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This paper aims to prezent mathematical model for Viral infection which incorporates both
the cell-free and cell-to-cell transmission. The model includes four compartments, namely,
the susceptible, the infected ones, the viral load and the humoral immune response, which
is activated in the host to attack the virus. Firstly, we establish the well-posedness of
our mathematical model in terms of proving the existence, positivity and boundedness of
solutions. Moreover, we determine the different equilibrium of the problem. Also, we will
study the global stability of each equilibrium. Finally, we give some numerical simulation
in order to validate our theoretical findings, and to study the effect of different types of
treatments proposed by the model.
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1. Introduction

Nowadays infectious diseases threaten the life of millions of people on earth. Amongst the well known
viruses, one can cite the human papillomavirus (HPV) that infects the basal cells of the cervix [1,2],
the human immunodeficiency virus (HIV) that attacks the healthy CD4+ immune system [3,4], the
hepatitis B virus (HBV) and the hepatitis C virus (HCV) that attacks the uninfected liver cells [5-8] and
more recently the Coronavirus Disease 2019 (COVID-19) [9-11]. Therefore, mathematical modeling
has become very important to study how diseases spread, and also to predict the future trajectory
of an outbreak, which can help the public health authorities to take the necessary measures [12,13].
In 1998 Neumann et al. proposed a model that describes the dynamics of transmission of HCV by
reference to a simple interaction between the susceptible cells, infected cells and virions [14]. Neumann
et al.’s model postulates that virus-to-cell transfer is responsible for the infection; in other words, the
infection occurs due to the contact between susceptible cells and free virions with a bilinear incidence
rate. Since disease can spread through the body through virus-to-cell infection or by direct virus
transfer from cell to cell [15], many research provided mathematical models by integrating two modes
of infection transmission [16-18]. To have a relevant mathematical modeling it is necessary to take
into consideration the effect of the humoral immunity of the human body indeed, immediately after
infection, the immune system of the host body acts against the virus by activating adaptive immunity,
which is called destroy pathogens. This system recognizes the different types of pathogens and calls
for the most effective form of adaptive immune response to destroy them [19,20]. Also, the treatment
can play an important role against the spread of different viral infections [21,22].

This paper includes three treatments to decrease the production of virions from infected cells, and
to reduce the infection caused by virus-to-cell and cell-to-cell transmission, so the dynamics of virus
transmission can be described using the following model:

(© 2023 Lviv Polytechnic National University 1037
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T
( Cfi_t =A—=(1—=u)TV — (1 —u2)BeTI — di T,
dl
= = (L= u)Bi TV + (1= )BT — dol,

—_ = (1 — U3)]€[ - d3V - pVZ,

— =cVZ—-dyZ
dt c 4.4,

where the initial data are (7°(0), 1(0),V (0), Z(0)) = (To, Lo, Vo, Zo), with T'(t), I(t), V(t), Z(t) popula-
tions of uninfected cells, infected cells, virus-free particles, and humoral immune response respectively,
sensitive cells are assumed to reproduce with a constant rate A, the average lifespan of sensitive cells,
infected, free virus and immune cells are 1/dy, 1/ds, 1/ds, and 1/dy respectively, cell-to-virus and
cell-to-cell infection occur with 5 and fs rate respectively, free virions are produced at a rate of k
per infected cell, the coefficients ug, u1, and us represent three treatments to decrease the production
of virions from infected cells, and to reduce the infection caused by virus-to-cell and cell-to-cell trans-
mission, after entry of virions, the humoral immune response is activated at a rate ¢ per virion, and
virions are neutralized at a rate p per virion.

%
Fig. 1. Diagram describing the model.

The present work is organized as follows, the next section is dedicated to prove the non-negativity
and boundedness of solutions. Section 3 gives the mathematical results about existence and stability
of equilibria and finally in section 4 we represent numerical tests. The last section concludes the work.

