УДК 546:548.736.39

Володимир ЛЕВИЦЬКИЙ¹, Володимир БАБІЖЕЦЬКИЙ¹, Володимир СМЕТАНА², Богдан КОТУР¹

ΠΟЛΙΜΟΡΦΙЗΜ СΠΟЛУКИ Dy₃Ni₂: КРИСТАЛІЧНА СТРУКТУРА α-Dy₃Ni₂ Ι β-Dy₃Ni₂

¹Львівський національний університет імені Івана Франка, вул. Кирила і Мефодія, 6, 79005 Львів, Україна

²344 Spedding Hall, Ames Laboratory, Ames, IA 50011-3020, USA e-mail: v.levyckyy@gmail.com

Повільним охолодженням розплаву синтезовано об'ємний полікристалічний зразок, що містив нову, високотемпературну модифікацію сполуки Dy_3Ni_2 (β - Dy_3Ni_2). Рентгенівським методом порошку встановлено належність кристалічної структури цієї фази до структурного типу Er_3Ni_2 : просторова група R \Im , $a_{hex} = 0.8531(1)$, $c_{hex} = 1.5767(3)$ нм. Методом монокристала уточнено кристалічну структуру низькотемпературної модифікації сполуки Dy_3Ni_2 (a- Dy_3Ni_2): структурний тип a- Dy_3Ni_2 , просторова група C2/m, a = 1.3456(3), b = 0.37170(7), c = 0.9656(2) нм, $\beta = 106.17(3)^\circ$, $R_1 = 0.044$; w $R_2 = 0.079$.

Ключові слова: Диспрозій, Нікель, кристалічна структура, монокристал, поліморфізм.

Вступ

На теперішній час літературні дані щодо більшості діаграм стану двокомпонентних інтерметалевих систем застаріли і потребують уточнення. Діаграми стану окремих систем були побудовані раніше, ніж визначено кристалічні структури бінарних сполук, що на них позначені. Особливо це стосується сполук з подібним хімічним складом чи поліморфними перетвореннями. Зокрема, для більшості сполук системи Dy–Ni за останні п'ять років було уточнено фазові рівноваги та методом монокристала кристалічні структури бінарних сполук [1–5]. Досліджуючи принагідно цю систему, ми зіштовхнулися з проблемою синтезу сполуки Dy₃Ni₂, позначеної на діаграмі стану [6]. З аналізу літератури з'ясувалось, що в основному автори [6] цитують роботу [7], у якій вперше було синтезовано Dy₃Ni₂ і визначено її кристалічну структуру методом монокристала. Для синтезу сполуки автори [7] застосували левітаційне плавлення чистих компонентів з наступним триденним відпалюванням сплавів при 700–750 °C, з яких вибрали монокристал для структурного аналізу. У нашій роботі ми використали іншу методику, внаслідок чого одержали якісно нові результати.

Методика експерименту

Для синтезу зразка складу Dy₇₀Ni₃₀, масою 0,300 г використано Диспрозій (злиток, чистотою 99,9 мас. %) та порошкоподібний Нікель (99,99 мас. %).

Стружку Диспрозію, одержану за допомогою напилка з берилієвої бронзи, було перемішано з Нікелем і спресовано у прес-формі за допомогою гідравлічного преса П-10 при тиску ~0,5 ГПа. Отриману таблетку помістили в танталову трубку, запаяну з одного боку і нещільно сплюснуту з іншого. Трубку запаяли у кварцову ампулу, попередньо відкачавши з неї повітря. Ампулу помістили в розігріту до 900°С муфельну піч МП-60, залишивши її на 24 год, після чого вимкнули живлення. Коли піч разом з ампулою охолола до 500°С (приблизно за 30 хв), ампулу загартували у холодній воді. Після того ампулу розбили, танталову трубку акуратно розігнули і дістали її вміст. Видимих змін на зовнішній та внутрішній поверхні трубки не виявлено, що свідчить про відсутність реакції між зразком і Танталом за описаних вище умов.

Дифрактограми порошку, зняті на дифрактометрі ДРОН-2,0М (Fe K α -випромінювання, $\lambda = 0,193736$ нм) з різних частин сплаву співпадають, що підтверджує гомогенність синтезованого зразка. З механічно подрібненого сплаву під мікроскопом вибрано зразки монокристалів для структурного аналізу. Попереднє тестування монокристалів проведено методом Лауе з використанням білого рентгенівського випромінювання (матеріал анода – Mo). Масив дифракційних даних від монокристала одержано на дифрактометрі STOE IPDS II (Мо К α -випромінювання, $\lambda = 0,071073$ нм). Для обробки масивів експериментальних дифракційних даних порошку використано пакет програм WinCSD [8, 9], монокристала – WinGX [10, 11] та SHELX [12, 13]. Рисунок кристалічної структури виконано за допомогою програми DIAMOND [14].

