaining Useful Life (RUL)) and
prescriptive (recommend actions to maintain or improve system functionality).

In a manufacturing context, implemented on-board (i.e. on the equipment) or off-board, these
approaches aim to give decision-making assistance to users situated in the vicinity of the equipment
(e.g. machine operator) or for more distant stakeholders (e.g. maintenance responsible, production
manager). However, most works that deal with decision support through ML focus on a particular
domain without offering a global vision. This limitation is often justified by the fact that each domain
has its technical specifications, especially in terms of data structure. The present work proposes
a generic architecture that takes into consideration the target system and its environment. This
architecture aims to provide analytical assistance to the different stakeholders that have an interest
in the target system. The second section will be dedicated to a state of the art that explores several
works in the manufacturing domain and identify some shortcomings. The third section is dedicated to
the proposal of a generic architecture that models the information and decision chain from the target
system to the different stakeholders. In the end, a manufacturing use case is presented to validate our
proposal.

2. Related works

Due to the progress of technologies and in particular IoT sensors, the data of companies and manu-
facturers has grown. The variety of sensors and actors leads to a Big Data context, which complicates
the decision-making process [15]. To deal with this, analytics tools, especially the ML-Based approach,
can be applied to extract useful insights from the data. The following works are chosen as they offer
decision support to the stakeholders of the target system. They propose architecture examples for use
cases in the manufacturing domain.

To estimate the Health Index (HI), the work [16] proposed ‘Embed-RUL’ methodology for predicting
the RUL of a turbofan engine. They embedded time series data using Recurrent Neural Network (RNN)
as an encoder and drew a HI curve with it. Then, the RUL is predicted by comparing the latter curve
with the normal HI curve. That methodology is a useful approach when sensor data have noise and
missing values, or when there is insufficient prior knowledge of machine degradation trends. The
results of the work provide a predictive approach that will be used by the maintenance department for
supervision purposes.

The authors of [17] presented Deep Neural Networks to predict the State of Health (SoH) and RUL
of Lithium-ion batteries, moreover, the proposed DNN was compared against other machine learning
algorithms. This work is part of both the diagnostic facet because it gives a vision of the past, and also
the predictive facet because it gives a projection into the future with the estimation of the RUL. With
this double facet, stakeholders (e.g. Maintenance department) can plan the replacement of batteries at
the right time.

In the area of Mobile Robots, the work [18] describes an approach that uses ML to find a set of
Pareto-optimal configurations in a large configuration space which is then used to identify the best
reconfiguration (e.g., to a less energy-demanding configuration) and change the path (e.g., to reach
a charging station). The paper considers mobile robots in the context of cyber-physical systems; the
optimal configuration obtained for the individual dimension can be reused for the fleet of mobile robots.
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The assistance analytics used in this work can therefore be exploited on-board (at the individual level)
and off-board (at the fleet level).

In a PHM approach, the authors of [19] introduced a method based on an unsupervised variable
selection method and k-nearest neighbors (KNN) classifier. The method builds on the unsupervised
selection of interesting variables from the input offline signals. It constructs representative features that
can be used as health indicators of bearing. The results can be used individually to describe or predict
the situation of a machine using the bearings, as well as being used off-board by the maintenance
center managing several machines. The authors of [20] worked on a refrigeration and cold storage
system by developing an ML base approach that detects early faults in the machinery involved in
the refrigeration. They apply a feature extraction step in the pre-processing phase of the model,
which consisted of learning the pattern of the dataset and seasonality decomposition by dynamic time
wrapping and clustering. They also built a Random Forest classifier to recognize if the pattern was
abnormal or not. This work is part of the diagnostic facet. This approach can be applied to the whole
fleet (e.g. supermarket network) and stakeholders can then detect refrigerator faults in advance and
therefore plan preventive maintenance.

