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Ab stract  

The Antarctic minke whale (Balaenoptera bonaerensis) is regarded a Southern 

Hemisphere endemic found throughout the Southern Hemisphere, generally south 

of 60°S in austral summer. Here they have been routinely observed in highest den-

sities adjacent to and inside the sea ice edge, and where they feed predominantly on 

krill. Detecting abundance trends regarding this species by employing visual moni-

toring is problematic. Partly this is because the whales are frequently sighted with-

in sea ice where navigational safety concerns prevent ships from surveying. In this 

respect species-habitat models are increasingly recognized as valuable tools to 

predict the probability of cetacean presence, relative abundance or density 

throughout an area of interest and to gain insight into the ecological processes af-

fecting these patterns. The objective of this study was to provide this background 

information for the above research needs and in a broader context use species dis-

tribution models (SDMs) to establish a current habitat suitability description for the 

species and to identify the main environmental covariates related to its distribution. 

We used filtered 464 occurrences to generate the SDMs. We selected eight predic-

tor variables with reduced collinearity for constructing the models: mean annuals 

of the surface temperature (ºC), salinity (PSS), current velocity (m/s), sea ice con-

centration (fraction, %), chlorophyll-a concentration (mg/m³), primary productivity 

(g/m3/day), cloud cover (%), and bathymetry (m). Six modelling algorithms were 

tested and the Bayesian additive regression trees (BART) model demonstrated the 

best performance. Based on variable importance, those that best explained the envi-

ronmental requirements of the species were sea ice concentration, chlorophyll-a 

concentration and topography of the sea floor (bathymetry), explaining in sum 

around 62% of the variance. Using the BART model, habitat preferences have been 

interpreted from patterns in partial dependence plots. Areas where the AMW have 

particularly high likelihood of occurrence are East Antarctica, NE of the Weddell 

Sea, areas around the northern tip of the Antarctica Peninsula, areas bordering the 

Scotia–Weddell Confluence. Given the association of AMWs with sea ice, the 

pagophilic character of their biology makes them particularly vulnerable to climate 

change and a near-perfect biological indicator for tracking these changes. 
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Комп'ютерна модель поширення антарктичного смугача 

(Balaenoptera bonaerensis) 

 
Володимир Титар  
 

Резюме.  Антарктичний смугач (Balaenoptera bonaerensis) є ендеміком південної півкулі, зустрічається, 

як правило, на південь від 60° пд. ш. влітку. Тут їх зазвичай спостерігають біля краю морської криги та 

посеред неї, де вони харчуються переважно крилем. Виявити тенденції чисельності цього виду за допо-

могою візуального моніторингу проблематично. Частково це пов’язано з тим, що китів часто бачать по-

серед морської криги, де проблеми безпеки навігації заважають кораблям проводити спостереження. У 

цьому відношенні комп'ютерні моделі екологічної ніші все більше визнаються цінними інструментами 

для прогнозування ймовірності присутності китоподібних, відносної чисельності або щільності на тери-

торії, що представляє інтерес, а також для отримання уявлення про екологічні процеси, що впливають на 

поширення цих тварин. Мета цього дослідження полягала в тому, щоб отримати інформацію для зазна-

чених дослідницьких потреб і в ширшому контексті використати комп'ютерні моделі поширення видів 

(SDM) для встановлення того, наскільки придатне для існування виду те чи інше середовище, та визна-

чення основних параметрів останнього, які цьому сприяють. Для створення SDM ми використали 464 

відфільтрованих реєстрацій та вибрали вісім мало скорельованих предикторів: середньорічні значення 

температури поверхні моря (ºC), солоність (PSS), швидкість течії (м/с), концентрація морської криги 

(частка, %), концентрація хлорофілу-а (мг/м³), первинна продуктивність (г/м3/добу), хмарність (%) та 

батиметрія (м). Було протестовано шість алгоритмів моделювання, і модель байєсівських адитивних ре-

гресійних дерев (BART) продемонструвала перевагу над іншими. За моделлю, основними чинниками, 

які формують нішу виду є: концентрація морської криги, концентрація хлорофілу-а та рельєф морського 

дна (батиметрія), що в сумі пояснює близько 62% дисперсії. Райони, де смугачі мають особливо високу 

ймовірність перебування, — це Східна Антарктида, райони на північний схід від моря Уедделла, води 

навколо північної окраїни Антарктичного півострова, райони, що межують із злиттям вод морів Уеддел-

ла та Скоша. Враховуючи зв’язок смугачів з морською кригою, пагофільний характер їхньої біології ро-

бить їх особливо вразливими до зміни клімату і тому цей вид є майже ідеальним біологічним індикато-

ром для відстеження цих змін. 