Результати експерименту та їх обговорення

Склад зразка Dy₇₀Ni₃₀ спеціально вибрали так, щоб він відповідав складу евтектики, згідно діаграми стану [6]:

$$L \xleftarrow{693^{\circ}C} Dy_3Ni + Dy_3Ni_2,$$

а температуру – близьку до температури утворення сполуки Dy₃Ni₂:

$$L + \text{DyNi} \xleftarrow{928^{\circ}C} \text{Dy}_3\text{Ni}_2.$$

Аналіз дифрактограми сплаву засвідчив вміст як мінімум двох фаз приблизно в однаковому співвідношенні (зразок нерівноважний). Дифракційні піки від однієї з них належали сполуці Dy₃Ni (CT Fe₃C), а інші вдалося проіндексувати за моделлю структурного типу Er₃Ni₂ [15]. Уточнені параметри елементарних комірок обох сполук наведено у табл. 1. Для порівняння наведено літературні відомості для сполуки Dy₃Ni та ізоструктурних сполук складу Ln_3Ni_2 (Ln = лантаноїд). Наші попередні дослідження відпаленого при 600°C зразка вказували на присутність незначних кількостей сполуки Dy₃Ni₂, яка мала структуру власного типу, визначену раніше у праці [7]. Тому, виходячи з температурних умов синтезу, модифікацію зі структурою типу Er₃Ni₂ можна вважати високотемпературною (β -Dy₃Ni₂), а модифікацію, описану в [7] – низькотемпературною (α -Dy₃Ni₂). Це твердження узгоджується з відомостями про поліморфізм сполуки Ho₃Ni₂, описаний у праці [7], який у нашому випадку вперше виявлено для сполуки Dy₃Ni₂.

З відтестованих методом Лауе зразків один монокристал був придатним для рентгеноструктурного аналізу. Визначені параметри елементарної комірки засвідчили моноклінну сингонію, а аналіз систематичних погашень (h + k = 2n) - базоцентрований тип ґратки Браве. Одержані величини узгоджувалися з даними праці

[7] стосовно кристалічної структури сполуки *α*-Dy₃Ni₂. Тому для уточнення структури сполуки цю модель було взято за вихідну.

.. .

TC

Таблиця 1

кристалографічні параметри та умови синтезу сполук Dy ₃ Ni та Ln ₃ Ni ₂								
Сполука	СТ	ПГ	Параметри елементарної комірки			<i>V</i> ,	Література,	
Сполука	CI	111	а, нм	<i>b</i> , нм	С, НМ	HM ³	умови синтезу	
Dy ₃ Ni	Fe ₃ C	Pnma	0,685	0,960	0,626	0,412	[16], левіт. пл., відп. 450–700 °С	
			0,6863	0,9553	0,6302	0,413	[3], елдуг. пл., відп. 600°С	
			0,68512(9)	0,9521(2)	0,62759(9)	0,4094(2)	*	
Tb ₃ Ni ₂	α -Dy ₃ Ni ₂	C2/m	0,1338	0,371	0,964	0,461	[7], левіт. пл.,	
				$\beta = 106,0^{\circ}$			відп. 700–750 °С	
α -Dy ₃ Ni ₂	α -Dy ₃ Ni ₂	C2/m	0,13321	3,662	0,9512	0,447	[7], левіт. пл.,	
				$\beta = 105,7^{\circ}$			відп. 700–750 °С	
			0,13456(3)	0,37170(7)	0,9656(2)	0,4639(2)	*	
				$\beta=106,\!17(3)^\circ$				
α-Ho ₃ Ni ₂	α -Dy ₃ Ni ₂	C2/m	0,1330	0,365	0,951	0,445	[7], левіт. пл.,	
				$\beta = 105,6^{\circ}$			відп. 700–750 °С	
β -Dy ₃ Ni ₂	Er ₃ Ni ₂	<i>R</i> 3	0,8531(1)		1,5767(3)	0,9937(5)	*	
β-Ho ₃ Ni ₂	Er ₃ Ni ₂	<i>R</i> 3	0,852		1,575	0,990	[15]	
Er ₃ Ni ₂	Er ₃ Ni ₂	<i>R</i> 3	0,8472		1,680	0,975	[15]	
Tm ₃ Ni ₂	Er ₃ Ni ₂	<i>R</i> 3	0,8433		1,5593	0,960	[17]	
Lu ₃ Ni ₂	Er ₃ Ni ₂	<i>R</i> 3	0,83720		1,55314	0,943	[18]	