2. Non-negativity and boundedness of solutions

Theorem 1. The system solutions (1) with the initial state in R} are positive and bounded. In
addition, there is a € > 0 such as ltimjnf T(t) > e.
—+00

Proof. According to the system (1) we have

dr dl dv
dt |r—g T =0 T V=0 (=)
. dV (t
Suppose there is ¢t > 0 such as dﬁ ) ‘V(t):O < 0, we note

t, = inf {t > 0/V(t) =0 and i)

dt

<0,.
V (£)=0
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v (t)
dt

Therefore = (1 —ug)kI(t,) < 0 now let define

V (ty)=0

t; = inf {t >0/1(t) =0 and —=

We deduce that t; < t,, therefore dI(t’ )

= (1—u1)p1T(t;)V (tr) < 0 which implies that T'(t;) < 0

I(ty)=0
<0,.
T(£)=0

= A+ al(tr) > 0 since I(tr) > 0 which contradicts the

since V(tr) > 0. Let us define

tr = inf {t > 0/T(t) =0 and %ﬁt)

We have tp < t; < ty and dTC%T)

‘ T(tT ) =0
definition of tT

Therefore 4 v ‘V o = 0 thus V(t) > 0, V¢ > 0 consequently I(t) >0, T'(t) > 0, V¢ > 0.
Finally according to the last equation of the system (1) we find

Z(t) = Z(0)exp {/Ot [cV(s) — d4]ds} >0 Vt>0.

Therefore, the non-negativity of the solutions with the initial condition in ]RI is guaranteed.
To prove the boundfulness of the system solutions (1), we define two new variables X () = T'(t)+1(t)

and Y'(t) = V(t)+pcZ(t). From the first two equations of (1), dX( )= A— diT(t)—doI(t) <
A —d,X(t) such as d, = min{dy,ds}. Therefore limsup,_,, . X(t) < ﬁ

Moreover according to the last equations of the system (1) (1) d};gt) = (1 —wu3)kI(t) — dsV(t) —
%Z(t) < (1 —u3)klI(t) — dyY(t) such as, dy = min{ds,ds} therefore, limsup, , . Y (t) < )‘(il;;;)k.
Thus, the solutions of system (1) with non-negative initial conditions are bounded by the set
A
d_m;

A1 —us3)k N1 —ug)k
V() S ———0<Z2()) S ——— ¢ -

D= {(T(t), I1),V(t), Z(t) e RE 0 < T(t),I(t) <

Moreover, from the first equation of the system (1), we obtain

T oy (U u) BTV ) ~ (L~ w) BT — ()
>A—(di+ (1 —u)s1 Vo + (1 —ug)B2I,)T(t) for t big enough
where [, = di and V, = W are two upper limits of I(¢) and V(t), respectively . Therefore
lgglﬁ&fT( ) > 2 s u1)61‘>'u+(1 — T It follows that there is a € > 0 such as ltlglﬁ&f T(t) > e. |

3. Existence and stability of equilibria
3.1. Existence of equilibria

The system (1) accepts three points of equilibrium:
— The point of equilibrium with no disease Ey = (Tp, 1o, Vo, Zo) where: Ty = d% and Ip = Vy = Zp = 0.

— Free immune equilibrium Fy = (73,11, V1, Z1) where: T} = = u1)61(1_3§;l]§+(1_u2)52d3 and I} =

dlj )\((l—ul)ﬁl(l—ug)k—l—(l—ug)ﬁgdg) -1 and Vl (1 ug) I Zl — 0

do didsdz

— Infected equilibrium with immune response Ey = (T, I*,V*, Z*),

dg[* I — —ma + \/m% + 4m1m3

(1 — u2)ﬁ2V* + (1 — ?Q),Bg[*’ - 2mq
Mathematical Modeling and Computing, Vol. 10, No. 4, pp. 1037-1050 (2023)
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prob g G uwkn,
C P d3d4

where: my = (1 — ug)Bacdz, ma = (1 — uy)Brdady + cdida — A1 — ug)Bac, m3 = A(1 — uy)B1dy.
In order to determine the expression of the basic reproduction number, we apply the next generation
matrix approach [23]. Accordingly, the equations associated with infection are:

dl

= = (L= u)BiTV + (1= ) BoTT = dol,

av (2)
a7 = (- ug)kl —dsV —pVZ.

