Ю.В. Ушенин, Р.В. Христосенко, А.В. Самойлов, Г.В. Дорожинский, Э.Б. Каганович, Э.Г. Манойлов, Б.А. Снопок

ОПТОЭЛЕКТРОННЫЕ СЕНСОРНЫЕ СТРУКТУРЫ НА ОСНОВЕ ПЛЕНОК ПОРИСТОГО ОКСИДА АЛЮМИНИЯ, ПОЛУЧЕННЫХ ИМПУЛЬСНЫМ ЛАЗЕРНЫМ ОСАЖДЕНИЕМ

Рассмотрены пленки пористого оксида алюминия (por-Al₂O₃), сформированные на поверхности золота методом импульсного лазерного осаждения (ИЛО) из обратного потока частиц эрозионного факела в атмосфере аргона. Методом спектроскопии полного внутреннего отражения с угловым разрешением установлено изменение оптических параметров таких структур при их экспозиции в парах воды, ацетона, этанола и гексана. Наблюдали корреляцию между смещением угла резонанса и показателем преломления аналитов. Анализ кинетических зависимостей при смене аналитов указывает на стабильность пленок и обратимость процессов сорбции. Большие значения относительного изменения эффективного коэффициента преломления, достигающие 10^{-2} , обусловлены большой внутренней поверхностью пленок рог-Al₂O₃.

Ключевые слова: сенсор, поверхностный плазмон-поляритонный резонанс (ППР), нанокомпозитная пленка, импульсное лазерное осаждение в вакууме, пористый оксид алюминия.

ВВЕДЕНИЕ

В последнее время достигнуты значительные успехи в развитии оптических сенсоров на основе наноструктур с возбуждением поверхностных плазмон-поляритонных состояний на границе металл-диэлектрик и с возбуждением полем неоднородной волны волноводных мод в трехслойной системе. Оптические преобразователи этих сенсоров реализуют условия полного внутреннего отражения с введением излучения посредством призменной связи в геометрии Кречмана. Присутствие аналита в области распространения неоднородной (эванесцентной) волны или волноводной моды изменяет показатель преломления среды, что проявляется в изменении условий возбуждения и распространения волн. Оптические моды проявляются в виде резких минимумов угловой зависимости полного внутреннего отражения $R(\theta)$. Чем больше поверхность соприкосновения с аналитом, тем выше чувствительность сенсора и меньше наименьшее детектируемое значение его концентрации. Это и обусловливает возрастающий интерес к применению пористых диэлектриков в оптоэлектронных сенсорах [1-5].

Высокая чувствительность оптических сенсоров на основе пористого оксида алюминия (por-Al₂O₃) обусловлена их большой внутренней поверхностью и возможностями создания с их участием планарных наноструктур, в которых выполняются условия распространения оптических мод [3, 4]. В [3] методом волноводной спектроскопии проанализированы процессы внутри слоя нанопористого оксида алюминия, полученного анодизацией (porous anodic alumina, PAA). Так, система пленка золота—РАА была чувствительна к адсорбции и десорбции альбумина бычьей сыворотки при различных значениях pH раствора, обладала высо-

[©] Ю.В. Ушенин, Р.В. Христосенко, А.В. Самойлов, Г.В. Дорожинский, Э.Б. Каганович, Э.Г. Манойлов, Б.А. Снопок, 2012

кой чувствительностью к адсорбции протеина и к расширению пор РАА. Предложенный волноводный сенсор способен детектировать не только изменения коэффициента преломления внешней среды, но и специфические биомолекулы при соответствующей функцианализации поверхности пор. В сенсоре воноводного типа на основе системы призма—Au—PAA толщиной 1 мкм и размерами пор 10—100 нм наблюдали изменение значения эффективной диэлектрической проницаемости 10⁻⁴ как следствие процессов в порах.