In a manufacturing context and to build a condition monitoring system, the work [21] devised an
unsupervised k-Means clustering approach to subgroup the health condition of a machine tool into
four categories: normal operations, faulty conditions due to pressure systems, faulty conditions due to
protection gas, and faulty conditions keeping the machine in a standby mode. In the same vision, the
authors of [22] used an artificial neural network (ANN) to classify the condition of a CNC machine,
but for this work, by taking into account the real-time data loaded from this machine. They built a
database and then designed an ANN model.

In the work [23] recurrent neural networks (RNN) are applied. In this case, the authors use the RNN
to generate a predictor of future usage scenarios (e.g. path to follow) of resources in manufacturing
context. To obtain the schedule, information about the current state of the production process is
provided in real-time. This information is then filtered and processed by RNN, to estimate the near-
future scenario, and this feeds the optimizer that determines the schedule.

The previously presented works are summarized (see Table 1) according to the following key el-
ements: the target system, the objective of the work, decision-making facets adopted, the approach
used, and the level of processing where the analytics assistance is applied.

Table 1. Research works summary.

Authors
Target
system

Objective
Decision-
making
facets

Approach used
Treatment

level
Stakeholder

[16]
Turbofan
Engine

Health Index
RUL estimation

Predictive
Recurrent

Neuraldetwork
(RNN)

Off-board
Maintenance
department

[17]
Lithium-ion
battery

State of Health /
RUL

Diagnosis/
Predictive

Deep Neural Network
algorithm (DNN)

Off-board
Maintenance
department

[18] Mobile Robots
Power

consumption
Prescriptive

Stepwise linear
regression

On-board
Off-board

Mobile Robots
Fleet manager

[19] Bearing
Health Index /
RUL estimation

Descriptive /
Predictive

k-nearest neighbors
(k-NN)
Discrete Bayesian

On-board
Off-board

Machine
manufacturers

[20]
Refrigeration

Systems
Failures
detection

Diagnosis Random Forest (RF) Off-board
Maintenance
department

[2]
Laser Melting

Machine

Fault detection
Condition
monitoring

Diagnosis K-means On-board
Machine

manufacturers

[22] CNC machine
Monitoring
System

Diagnosis
Artificial Neural
Network (ANN)

On-board
Off-board

Maintenance
department

[23]
Resources in

manufacturing
context

Predicting
resource

performances

Predictive
Prescriptive

Big Data technics
LTSM

On-board
Off-board

Production
manager
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Although these studies are relevant, they do not provide a generic model for decision making with
ML-based assistance. Moreover, the majority of these approaches concern the “off-board” location.
The generic model must deal with several requirements:

— Req#1: the complexity of manufacturing equipment (e.g. machine-tools, robots), seen as a system
composed of several sub-systems;

— Req#2: the various needs of the stakeholders implied in the manufacturing task;
— Req#3: the “off-board” and “on-board” locations should be considered in the same model.

3. Proposition

3.1. Generic model

The proposed generic model is inspired by previous modeling works based on primary and secondary
functions [1, 24, 25]. Primary functions represent activity (e.g. milling, assembly) associated with the
manufacturing equipment, while secondary functions are dedicated to improve the performance criteria
associated with the primary functions (e.g. Condition-based maintenance, Monitoring of the mobile
robots fleet). Figure 1 illustrates an application of the model on an industrial mobile robot. This last
is considered as a target system denoted Si (1) immersed in a context Ci, composed of the users (2)
(e.g. local operators), the task (3) Characterized by prescribed procedures (i.e., how the transportation
task must be performed) and some performance criteria (e.g., energy consumption, operation time)
representative of the primary function, and the environment (4) which may be physical (e.g. outside
temperature, humidity) or non-physical (e.g. machinery safety legislation).

Fig. 1. Illustration of the modeling.

To fulfil the requirements #2 and #3, the secondary functions are handled by support systems (5)
at two levels:

— At the Equipment level, a set of secondary functions is supported by on-board support systems
which exploit the raw data flow collected by sensors and instrumentation (e.g. vibration sensors)
associated with the system Si. They generated refined and accurate information (e.g. diagnosis if
failure) sent to off-board support systems (e.g. remote maintenance center).
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— At the Workshop level, the remaining secondary functions are supported by off-board support
systems. They generate expertise results, taking into account the experience on the manufacturing
equipment (and eventually of a collective of similar equipment), to the implied stakeholders (6)
(e.g. Production manager, Maintenance manager) that can then schedule adequate interventions
on the manufacturing equipment or its context.