So, the matrices describing the speed of infection in the compartments, and the speed of virus

transfer out of compartments are

F_ (1 — ul)ﬁlTV + (1 — ’LLg)ﬁQTI V= dol
0 ’ —(1—us)kl +dsV +pVZ)"
Therefore
A1—u2)B2  A1—u1)B1
F:J}'(QO):< ‘61 %1 >
and
_ _ do 0
V= JV(QO) - <_(1 _ ’LL3)]€ d3> .
We have
v-l— b d3 0 )
dods \(1 —ug)k d2
Finally
RO — p(Fv—l) — )\((1 B ul)ﬁl(]‘ - u3)k7 + (1 - U2)52d3)
dydsds
_ (1 — U3)k(1 — ul)ﬁlT() + (1 — u2),82T0
dsds do
= Ro1 + Roo,

where Ry = (l_ug)kcgld_ul)ﬁ 110 and Ryy = (l_ugﬂ are the basic reproductive numbers for virus-to-cell

and cell-to-cell infections (resp), [24].

We define a new threshold parameter R; = %I * representing the number of viral reproduc-

tion in the chronic stage of infection without the effect of the humoral immune response to virions.
We also define the humoral immune reproduction number as follows:
Ry = C(l — ’ng)ki)\((l — ul)ﬁl(l - U3)k‘ + (1 - UQ)ﬁng) '
C(l — U3)]{7d1d3d2 + d2d3d4((1 — ul)ﬁl(l — U3)k7 + (1 - UQ)ﬁgdg)
Which represents the average number of infected secondary cells produced in the presence of a humoral
immune response.

Lemma 1. ()R >1<= Ry >1; (ii) Ri=1<= Ry =1; (iii) R1 <1<= Ry < 1.

Proof. For (i) we have

dsdy
Ri>le—I">——""__
! C(l — U3)k‘
_ 2
ma + \/m3 + dmims o dzdy ’
2my c(l —u3)k

9 2m1d3d4 2
<~ (m2 + 4m1m3) — m + mgo > 0.

By simplifying we find that
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R >1<«—
41 —wu dod
( (1 _113511{:22 4 [C(l — U3)kd1d3d2 + d2d3d4((1 — ul)Bl(l — U3)]€ + (1 — UQ)ﬂgdg)](RH — 1) > 0,
therefore Ry > 1 <= Ry > 1, similarly we show (ii) and (iii).
And since Ry < Ry we have Ry <1 — Ry <land, R1 >1 — Ry > 1. [

4. Stability of equilibria

To discuss the global behavior of the system (1), we adopt the method of Lyapunov functionals and
use the Lyapunov—LaSalle invariance principle [25].

Theorem 2. The disease-free equilibrium Ey is globally asymptotically stable when Ry < 1.

Proof. Considering the following Lyapunov function

T T (1 —w)BTo (1 —u1)B1pTh
(T, 1,V.Z) =Ty | = —1—1In— 1 1% Z.
1( sy Ly Yy ) 0<T() HTO>+ + d3 + Cd3
Its derivative is
dL1 T T(] (1 - ul)ﬁlTo(l - U3)k‘I (1 - ’LL1)51pT0d4Z
— =Tyd1 (2 — = — — 1-— Tol — dod —
i od1 ( T T> + (1 — u2)B2Tp o + i ods
T T(] (1 - ul)ﬁlpT0d4Z
=Td1 |2 — =— — = del(Ry— 1) — .
o ( T T) T &l(Ro—1) cds
Note M, and M, the arithmetic and geometric means (resp) of two numbers TZO and %, we have

My < M, thus (2 — (T/Ty + Tp/T)) < 0.
Therefore % < 0 when Ry < 1. Let My be the largest invariant set My = {(T, 1V, Z)/dd% = 0}

we note that % =0ifand only if =Ty and I =0 and Z =0 and V = 0, thus My = Fy, based on
LaSalle’s invariance principle, Fy is globally asymptotically stable if Ry < 1. ]

Theorem 3. The immune free equilibrium F is globally asymptotically stable when R; < 1 < Ryp.

Proof. Considering the following Lyapunov function

T T I I
Lo(T, IV, Z) =Ty — —1—1n— L{——-1—In—
2( ) 7‘/7 ) 1<T1 nT1>+ 1<I1 D11>
(1 — u1)61T1V12 Z 11— Z (1 - ul)ﬂlpTlvlz
(1 - U3)k11 Vl Vl C(l — u;;)k[l '
Its time derivative is
dLsy (T —T)? T, IVi TLV
— =—-dili— — (1 — W=+ — -3
dt S —w)B Vi 7+ 7y + 7w
T T1 /\(1 —ul)ﬁl(l —’LL3)k7pT12
=—(1- TWhH|—=—+—=-2 Ry —1).
(- u)fatins (7 + 7 —2) + i (Rir 1)
Since arithmetic mean is greater than geometric mean we have, dd% < 0when Ry < 1thus Ry <1
according to the lemma. Let be M; the largest invariant set such as
dL
M, = {(T,I,V,Z) d—f :o}.