В последующих исследованиях использовали нанопористые пленки TiO_2 , полимерные пленки с цилиндрическими макродоменами и др. В работе [5] предложен оптический сенсор на основе структур пористого кремния (por-Si). На подложке монокристаллического кремния был сформирован низкоомный слой por-Si высокой пористости с низким значением показателя преломления *n*, что обеспечивало введение поля эванесцентной волны. Следующий слой por-Si низкой пористости с высоким значением *n* был волноводным слоем. Результаты анализа на основе дипольного приближения показали, что чувствительность предложенного рог-Si-сенсора больше, чем у ППР-сенсора с металлическим слоем из-за того, что аналит расположен внутри волноводного слоя, где и поле сильнее, и концентрация аналита выше.

В [4] теоретически и экспериментально изучали ППР-сенсор со слоем РАА. Слой 200 нм РАА формировали анодизацией на слое алюминия. Оценки показали, что для сенсорной системы призма—алюминий (15 нм)—Al₂O₃ (3 нм)—воздух смещение положения минимума угла отражения $\Delta \theta_{min}$ кривой ППР после формирования в порах адсорбированного слоя с показателем преломления n = 1,5 и толщиной 2 нм составляет $\Delta \theta_{min} = 0,11^{\circ}$. В то же время для планарной ППР-системы призма золото (50 нм)—воздух оценки дают $\Delta \theta_{min} = 0,21^{\circ}$. С помощью расчетов установлено, что значения $\Delta \theta_{min}$ для рассматриваемого сенсора зависят от радиуса пор и их глубины. Для оптимальных параметров слоя РАА было показано, что значение $\Delta \theta_{min}$ может быть в 45 раз больше, чем таковое для планарного слоя оксида алюминия, и в 22 раза больше, чем в случае адсорбции аналита на слое золота. Также отметим, что при анодизации алюминия нарушается адгезия термически осажденных пленок золота.

Эксперимент на ППР-сенсорах, включающий формирование самособирающегося монослоя (self-assembled monolayer, SAM) на РАА и для сравнения на планарных пленках золота, алюминия, подтвердил расчеты по увеличению на порядок чувствительности сенсора за счет увеличения площади поверхности, доступной для адсорбции аналита в РАА. Оценки показали, что адсорбция монослоя воды приводит к смещению кривой ППР на 0,1—0,2°. ППР-сенсор с РАА рекомендовали для использования при детектировании газов [4].

Насколько нам известно, помимо анодного оксида алюминия тонкие пленки (слои) por-Al₂O₃ не были получены иными методами и не использовались в ППР- и волноводных планарных сенсорах. Учитывая это, актуальной представляется разработка способов формирования оптических сенсорных структур газов на основе por-Al₂O₃, сформированного методом импульсного лазерного осаждения (ИЛО) в вакууме, имеющего преимущества получения оксидных пленок металлов [6].

Цель данной работы — исследовать сенсорные свойства по отношению к парам воды, ацетона, этанола и гексана наносруктур на основе пленок por-Al₂O₃, полученных методом ИЛО.

МЕТОДИКА ЭКСПЕРИМЕНТА

Были получены сенсорные структуры формированием пленок рог-Al₂O₃ методом ИЛО на тонкие (50 нм) пленки золота. Пористость пленок рог-Al₂O₃ достигалась осаждением из обратного низкоэнергетического потока наночастиц эрозионного факела на подложку, расположенную в плоскости мишени. Луч YAG:Nd³⁺ лазера, работающего в режиме модулированной добротности (длина волны 1,06 мкм, энергия в импульсе 0,2 Дж, длительность импульса 8 нс, их частота 25 Гц), сканировал мишень в вакуумной камере в атмосферах аргона или кислорода с давлением 6—15 Па. Плотность энергии облучения равна 5—20 Дж/см², время осаждения — около 6 мин. Толщина пленок рог-Al₂O₃ на длине 20 мм составляла 30—200 нм [7, 8]. Объектами исследования являлись два типа образцов с толщинами пленок около 55 ± ± 5 нм и 190 ± 10 нм.