For each secondary function, decisional processes can be assisted by ML approaches (7), as detailed
in the next section.

3.2. Decisional process assisted by machine learning techniques

Fig. 2. Illustration of the modelling.

To fulfill the requirement #1, the holonic modeling paradigm [26, 27] is retained to deal with the
decomposition of a system Si in several sub-systems that may themselves be decomposed into sub-
systems (see lower left part of Figure 2). This paradigm has already proved its worth, especially for
control [28, 29] and also for the maintenance of composite systems (i.e. decomposable into a set of
sub-systems) [30]. A triplet (Fsi, Si, Ci) is associated with each holon Hi. The set Fsi of secondary
functions, the system Si and its context Ci constitute the head and the body of the holon, respectively.
As detailed in [1, 25], collaborative relationships exist among holons located on successive levels and
allow information flow in the holarchy. For example, for a sub-system, false alarms can be filtered
by taking into account the context and the condition of the other similar sub-systems [30]. Figure 2
illustrates the development of an assistance (based on ML technics) exploited by decisional processes
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associated with several secondary functions. The successive steps of this development are depicted by
circled labels and are organized in two phases as classically proposed in ML approaches [31, 32].

Phase #1 (off-line): The goal of this phase is to exploit the global information available off-
board to build pertinent assistance for a specific equipment (e.g. Sij system in Figure 2) aiming to help
the different stakeholders in their decision-making. Four steps are distinguished: Data collection (1):
The operational usage data, issued from the equipment on-board, are collected to enrich a historical
database. The evolution of sensor technology helped to capture several measurements (e.g. pressure,
temperature, vibrations, . . . ). This raw data is time-stamped (e.g. time series) to create a historical
database that makes the next steps easy to perform. Data preparation (2): This step exploits the
historical database (i.e. data obtained from the different similar systems including their contexts)
(1) and other databases available at the workshop level (e.g. history of maintenance interventions,
production history). Statistical methods can then be used to reduce the size of the features in the
data by keeping only the significant variables relative to the aimed assistance and generating a refined
database [33]. Training (3): This step is crucial to develop the ML-based assistance exploiting the
previous refined database [34,35]. After the choice of an adequate ML algorithm [9,36], an expert of the
considered Sij system (e.g. maintainer specialist) can be employed for the ML algorithm training. The
generated assistance can be of descriptive, predictive, diagnosis or prescriptive type. Implementation:
This step is dedicated to the implementation (or the update) of the ML-based assistance off-board (4)
or/and on-board (4’).

Phase #2 (on-line): This phase is relative to the exploitation of the obtained ML-based assistance
according to two steps: Data collection: This step aims to provide relevant data to the ML-based
assistance. Off-board, it concerns the gathering, preparation, and reduction of some relevant workshop
data (5). On-board, it concerns the acquisition of raw data (5’) on the focused Sij system (e.g. batteries
voltage) and its context Cij (e.g. external temperature). Exploitation of the ML-based assistance for
decision-making: The collected data are then exploited by the previously designed ML algorithm
integrated into the decisional processes associated with the secondary functions located off-board (6)
or on-board (6’). Pertinent advice is then generated to the stakeholders (e.g. prognosis on the RUL of
a sub-system) or the operators (e.g. possible cause of a failure). The successive steps of this generic
model are validated through the following case study in a manufacturing context.

4. Use case

The use case concerns the PHM of a fleet of mobile industrial robots powered by packs of lithium-
ion batteries (see Figure 6). Monitoring the condition of these batteries is crucial to ensure the good
availability of the fleet. The aim is to provide the different stakeholders (e.g. maintenance manager,
production manager, . . . ), with a clear view of the conditions of use of mobile robots. In particular,
the state of their batteries is important to make reliable decisions (e.g. plan battery replacement, plan
additional missions, . . . ). This decision-making will be supported by ML-based assistance.