Примітки. СТ – структурний тип; ПГ – просторова група; V – об'єм елементарної комірки; Літ. – література; левіт. пл. – левітаційне плавлення; відп. – відпалювання; ел.-дуг. пл. – електродугове плавлення; * – результати нашого дослідження

Рис. 1. Елементарна комірка та координаційні многогранники атомів сполуки α-Dy₃Ni₂.

У табл. 1 наведено уточнені параметри елементарної комірки сполуки. Деталі проведеного уточнення кристалічної структури сполуки α-Dy₃Ni₂ подані у табл. 2. Координати атомів та параметри їхнього ізотропного зміщення представлено у табл. 3, параметри анізотропного зміщення атомів – у табл. 4. На рис. 1 зображена елементарна комірка (атоми представлені еліпсоїдами їхніх анізотропних параметрів зміщення з імовірністю 99,9 %) та координаційні многогранники для усіх кристалографічних сортів атомів уточненої структури.

Таблиия 2

Деталі уточнення кристалічної структури спол	уки а-Dy ₃ Ni ₂ методом монокристала
Формула	Dy ₃ Ni ₂
Обчислена густина, г/см ³	8,662
Коефіцієнт абсорбції, мм ⁻¹	55,48
Кількість уточнюваних параметрів	32
Уточнення	F^2
$\theta_{min}, \theta_{max}$ град.	3,2; 26,6
Межі h, k, l	$-16 \le h \le 16$,
	$-3 \le k \le 4$,
	$0 \le l \le 12$
Загальна кількість відбить	776
Кількість незалежних відбить	$554 (R_{int} = 0.043)$
Кількість відбить з $I_{o} \ge 2\sigma(I_{o})$	$437 (R_{\sigma} = 0.049)$
Фактор розбіжності $R_1 (R_1$ усі відбиття) ^а	0,044 (0,071)
$wR_2 (wR_2 \text{ усі відбиття})^6$	0,074 (0,079)
$S \operatorname{no} F^2$:	1,106
Коефіцієнт екстинкції ^в , k	0,6(11)·10 ⁻⁴ (SHELXL)
$\Delta \rho_{min} \operatorname{Ta} \Delta \rho_{max} \left(e \cdot \mathrm{\AA}^{-3} \right)$	-1,36; +2,46
Примітки.	

^a $R_1 = [\Sigma(|F_o|-|F_c|)]/\Sigma|F_o|;$ ⁶ $wR_2 = [\Sigma[w(F_o^2-F_c^2)^2/\Sigma[w(F_o^2)^2]]^{1/2}; w = 1/[\sigma^2(F_o)^2+(0.0337P)^2], \text{ ge } P = (F_o^2+2F_c^2)/3;$ ^B $F_c^* = kF_c[1+0.001F_c^2\lambda^3/sin(2\theta)]^{1/4}$

Таблиия 3

Атом	ПСТ	x	У	Ζ	$U_{\rm ekb}$, ×10 ² нм ²
Dy1	4i	0,13215(9)	0	0,99815(13)	0,0223(3)
Dy2	4i	0,40285(9)	0	0,32727(13)	0,0225(3)
Dy3	4i	0,14406(9)	0	0,37055(13)	0,0232(4)
Ni1	4i	0,5355(3)	0	0,1434(4)	0,0245(7)
Ni2	4i	0,7423(3)	0	0,2267(4)	0,0255(7)

Координати та ізотропні параметри зміщення атомів у структурі сполуки α-Dy₃Ni₂

Примітка. ПСТ – правильна система точок

У табл. 5 зібрано міжатомні відстані та координаційні числа атомів у структурі сполуки α -Dy₃Ni₂. Як видно з даних табл. 1, параметри елементарної комірки, визначені для сполуки α-Dy₃Ni₂ у праці [7] і у даній роботі, дещо відрізняються, що свідчить про невелику область гомогенності сполуки. Автори [7] синтезували зразки при номінальному складі сполуки, а синтезований нами зразок Dy₇₀Ni₃₀ -