We have dde =0ifandonly if T =Ty, I =1, Z = Z; and V = Vp, thus My = {E1}, so based
on LaSalle’s invariance principle, F7 is globally asymptotically stable if Ry < 1. And as Ej exists
whenever Ry > 1, we find the result of the theorem. ]

Theorem 4. The infected equilibrium with humoral immune response Fs is locally asymptotically
stable when Ry > 1.
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Proof. Considering the following Lyapunov function

T T I I
Ls(T,1,V,Z) = T* <——1—ln—> t I <——1—ln—>

_ * Y %2 _ kYK 7%
Q-w)BTV2 (V. VN A w)BpTVE (27

(1 —uz)kI* Vv Vv c(l — ug)kI* z* z*
Its time derivative is
dLs (T —T%)? e [TF IV*  TI*V e | T T
W = —le T (1 ul)ﬂlT Vv T + IV + TV 3 (1 U2)52T I T + T 21 .

Let be M* the largest invariant set such as
M* = {(T,I,V,Z) % = 0}.

We have % =0ifandonly if T=T* 1 =1", Z =72* and V = V* thus M* = E5, and since F»
exists whenever R; > 1, so based on the invariance principle of LaSalle Fs is globally asymptotically
stable if Ry > 1. [

5. Numerical simulations

In this section, we present several numerical illustrations for the model (1) in order to validate our
theoretical findings, and also to study the effectiveness of different therapys offered by the model.

50 120

—T
45 — I
—V
— ] 100

40

35
80
30

251 60 -

20

15 40

10

20

0 5 10 15 20 25 30 0 5 10 15 20
t t

Fig. 2. The dynamics of the infection when A = 6, Fig.3. The behavior of the infection when A = 60,
£ = 0.01, By = 0.01, dy = 0.5, d2 = 0.5, ds = 0.8, (1 = 0.01, B2 = 0.01, d; = 0.5, do = 0.5, d3 = 0.8,
dy =0.9, k=0.9, p=0.006, and ¢ = 0.005. dy =09, k=0.9, p=0.006, and ¢ = 0.005.

Figure 2 represents the behavior of the infection
when A = 6, 51 = 0.01, 82 = 0.01, d; = 0.5, do = 0.5,
— ds =0.8,d4 = 0.9, k = 0.9, p=0.006, and c = 0.005,
—v that is implies that Rp = 0.51 < 1 and R; = 0.05 <
1. We observe that the studied population converges
to the free equilibrium Ey = (12,0,0,0), then these
results validate our theoretical finding.

Figure 3 represents the dynamics of the infection
when A = 60, g1 = 0.01, 5 = 0.01, dy = 0.5,
de = 0.5, d3 = 0.8, dy = 0.9, £k = 0.9, p = 0.006,
0 5 1;0 15 20 and ¢ = 0.005, that is implies that Ry = 05.1 > 1
Fig.4. The dynamics of the infection when A = and Ry = 0.49 < 1. We observe that the studied
60, 81 = 0.01, B = 0.01, dy = 0.5, d» = 0.5, d3 =  Ppopulation converges to the free equilibrium E; =

0.8,ds = 0.9, k=0.9, p=0.006, and ¢ = 0.05. (23.5,96.47,108.52,0), then these results validate our
theoretical finding.
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In Figure 4, we show the interaction between the studied population when A = 60, 8; = 0.01,
B = 0.01, dy = 0.5, dy = 0.5, d3 = 0.8, dy = 0.9, £ = 0.9, p = 0.006, and ¢ = 0.05, that is implies
that Ry = 06.3 > 1 and Ry = 5.1 > 1. We observe that the studied population converges to the free
equilibrium Fy = (40.74,79.85,18,527.11), then these results validate our theoretical finding.

5.1. Effect of therapy uq

This subsection will study the effect of therapy parameters u; on the dynamics of the model system
for each equilibrium.