Two phases (section 3.2) are addressed, the off-line phase which concerns the preparation of the
data and the development of the ML model (e.g. RUL model), and the on-line phase which concerns
the use of the model generated by one or more stakeholders as well as analytics assistance for decision
making.

Phase #1 (off-line): The goal of this phase is to exploit the global information available off-
board to build pertinent assistance aiming to help the different stakeholders in their decision-making.
The objective of this phase is to prepare the data to launch the learning process. Four steps are
distinguished:

Data collection (1):
The present study exploits a dataset of the Prognostics Center of Excellence (PCoE) database

at NASA Ames [29]. It contains four different Li-ion batteries (#5, #6, #7, and #18), and each
Li-ion battery repeats three operations (charge, discharge, and impedance measurements) at room
temperature (24 ◦C). The test conditions of the NASA battery are listed in Table 2.
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Table 2. NASA battery dataset.

Cycle
AMBIENT
TEMP C◦ DATETIME CAPACITY VOLTAGE CURRENT

BATTERY
TEMP (C◦)

CURRENT
(Amps)

VOLTAGE
(Vols)

TIME

1 24 02/04/2008 15 : 25 : 41 1.891052 4.199360 0.001866 23.937044 -0.0004 0.000 0.000
1 24 02/04/200815 : 25 : 41 1.891052 4.199497 0.002139 23.924074 -0.0004 4.215 16.781
1 24 02/04/2008 15 : 25 : 41 1.891052 3.985606 1.988778 24.004257 -2.0000 3.003 35.703
1 24 02/04/2008 15 : 25 : 41 1.891052 3.963247 1.992558 24.162868 -2.0000 2.987 53.781
1 24 02/04/2008 15 : 25 : 41 1.891052 3.946647 1.988491 24.346368 -2.0000 2.972 71.922

The charge process consists of constant current (CC) mode and constant voltage (CV) mode. In
the charge in CC mode, the current is kept at 1.5 A until the Li-ion battery voltage is increased to
4.2 V. In the charge CV mode, the voltage holds 4.2 V until the Li-ion battery current drops to 20 mA
from 1.5 A. In the whole charge process, the battery terminal voltage, battery output current, battery
temperature, measured current, and measured voltage are recorded. The discharge process belongs to
the CC mode, and the current is 2 A until the Li-ion battery voltage drops to 2.7 V from 4.2 V. In
the discharge process, the recorded variables (except battery capacity) are the same as those of the
charging process. As time goes on, the repeated charge and discharge process results in accelerated
degradation, and eventually, the end of the battery’s service life (EoL).

Our study concerns the discharge behaviour of batteries. The following graph shows the battery’s
degradation process over the charge cycles. The horizontal line represents the threshold for what can
be considered the end of life of the battery.

Data preparation (2):
Typically, the End of Life (EoL) model of the Li-ion battery is closely related to the battery capacity.

The specific Li-ion battery remaining capacity model can be acquired in the literature [27]. This model
gives all parameters (except some constant coefficients) by various experimental curve fittings. Despite
knowledge of the complicated Li-ion mechanisms, the State of Health (SoH) can be defined as:

SoH(d) =
C(τ)

C(0)
,

where C(0) is the capacity value at the initial stage of the Li-ion battery, and C(τ) is the capacity
value at time t (it is usually the index of cycle number). In the literature [37], at 70% the battery is
assumed to be at the end of its life. The horizontal line represents the 70% threshold at which the
battery reaches its life cycle and it is recommended to change it.

For the prediction of the RUL of the batteries, the training and test data set is prepared in such
a way that the first 50 cycles are used as training data. The projection into the future is done on the
rest of the cycles until the EoL of the batteries is reached.