містить граничний склад фази α -Dy₃Ni₂ з максимальним вмістом Диспрозію. Область гомогенності може бути зумовлена статистичним заповненням (Dy + Ni) позиції Dy2 за мінімального вмісту Диспрозію, про що свідчить порівняно більше значення ізотропного параметра зміщення атомів U_{iso} для цієї позиції 0,0120 нм², ніж для Dy1 (0,0106 нм²) та Dy3 (0,0105 нм²) [7]. Також ця позиція характеризується найменшим координаційним числом Диспрозію (13) і найкоротшими міжатомними віддалями $\delta_{Dy-Ni} = 0,278$ нм [7], у той час як, згідно наших результатів (табл. 5) найкоротші віддалі δ_{Dy-Ni} і δ_{Ni-Ni} становлять ~0,281 нм і ~0,267 нм, відповідно.

Таким чином, одержані результати засвідчують, що діаграма стану системи Dy–Ni потребує доопрацювання, що буде метою нашого подальшого дослідження.

Таблиця 4

	onn napasterpn os	(10 1	around y erpyniypi	
Атом	U_{11}	U ₂₂	U_{33}	U_{13}
Dy1	0,0219(6)	0,0193(6)	0,0274(7)	0,0098(5)
Dy2	0,0221(6)	0,0195(7)	0,0276(6)	0,0096(4)
Dy3	0,0215(6)	0,0204(7)	0,0291(6)	0,0095(5)
Ni1	0,0202(15)	0,0263(19)	0,0283(16)	0,0089(12)
Ni2	0,0191(15)	0,0211(18)	0,0368(18)	0,0087(13)
*II - II	- 0			

Анізотропні параметри змішення ($\times 10^2$ нм²) атомів у структурі сполуки a-Dy₃Ni₂

 $U_{12} = U_{23} = 0$

Таблиця 5

Міжатомні віддалі (δ, нм) та координаційні числа (КЧ) атомів у структурі сполуки α-Dy₃Ni₂

Атоми		δ	КЧ	Атоми	δ	КЧ	Атоми	δ	КЧ
Dy1-	2Ni1	0,2851(3)		Dy2- 2Ni2	0,2810(3)		Dy3- 2Ni2	0,2856(3)	
	2Ni1	0,2948(3)		Ni1	0,2846(4)		2Ni1	0,2935(3)	
	2Ni2	0,2950(3)	15	2Dy1	0,3567(2)		Dy1	0,3555(2)	14
	Ni2	0,3100(3)		Dy2	0,3620(3)	12	Dy2	0,3621(2)	
	Dy3	0,3555(2)		Dy3	0,3621(2)	15	2Dy2	0,3660(2)	
	Dy1	0,3566(2)		2Dy3	0,3660(2)		2Dy2	0,3662(2)	
	2Dy2	0,3567(2)		2Dy3	0,3662(2)		2Dy3	0,3717(1)	
	2Dy1	0,3668(2)		2Dy2	0,3717(1)		2Dy3	0,3723(5)	
	2Dy1	0,3717(1)		Nil- Nil	0,2667(7)				
Ni2-	Ni1	0,2674(4)		Ni2	0,2674(4)				
	2Dy2	0,2810(3)	8	Dy2	0,2846(4)	0			
	2Dy3	0,2856(3)		2Dy1	0,2851(3)	9			
	2Dy1	0,2950(3)		2Dy3	0,2935(3)				
	Dy1	0,3100(3)		2Dy1	0,2948(3)				

Висновки

Уперше виявлено температурний поліморфізм сполуки Dy_3Ni_2 . Встановлено, що нова високотемпературна модифікація β - Dy_3Ni_2 належить до структурного типу Er_3Ni_2 .

Методом монокристала уточнено кристалічну структуру низькотемпературної модифікації – α-Dy₃Ni₂. Виявлено збільшення параметрів елементарної комірки, у порівнянні з попередніми дослідженнями цієї фази, що свідчить про концентраційну область гомогенності сполуки.