На сформированных сенсорных структурах определяли влияние паров воды, этанола, ацетона и гексана на зависимость $R(\theta)$. Для ввода газа использовали двухканальную полистироловую ячейку объемом 30 мкл, снабженную трубками, соединенными с микронасосом. Очистку измерительной ячейки осуществляли комнатным воздухом.

Измерения угловых зависимостей отражения света $R(\theta)$ от структур стекло—пленка золота—por-Al₂O₃—воздух проводили в геометрии Кречмана на ППР-спектрометре ПЛАЗМОН-6, модель 325, разработанном в Институте физики полупроводников им. В.Е. Лашкарева НАН Украины [9]. Он позволяет измерять абсолютные значения отражения R и угла θ в диапазоне 16° с временным разрешением. Предварительная обработка данных осуществлялась с помощью программы Плазмон-6 (версия 6.7). Полную кривую $R(\theta)$ записывали в течение 3 с в режиме «single mode».

Возбуждение поверхностной или волноводной моды наблюдали как минимум на кривой $R(\theta)$. Чувствительность наноструктур к газам оценивали по смещению положения угла минимума кривой $R(\theta) - \Delta \theta_{\min}$. Эффективные значения показателя преломления толщины пленок por-Al₂O₃ и нанокомпозита, содержащего por-Al₂O₃ и аналит — пары соответствующих веществ в воздухе, определяли посредством аппроксимации экспериментальной кривой $R(\theta)$ оптической моделью структуры. Использовали программную среду WinSpall 3.02 [10]. Значение оптических параметров пленки золота определяли до нанесения пленки por-Al₂O₃, измеряя кривую ППР. При расчете оптических параметров и толщины пленки рог-Al₂O₃, в том числе и с аналитом, использовали те же параметры пленки золота, учитывая изменение толщины пленки золота вследствие формирования переходного слоя в области шероховатости.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Для пленок золота наблюдали типичные кривые ППР. В результате численных аппроксимаций в рамках оптической модели с плоскопараллельными границами получили такие значения: коэффициент преломления n = 0,335, коэффициент экстинкции k = 3,525, толщина $d \approx 50$ нм. На рис. 1 представлены экспериментальные кривые угловой зависимости полного внутреннего отражения $R(\theta)$ для двух пленок рог-Al₂O₃ разной толщины, содержащих осушенный комнатный воздух (кривая *I*), влажный воздух (кривая *2*), ацетон (кривая *3*), этанол (кривая *4*) и гексан (кривая *5*). Как видно из этого рисунка, диапазон значений углов, соответствующих минимумам кривых $R(\theta) - \theta_{min}$, для пленки бо́льшей толщины имеет бо́льшие значения. Если для более тонкой пленки (~65 нм)

Рис. 1. Угловые зависимости отражения $R(\theta)$ для пленок por-Al₂O₃ толщиной 55 (*a*) и 190 нм (*б*) с аналитами: 1 — осушенный комнатный воздух; 2 — влажный воздух; 3 — ацетон; 4 — этанол; 5 — гексан

Рис. 2. Кинетические кривые зависимости положения угла θ_{\min} для пленок por-Al₂O₃ толщиной 55 (*a*) и 190 нм (б) при замене во времени осушенного комнатного воздуха на аналит: 1 — влажный воздух; 2 — этанол; 3 — ацетон; 4 — гексан; † — введение аналита, \downarrow — очистка камеры

значение $\Delta \theta_{\min}$ составляет до ~0,6°, то для более толстой (~190 нм) — до ~1,7°. Для обеих пленок с введением аналитов положение θ_{\min} смещается в сторону больших углов. Следует отметить, что изменение значения θ_{\min} коррелирует со значением показателя преломления *n* аналита в жидкой фазе. Так, влажный воздух с парами воды ($n_{\text{вод}} = 1,333$) смещает θ_{\min} на наименьшее значение, а гексан ($n_{\text{гекс}} = 1,375$) и этанол ($n_{\text{эт}} = 1,361$) с наибольшими значениями *n* смещают θ_{\min} на наибольшее значение.