Training (3): As mentioned at the beginning, we are interested in proposing a generic model that
models the information and decision chain from the system to the stakeholders via analytical support
based on Machine Learning. For this purpose, several techniques and methods can be used for the
training process. These techniques can be divided into two categories: model-based methods [38] and
data-based methods [39].

Model-based methods mainly consist of analyzing the physical and chemical principles of the bat-
tery and establishing mathematical and physical models to characterize the performance degradation
process of the lithium-ion battery.

Data-driven methods have recently received much attention in the lithium-ion battery domain.
Compared with other types of data-based methods, neural network, especially deep neural network,
can approximate the complex nonlinear model infinitely by forming multilayer neural networks and
achieve better accuracy for prediction.

In our use case, and in the vision of validating the proposed generic model, we use the Long
Short-Term Memory (LSTM) algorithm. The choice is motivated by the literature [40]. LSTM is
more suitable for time series prediction which characterizes our battery dataset [40–42]. Compared
with RNN, has the advantage that it can manage the information in memory for a long period of
time, in contrast to the RNN [42]. RNNs have feedback loops in the recurrent layer. This lets them
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maintain information in “memory” over time. But, it can be difficult to train standard RNNs to solve
problems that require learning long-term temporal dependencies. For the reason that the gradient of
the loss function decays exponentially with time (called the vanishing gradient problem). The long-
range dependency in RNN is resolved by increasing the number of repeating layers in LSTM [41]. In
the following section, the LSTM operating process is detailed.

4.1. The basic LSTM architecture

LSTM was first proposed in 1997 [43]. LSTM is a modified network of RNN proposed to learn long-
range dependencies across time-varying patterns (trend and seasonality). Generally, LSTM is the
second order recurrent neural network that solves the vanishing gradients issue by replacing RNN
simple units with the memory blocks in the recurrent hidden layer. A memory block is a complex
processing unit in LSTM with many units. It is composed of one or many memory cell, adaptive
multiplicative gating units (input, output and forget) and a self-recurrent connection with a fixed
weight. It serves as a short-term memory with a control from adaptive multiplicative gating units.
The input and output flow of a cell activation of a memory cell is controlled by input and output
gate respectively. Forget gate was included in memory cell that helps to forget or reset their previous
state information when it is inappropriate. Moreover, peephole connections between cells to all of its
adaptive multiplicative gates control the precise timing of outputs including the internal states.

The basic LSTM architecture predictor is shown in Figure 3. Here, xt is the input at the current
time step, ht−1 stands for the output at the previous time step, and Ct−1 is the cell memory at the
previous time step; ht stands for the output at the current time step, and Ct is the cell memory at
the current time step. The red line (Figure 3) can maintain information transfer and not change the
information through the whole cell state, which is the key to LSTM.

Fig. 3. LSTM principe piplines [40].

Remove Unnecessary Information: The first step is to use the forget gate to determine how much
information of last cell state Ct−1 will be stored in the current cell state Ct. There are three types of
input data of forget gate: the cell state Ct−1 of the last step, the hidden state ht−1 of the last step,
and the current input xt. Forget gate outputs a sequence of 0 (discarded information) and 1 (retained
information). σ is a sigmoid function. The forget gate is calculated as follows:

ft = σ
(
Wf · [ht−1, xt] + bf

)
.

Calculating New Cell: The input gate is used to determine how much new information can be
added to LSTM cell state. There are two parts of the input gate: a sigmoid layer, i.e., it, which can
determine what information should be updated, and a tanh layer which can generate a vector C̃t for
updating. The equations to calculate two outputs are
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it = σ
(
Wi · [ht−1, xt] + bi

)
,

C̃t = tanh(Wc · [ht−1, xt] + bc).

Then, C(t− 1) is multiplied by the ft which is the result of forget gate and then the product of it and

C̃t is added. The new state value Ct can be obtained by

Ct = ft · Ct−1 + it · C̃t.
Output Result: The final output of the LSTM Cell is determined by the output gate. There are two

kinds of output values. One is current state Ct and the other is current hidden state ht. The equations
are as

ot = σ
(
Wo · [ht−1, xt] + bo

)
,

ht = ot · tanh(Ct).