ЛІТЕРАТУРА

- 1. Levytskyy V., Babizhetskyy V., Kotur B., Smetana V. Didysprosium heptanickel // Acta Crystallogr. 2012. Vol. E68. P. i20.
- 2. *Levytskyy V., Babizhetskyy V., Kotur B., Smetana V.* Redetermination of dysprosium trinickel from single-crystal X-ray data // Acta Crystallogr. 2012. Vol. E68. P. i83.
- Levytskyy V., Babizhetskyy V., Kotur B., Smetana V. Redetermination of Dy₃Ni from singlecrystal X-ray data // Acta Crystallogr. – 2013. – Vol. E69. – P. i80.
- Levytskyy V., Babizhetskyy V., Myakush O., Kotur B., Koval'chuk I. Crystal structure and hydrogenation properties of the hexagonal Dy₂M₁₇ and Dy₂M₁₇C_x (M = Fe, Co, Ni; x < 0.5) compounds // Chem. Met. Alloys. – 2014 – Vol. 7. – P. 26–31.
- Левицький В., Бабіжецький В., Котур Б. Уточнення фазових рівноваг у системі Dy–Ni при 800 °С в інтервалі 0–25 ат. % Dy // Вісн. Львів. ун–ту. Сер. Хім. –2014. – Вип. 55., Ч. 1. – С. 12–20.
- 6. Zheng J.-X., Wang C.-Z. Phase diagram of the alloys in Dy–Ni binary system // Acta Phys. Sin. 1982. Vol. 31. P. 668–673.
- 7. *Moreau J. M., Paccard D., Parthé E.* The monoclinic, CrB-related, crystal structure of Tb₃Ni₂, Dy₃Ni₂ and Ho₃Ni₂ // Acta Crystallogr. 1974. Vol. B30. P. 2583–2586.
- 8. Akselrud L. G. et al. WinCSD (Version 04.14). 2014.
- Akselrud L. G., Grin Y. WinCSD: software package for crystallographic calculations (Version 4) // J. Appl. Crystallogr. – 2014. – Vol. 47. – P. 803–805.
- 10. Farrugia L. J. WinGX (Version 2013.2). 2013.
- Farrugia L. J. WinGX and ORTEP for Windows: an update // J. Appl. Crystallogr. 2012. Vol. 45. – P. 849–854.
- 12. Sheldrick G. M. SHELXL-2013. 2013.
- 13. Sheldrick G. M. A short history of SHELX // Acta Crystallogr. 2008. Vol. A64. P. 112– 122.
- 14. Brandenburg K. DIAMOND (Version 2.1e) / Crystal Impact GbR, Bonn, Germany. 2006.
- Moreau J. M., Paccard D., Gignoux D. The crystal structure of Er₃Ni₂ // Acta Crystallogr. 1974. – Vol. B30. – P. 2122–2126.
- Lemaire R., Paccard D. Structure cristallographique des composes intermétalliques T₃Ni, T désignant un metal de terre rare ou l'yttrium // Bull. Soc. Fr. Minéral. Cristallogr. – 1967. – Vol. 40. – P. 311–315.
- 17. Василечко Л. О., Гринь Ю. Н., Ярмолюк Я. П. Фазовые равновесия в системе Tm-Ni-Ga при 600°С // Изв. РАН. Металлы 1995. № 1. С. 168–174.
- Romaka L., Romaka V., Stadnyk Yu. New binary compounds in the Lu-Ni system // Chem. Met. Alloys. - 2011. - Vol. 4. - P. 89-93.

SUMMARY

Volodymyr LEVYTSKYY¹, Volodymyr BABIZHETSKYY¹, Volodymyr SMETANA², Bogdan KOTUR¹

POLYMORPHISM OF Dy_3Ni_2 COMPOUND: THE CRYSTAL STRUCTURE OF α - Dy_3Ni_2 AND β - Dy_3Ni_2

¹Ivan Franko National University of Lviv, Kyryla and Mefodia Str., 6, 79005 Lviv, Ukraine

²344 Spedding Hall, Ames Laboratory, Ames, IA 50011-3020, USA e-mail: v.levyckyy@gmail.com

Bulk polycrystalline sample, containing new, high-temperature modification of Dy_3Ni_2 compound (β - Dy_3Ni_2), has been synthesized by slow cooling method. Its crystal structure was determined from powder X-ray diffraction data: structure type Er_3Ni_2 , space group $R \ 3$, $a_{hex} = 0.8531(1)$ nm, $c_{hex} = 1.5767(3)$ nm. Crystal structure of low-temperature modification of Dy_3Ni_2 compound (α - Dy_3Ni_2) has been refined using single crystal X-ray diffraction method: structure type α - Dy_3Ni_2 , space group C2/m, a = 1.3456(3) nm, b = 0.37170(7) nm, c = 0.9656(2) nm, $\beta = 106.17(3)^\circ$, $R_1 = 0.044$; $wR_2 = 0.079$.

Keywords: dysprosium, nickel, crystal structure, single crystal, polymorphism.

Стаття надійшла 14.06.2016. Після доопрацювання 29.06.2016. Прийнята до друку 16.07.2016.