На рис. 2 представлены кинетические зависимости положения угла θ_{min} при замещении осушенного комнатного воздуха аналитом. Во-первых, возврат положения минимума после замены аналита на осушенный комнатный воздух свидетельствует о стабильности por-Al₂O₃ и обратимости процессов сорбции. Во-вторых, наблюдается качественная корреляция между смещениями положения угла θ_{min} и значениями показателя преломления аналита в жидкой фазе. Отдельные количественные несоответствия связаны с тем, что значения смещения θ_{min} определяются не только значением показателя преломления аналита, но и его способностью к адсорбции в порах. Учет концентрации насыщенных паров данных растворителей, а также поверхностного натяжения (определяющего капилярное проникновение в поры) позволяет полностью интерпретировать наблюдаемую картину [13].

Аналит	<i>п</i> аналита	<i>n_{ef}</i> пленки с аналитом		A
		65 нм	190 нм	$\Delta n_{ef}/n_{ef air}$
Воздух	1	1,258	1,298	_
Вода	1,333	1,265	1,306	0,006
Ацетон	1,359	1,266	1,309	0,008
Этанол	1,361	1,273	1,315	0,013
Гексан	1,375	1,275	1,314	0,012

Эффективные значения показателей преломления пористых пленок por-Al₂O₃ с аналитами и относительное изменение их показателя преломления

В результате аппроксимации экспериментальных кривых $R(\theta)$ в области θ_{\min} получили эффективные значения показателей преломления n_{ef} рог-Al₂O₃, а также его с аналитами (таблица). Из таблицы видно, что для осушенного комнатного воздуха значения n_{ef} находятся между значениями показателей преломления пленки Al₂O₃ ($n \approx 1,65$) и воздуха (n = 1). С введением аналитов значения n_{ef} увеличиваются в соответствии с увеличением значения n аналита. Оценки показывают, что эффективность сенсорного элемента, определенная как отношение изменения значения n_{ef} по отношению к n_{ef} для комнатного воздуха, достаточно высокая. Для более толстой пленки она на несколько процентов выше, чем для более толстой пленки. Как видим, для этанола и гексана они наибольшие и достигают 10^{-2} .

выводы

Сравнительные эксперименты для структур, не содержащих пленки рог- Al_2O_3 на поверхности золота, показали, что при вводе газового аналита в ячейку не наблюдается смещение угла θ_{min} ни для одного из использованных аналитов. Отклики находятся на уровне шума и для сплошной (непористой) пленки Al_2O_3 . Этот факт совпадает с результатами оценки чувствительности сенсорной структуры с пленкой Al_2O_3 в [4]. Таким образом, показана возможность достижения значительной чувствительности к газообразным аналитам пленок por- Al_2O_3 , сформированных методом импульсного лазерного осаждения в атмосфере инертного газа. Высокая чувствительность пленок объясняется их значительной пористостью, что обусловливает возможность создания на их основе ППР газовых сенсоров. Результаты свидетельствуют о перспективности применения пленок рог- Al_2O_3 для исследования процессов в композитных пористых наноструктурах, в том числе при их взаимодействии с газообразными аналитами различной природы.