50

T
45 w0 i u=0
u,=0.3| u,=0.3]
40 u=0.8| | u,=0.8] 4
35 1
30 -
T
25
25 30 25 30
u,=0 u=0 | |
u,=0.3 u,=0.3
u,=0.8] u,=0.8]
0 5 10 15 20 25 30 0 5 10 15 20 25 30

t t
Fig. 5. Infection dynamics showing around the free equilibrium Fy for different values of u;.
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Fig. 6. Infection dynamics showing the stability of the F; for different values of u;.
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Figures 5 represent the effect of the therapy u; around the free equilibrium, we remark that when
30% and 80% on the first 5 days of treatment the uninfected cells decrease, after this period the
uninfected cells increase to reach their equilibrium.

Figures 6 represent the effect of the therapy w; around the free immune endemic equilibrium FEj,
we remark that when 30% and 80% the number of the uninfected cells increase on the contrary the
number of the infected cells and the free virus decreases, that proves the efficiency of the therapy wu;.
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15

Fig. 7. Infection dynamics showing the stability of the F, for different values of u;.

Figures 7 represent the effect of the therapy u; around the immune endemic equilibrium Fs, we
remark that when 30% and 80% the number of the infected cells and the free virus decreases on the
other hand we observe that the number of the uninfected cells increase, that proves the efficiency of
the therapy u;.

5.2. Effect of therapy us

In this subsection, we will study the effect of therapy parameters us on the dynamics of the model
system for each equilibrium.

Figures 8 represent the effect of the therapy us around the free equilibrium, we remark that when
30% and 80% on the first days of treatment the uninfected cells decrease, after this period the uninfected
cells increase to reach their equilibrium.

Figures 9 represent the effect of the therapy us around the free immune endemic equilibrium Ej,
we remark that when 30% and 80% the number of the uninfected cells increase on the contrary the
number of the infected cells and the free virus decreases, that proves the efficiency of the therapy wus.

Figures 10 represent the effect of the therapy uo around the immune endemic equilibrium Fs, we
remark that when 30% and 80% the number of the infected cells and the free virus decreases on the
other hand we observe that the number of the uninfected cells increase, that proves the efficiency of
the therapy us.
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5.3. Effect of therapy ug

In this subsection, we will study the effect of therapy parameters us on the dynamics of the model
system for each equilibrium.

50 T T T T T 25

prary —u=0
uz=0.31
u;=0.8

45

——us=0.3]

=038 |

40
35H
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T
25+
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wy=0
=03
uz=0.8

Uz=(
us=0.3[]
U;=0.8

L
0 5 10 15 20 25 30 0 5 10 15 20 25 30
t t

Fig. 11. Infection dynamics showing the stability of the Ey for different values of us.

Figures 11 represent the effect of the therapy wusg around the free equilibrium, we remark that
when 30% and 80% on the first days of treatment the uninfected cells decrease, after this period the
uninfected cells increase to reach their equilibrium.

100
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Fig. 12. Infection dynamics showing the stability of the F; for different values of us.

Figures 12 represent the effect of the therapy us around the free immune endemic equilibrium Ej,
we remark that when 30% and 80% the number of the uninfected cells increase on the contrary the
number of the infected cells and the free virus decreases, that proves the efficiency of the therapy us.

Figures 13 represent the effect of the therapy us around the immune endemic equilibrium FEs, we
remark that when 30% and 80% the number of the infected cells and the free virus decreases on the
other hand we observe that the number of the uninfected cells increase, that proves the efficiency of
the therapy us.
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Fig. 13. Infection dynamics showing the stability of the Fs for different values of us.

5.4. Effect of three therapies

In this subsection, we will study the effect of therapy parameters ui, us and ug used simultaneously,
on the dynamics of the model system for each equilibrium.

Figures 14 and 15 show the behavior of the infection for the case of the free-equilibrium Fy and
endemic-equilibrium FE; respectively, in the presence of therapy an increase of uninfected cells during
is observed. However, a decrease of the infected cells and the virus load are observed.

Figures 16 confirm the result of the previous figure but also a significant decrease of the adaptive
immune response is also observed. It is evident that higher doses of the medication lead to better
results. It is worth noting that despite the theoretical effectiveness of these treatments, selecting the
most suitable dosage for each patient is crucial to minimize potential adverse effects. For further
insight, [26].
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Fig. 14. Infection dynamics showing the stability of the equilibrium point Ej for different values of uq, ug and
ug used simultaneously.
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Fig. 15. Infection dynamics showing the stability of the equilibrium point E; for different values of uq, uy and
ug used simultaneously.
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Fig. 16. Infection dynamics showing the stability of the equilibrium point Es for different values of uq, ug and

us used simultaneously.