4.2. Evaluation criterion

Once the model had been trained, the performance of the resulting model was evaluated using different
indicators: the Root Mean Square Error (RMSE) and R2,

RMSE =

√√√√
n∑

i

(Xi − Yi)2
n

,

R2 = 1−
(∑n

i (Xi − Yi)2∑n
i

(
Xi −Xi

)
)2

,

where Xi is the real information for each i from 1 to n; Yi is the predicted information; n is the
predicted period.

RMSE is one of the evaluation criterion of a regression model. It is a metric that indicates the
average distance between the values predicted by the model and the real values in the dataset. The
lower the RMSE, the better a given model is able to fit a dataset. R-Squared (R2) measures the degree
of correlation between two variables in such a model.

4.3. The resulting analytics model

For the training process, the parameters of the model, as detailed in Table 3, are for the neuron and
the factor for dropping the learning rate are set to 200, 0.3 respectively. The LSTM model is used to
predict the time series from the 50th cycle. Finally, the obtained learning model is used to predict the
Li-ion batteries sub-dataset for the test. The RUL is calculated as a function of the failure threshold
(described above is set at 70%).

Table 3. Model parameters used for the learning process.

Layer (type) Output Shape
1stm 16 (LSTM) (None, 10, 200)
dropout 18 (Dropout) (None, 10, 200)
lstm 17 (LSTM) (None, 10, 200)
dropout 19 (Dropout) (None, 10, 200)
lstm 18 (LSTM) (None, 10, 200)
dropout 20 (Dropout) (None, 10, 200)
lstm 19 (LSTM) (None, 200)
dropout 21 (Dropout) (None, 200)
dense 12 (Dense) (None, 1)

The prediction of the SoH is trained on
the data from the B0007 battery. The pre-
diction results of the model on the same
battery give an RMSE of 0.000994 which
is very close to the real data Figure 4a. We
tested the prediction model obtained with
another battery (B00018), in order to eval-
uate the performance of the model. An
RMSE of 0.016 is obtained Figure 4b.

The prediction model applied to the
test data from the 50th cycle gives an RI
of 0.94 and an RMSE of 0.032. This result
translates into a difference of just 5 cycles between the actual number of cycles before the EoL and the
predicted number of cycles of the EoL (Figure 5), taking into account the EoL threshold at 1.4 Ah.
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Fig. 4. (a) Discharge of B0007, learning from B0007; (b) Discharge of B0018, learning from B0007.
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Fig. 5. Actual vs Predicted RUL.

4.4. Implementation (4)

This step is dedicated to the implementation (or the update) of the ML-based assistance off-board
or/and on-board. In this step, the obtained analytics model will be transferred to the different analytics
assistants to use it in a real context and with live data. At each level, on-board or off-board, the
analytics assistant will help the decision process to serve the stakeholder in the end. The next step
explains this process.

Phase #2 (on-line): This phase is relative to the exploitation of the obtained ML-based assistance
according to two steps: Data collection: The data collection in the on-line phase concerns real-time
data about the mobile robots. The learning model uses data from the target system (i.e. SoH of the
battery of mobile robots) and its environment (e.g. room temperature). In our use case, we remain
focused on the dataset presented above. However, other data from the off-board level can be used such
as the future missions to be performed and the task to be executed by the mobile robot.

Exploitation of the ML-based assistance for decision-making: The collected data are then exploited
by the previously designed ML algorithm integrated into the decisional processes associated with
the secondary functions located off-board or on-board. Pertinent advice is then generated to the
stakeholders (e.g. prognosis on the RUL of a sub-system) or the operators (e.g. possible cause of a
failure). As shown in Figure 6, the data collected from the Equipment level (e.g. voltage, current,
temperature) are merged with the data issued from other batteries.