Yu.V. Ushenin, R.V. Khristosenko, A.V. Samoilov, G.V. Dorozinsky, E.B. Kaganovich, E.G. Manoilov, B.A. Snopok

OPTOELECTRONIC SENSOR STRUCTURE BASED ON POROUS ALUMINA FILMS FORMED BY PULSED LASER DEPOSITION

Films of porous alumina (por- Al_2O_3) were formed on gold films by pulsed laser deposition (PLD) from the reverse flow of the erosion torch particles in an argon atmosphere. Measurements by method of total internal reflection spectroscopy with an angular resolution has shown changes in the optical parameters of such structures in their exposure to the vapors of water, acetone, ethanol and hexane. The correlation between the shift of the resonance angle and the refractive index of analytes were observed. Kinetic characteristics of the resonance angle position in case of analytes changing indicate the stability of the films and the reversibility of sorption processes. The large values of the relative change in the effective refractive index, reaching values to 10^{-2} , are caused by large internal surface of the por-Al₂O₃ film.

Keywords: sensor, surface plasmon-polariton resonance, nanocomposite film, pulsed laser deposition in vacuum, porous alumina.

- Homola J. Sensor based on spectroscopy of guided waves // Optical chemical sensors / Ed. by F. Baldini, A.N. Chesler, J. Homola, S. Martellucci. – Springer, 2005. – 535 p.
- 2. *Homola J.* Present and future of surface plasmon resonance biosensors // Anal. Bioanal. Chem. 2003. **377**. P. 528-539.
- 3. *Highly* sensitive detection of processes occurring inside nanoporous anodic alumina templates: a waveguide optical study / K.-H.A. Lau, L.-S. Tan, K. Tamada et al. // J. Phys. Chem. B. 2004. **108**, N 30. P. 10812-10818.
- Nanoporous alumina enhanced surface plasmon resonance sensors / A.G. Koutsioubas, N. Spiliopoulos, D. Anastas-Sopouloset et al. // J. Appl. Phys. - 2008. - 103, N 9. -P. 094521 (1-6).
- 5. *Optical* sensor based on resonant porous silicon structures / J.J. Saarinen, S.M. Weiss, P.M. Fauchet, J.E. Sipe // Optics Express. 2005. 13, N 10. P. 3754-3764.
- Kabashin A.V., Meuries M. Laser ablation-based synthesis of nanomaterials / Eds. J. Perriere, E. Millon, E. Fogarassy // Chap. I in Recent Advances in laser processing of materials. – 2006. – 472 p.
- 7. Планарные волноводные структуры на основе нанопористых пленок оксида алюминия в условиях поверхностного плазмонного резонанса / Ю.В. Ушенин, Р.В. Христосенко, А.В. Самойлов и др. // ОПТ. — Киев: Наук. думка, 2011. — Вып. 46. — С. 33—40.
- 8. *Тонкі* плівки пористого оксиду алюмінію, одержані імпульсним лазерним осадженням, для поверхневих плазмон-поляритонних сенсорних структур / Ю.В. Ушенін, Р.В. Христосенко, А.В. Самойлов та ін. // Фізика і хімія твердого тіла. — 2012. — **13**, № 1. — С. 259—264.
- 9. Спектрометр поверхневого плазмонного резонансу Плазмон-6 / Є.Ф. Вєнгер, С.А. Зиньо, Є.П. Мацас та ін. // Тез. доп. наук.-практ. конф. СЕНСОР-2007, Одеса, Україна. — 2007. — С. 111.
- 10. *http://www.mpip-mainz.mpg.de/johanns/ak_knoll_Software.htm*
- 11. Венгер Є.Ф., Гончаренко А.В., Дмитрук М.Л. Оптика малих частинок і дисперсних середовищ. Киев: Наук. думка, 2009. 386 с.
- 12. Goncharenko A.V. Generalizations of the Bruggeman equation and a concept of shapedistributed particle composites // Physical Review E. - 2003. - 68. - P. 041108.
- Multiparametric chemical sensor based on nanocrystalline silicon waveguide / S.I. Lysenko, E.B. Kaganovich, I.M. Kizyak, B.A. Snopok // Sensor Letters. – 2005. – 3. – P. 117–125.

Институт физики полупроводников им. В.Е. Лашкарева НАН Украины Проспект Науки, 41 03028 Киев

Получено 18.04.2012