6. Conclusion

This paper is devoted to modeling the viral infection dynamics by the the ordinary differential equa-
tions describing the uninfected cells, infected cells, free virus and the humoral immune response, also
the model under consideration includes the transmission between free virus to uninfected cells and
other form of the transmission is by infected cells to uninfected cells namely cell-to-cell which incor-
porates both the cell-free and cell-to-cell transmission. Firstly, we have proven the Well-posedness of
our mathematical model in terms of showing the existence, positivity and boundedness of solutions.
Moreover, we determine the different equilibrium of the problem. Also, we studied the global stability
of each equilibrium. Finally, we presented some numerical simulation in order to validate our theoret-
ical findings, in the last part of our paper we gave some numerical recommendation of three therapies
introduced to model, and we show that if the efficiency of the treatment reaches a 80%, we will maxi-
mize the number of the uninfected cells and minimize the number of the infected cells, the free virus

Mathematical Modeling and Computing, Vol. 10, No. 4, pp. 1037-1050 (2023)



Viral infection model with cell-to-cell transmission and therapy in the presence of humoral ... 1049

and the humoral immunity, that proves the crucial role of the treatment of the various viral infection
and this can help a patient to increase the chance of the surviving. In the future work, we will study
the effect of the memory infection on the treatment strategy, generated by the fractional derivative
model [27-30]. Moreover, we will introduce on the studied model the stochastic perturbations in order
to try the cases of the extinction and the persistence of the infection [31,32].
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Mopgenb BipycHoi iHcekuil 3 MXXKNITUHHOIO Nnepeja4Yero Ta Tepaniero

3a HasIBHOCTI rymopaJibHoro IMyHITETy rnobanbHnin aHani3

Eab Axpaa H.', Jlax6i M.', Jamame dox.?

L Ta6opamopia mamemamury ma npuriadrux npoepam, Yuisepcumem Xacana II,
Buwa nedazoziuna wxora Kacabaanxu, Kacabaarxa, Mapokko
2 Jlabopamopis cucmem, MOOeMOEAHNA MaA GHAAIZY OAA NIOMPUMEL NPUTHAMMA Piulen,
Hauionanvna wrona npukasadnux nayx, Iepwut ynisepcumem Xacana, Beppewud, Mapoxko

Ils craTTs cupsMoBaHa Ha MOJEIIOBAHHS MaTEeMATUIHOI MOJel BipycHoOI iHdexIil, gKa
BKJIIOYAE K OE3KIITUHHY Tepeaady, Tak i Mi2KKJIITHHHY mepeaady. Mojenb BKII0YAE 90~
TUPHU Bijian, a came: 9yT/uBi, indikoBaHi, BipycHe HaBaHTaKEHHs Ta I'yMOPAJIbHY iMyH-
HY BiJIIOBifb, sika aKTUBYETHCS B TOCIOJAPS NI aTaku Ha Bipyc. CrepIimy BCTAHOBJIEHO
KOPEKTHICTh 3AIIPOIIOHOBAHOI MATEMATHIHOI MOJIEJ 3 TOYKHU 30Dy JOBEJICHHS ICHYBaHHS,
JIOJTATHOCTI Ta 00MeKeHOCTI Po3B’s13KiB. KpiMm Toro, Bu3HateHo pi3ui piBnoBaru 3amadi. Ta-
KOXK JIOCJTiPKeHO TJI00a/IbHY CTIMKICTh KOKHOI piBHOBaru. Hakimers, mpoBeieHo dnucebHe
MOJIETIOBaHHS, TII00 ITiITBEPAUTH TEOPETUIHI BUCHOBKU Ta JOCJITUTH e(PEeKT PI3HUX THIIIB
JIIKYBaHHS, SKi TPOMOHYIOTHCSI B MOJEJI.

Kntouosi cnoBa: 2406aavha cmitikicms; 610 KATMuHy 00 KATMUHU, 2YMOPAALHA TMYHHA
610n0610v; mepanis; 6a308Ull HOMED SI0MBOPEHHS; YUCEALHE MOOEAIOBAHH.
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