The RUL prediction is exploited “off-board” by several secondary functions. A first secondary
function uses it to evaluate the availability of the mobile robots fleet according to the states of the
battery packs and generate advice to the production manager. Another secondary function exploits
predictively the estimated batteries RUL to optimize the maintenance operations according to a CBM
approach [44]. The implemented RUL prediction is used “on-board” by the mobile robot to give
recommendations to the operator (e.g. avoid a too longer mission).
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Fig. 6. Batteries management.

5. Conclusion

In this paper, we proposed a generic model of the information and decisional chain, exploiting ML-
based assistance, between a manufacturing equipment and the concerned stakeholders. The literature
review has shown that few architectures propose a generic model and take into account the needs of
stakeholders at several levels of processing. By addressing the requirement of manufacturing complex-
ity, the requirement of satisfying the needs of stakeholders and the requirement of the different levels of
treatment; two phases “off-line” and “on-line” have been proposed to develop ML-based assistance for
the decision-making. A use case, in the context of energy management for a fleet of mobile robots, has
illustrated the proposal. SoH monitoring and RUL prediction are two important needs that stakehold-
ers face in the PHM of lithium-ion batteries. In this paper, we used the LSTM algorithm to create an
analytics assistance to monitor the SoH and to calculate the RUL prediction of mobile robot batteries.

According to the evaluation criteria, the obtained result is considered relevant and the assistance
analytics can be reused by several departments at the on-board and/or off-board level as explained in
the last section. Machine learning techniques have obtained remarkable achievements in various tasks,
such as image recognition, object detection, and language modeling. However, building a high-quality
ML system for a specific task highly relies on human expertise, hindering its wide application [45,46].
Meanwhile, automated machine learning (AutoML) is a promising solution for building a ML system
without human intervention. This approach can be used in the process model generation for the choice
of the adequate algorithm without human intervention [36, 47].

The next step will concentrate on implementing the AutoML for the generation of assistance ana-
lytics in a vision of cooperation between humans and machine.

Mid-term perspectives will aim to realize the development of efficient interfaces to present the
results provided by the ML-based assistance to the different stakeholders.
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Data Availability Statement: The NASA’s batteries data can be found at https://c3.ndc.nasa.gov

(accessed on 26 May 2023). The rest data used to support the findings of this study are available from
the corresponding author upon request.
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Загальна модель iнформацiї та ланцюга прийняття рiшень з
використанням допомоги на основi машинного навчання у

виробничому контекстi

Маллук I.1,2, Абу Ель Мажд Б.2, Саллез Ю.1

1Полiтехнiчний унiверситет Верхньої Францiї – LAMIH UMR CNRS n◦8201 F-59313 Валансьєн, Францiя
2LMSA, FSR, Унiверситет Мухаммеда V у Рабатi, Марокко

У наш час виробники повиннi мати справу з величезною мiжнародною конкурен-
цiєю i постiйно вдосконалювати свої показники. У цьому контекстi для виробничих
систем використовуються декiлька основних пiдходiв, а саме: CBM (обслуговування
на основi стану), PHM (прогнозування та керування станом) i PLM (керування жит-
тєвим циклом продукцiї) для пiдтримки i пiдвищення їхньої доступностi, надiйностi
i продуктивностi. Це означає, що данi про експлуатацiйне використання виробничого
обладнання повиннi бути доступними для всiх зацiкавлених сторiн через ефективнi
iнформацiйнi ланцюги. Однак, незважаючи на велику кiлькiсть даних, зацiкавленi
сторони повиннi отримувати допомогу в прийняттi рiшень. Ця стаття має на метi за-
пропонувати загальну архiтектуру, яка моделює ланцюжок iнформацiї та рiшень вiд
цiльової системи до вiдповiдних зацiкавлених сторiн, допомагаючи їм у прийняттi рi-
шень. Запропонована загальна архiтектура проiлюстрована прикладом використання
на основi алгоритму LSTM (Long Short-Term Memory) в контекстi керування енер-
госпоживанням для парку мобiльних роботiв.

Ключовi слова: виробництво; прийняття рiшень; прогнозування та керування
здоров’ям (PHM), довга короткочасна пам’ять. (LSTM)
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