Ключові  сло ва:  Balaenoptera bonaerensis, Південний океан, моделювання поширення видів, байєсів-

ські адитивні регресійні дерева, біологічний індикатор, зміна клімату 

 
Introduction 

Minke whales are the smallest of the balaenopterid whales and two species of minke whales are 

recognized, the common minke whale, Balaenoptera acutorostrata, and the Antarctic minke whale 

(AMW), B. bonaerensis. The AMW is regarded a Southern Hemisphere endemic [Deméré 2014] and 

is found throughout the Southern Hemisphere, generally south of 60°S in austral summer, where 

they have been routinely observed in highest densities adjacent to and inside the sea ice edge [Wil-

liams et al. 2014; Herr et al. 2019], and where they feed predominantly on krill [Friedlaender et al. 
2006]. The AMW is considered pagophilic in the sense of being better able than the larger baleen 

whales to use habitat with high pack ice densities. AMWs have small, compact bodies, and short 

fins, making them well suited to life in the pack ice where they can easily maneuver in narrow spac-

es between ice floes [Ainley et al. 2007]. Hard, pointed rostrums also allow minke whales to break 

through thin ice to breathe, creating holes, which in turn may provide an ecological service to other 

air-breathing marine predators such as seals and penguins [Ainley et al. 2007; Tynan et al. 2009]. 

Predator avoidance too has been suggested as another reason for AMWs to use sea-ice habitats, in-

accessible to Type A killer whales [Pitman & Ensor 2003]. 

Deriving precise and unbiased estimates of abundance of cetacean species in the Antarctic re-
gion is central for understanding population trends. In the case of the AMW, populations are still 

being impacted by ongoing commercial whaling carried out against the backdrop of global climate 

change and other anthropogenic impacts [Risch et al. 2019]. However, detecting abundance trends 
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regarding this species by employing visual monitoring from boats, ships or airplanes, one of the 

most common approaches to study marine mammal distribution and abundance [e.g. Barlow 2015], 

is problematic. Partly, this is because the whales are frequently sighted within Antarctic sea ice 

where navigational safety concerns prevent ships from surveying [Williams et al. 2014]. Despite 

recent advances in visual monitoring methods [Ferguson et al. 2018], these approaches are yet lim-

ited and can only provide a snapshot of the true distribution, particularly for far-ranging species such 

as minke whales [Kaschner et al. 2012]. Nevertheless, current population estimates and their trend 

raise concerns and accordingly have resulted in the recent classification of the AMW as Near 

Threatened under the IUCN Red List and under Appendix I of CITES [Cooke et al. 2018].  

In this respect quantitative species-habitat models are increasingly recognized as valuable tools 

to predict the probability of cetacean presence, relative abundance or density throughout an area of 

interest and to gain insight into the ecological processes affecting these patterns [Hammond et al. 

2013; Robinson et al. 2017; Fiedler et al. 2018; Melo-Merino et al. 2020]. By fitting models of pres-

ence or abundance to relevant environmental variables, and then projecting them into geographic 

space, dynamic responses to environmental variability can be predicted [Becker et al. 2018]. Predic-

tions from these models can also be used to develop and evaluate management and conservation 

strategies [Fiedler et al. 2018] and provide a basis for adaptive surveys or sampling design as effort 

could be concentrated in areas predicted to have greater abundance [Becker et al. 2012] and/or high-

er habitat suitability assumed to be correlated with the species’ abundance [Chavez-Rosales et al. 
2019]. In our specific case we believe there is an opportunity, by exploring present relationships be-

tween the AMW and a number of oceanographic covariates, including sea ice concentration, to dis-

tinguish such areas of potential high habitat suitability regardless of logistic constraints and in the 

long run help to build more robust abundance estimates for the species. The objective of this study 

was to provide this background information for the above research needs and, in a broader context, 

use species distribution models (SDMs) to establish a current habitat suitability description for the 

cetacean species and to identify the main environmental covariates related to its distribution. 
 

Materials and Methods 

There is a large number of cetacean sighting records from an array of platforms, reflecting pres-

ence-only records, which, together with readily available and broad-scale environmental data, pro-

vide an opportunity to improve our knowledge of the distribution of the AMW using species distri-

bution modelling. Presence data was retrieved from online public databases, which were accessed 

using the R package 'spocc' version 0.9.0 [Chamberlain 2018], supplemented from Ukrainian sources 

and recent updates [Savenko 2020] obtained around or nearby the Akademik Vernadsky Ukrainian 

Antarctic station. Only point records south of 60°S were considered. As required by SDM software, 

each cetacean sighting was treated as a single presence record, independent of the number of animals 

sighted. To reduce both spatial bias and spatial autocorrelation in occurrence data, we performed a 

spatial thinning procedure by selecting only one presence point within each pixel of the predictor 

variable maps using SAGA GIS [Conrad et al. 2015]. Because true absence data is not available, we 

used pseudo-absence points randomly generated within a bounding box encompassing AMW pres-

ence points by employing the 'dismo' R package [Hijmans et al. 2011]. 

Cetacean occurrence is usually modelled against a range of topographic, physical, and oceano-

graphic factors [Breen et al. 2016]. Since cetacean distributions may primarily be driven by those of 

their prey, it is likely that such factors serve as proxies for spatio-temporal variation in prey density 

[Baines & Weir 2020]. We used the R package 'sdmpredictors' version 0.2.9 to access potential pre-

dictor variables for current projections available for the study area [Bosch 2020]. We chose the Bio-

ORACLE version 2.0 dataset [Assis et al. 2018]. These variables represent temperature, salinity, 

chlorophyll concentration, and current velocity, among other factors. Present values refer to the peri-
od between 2000 and 2014. Variables were available at a spatial resolution of 5 arc-minutes. Ba-

thymetry was included as a topographic layer derived from the ETOPO1 Global Relief Model 

[Amante & Eakins 2009]. All the environmental layers were processed in SAGA GIS in datum 

WGS84, with the same spatial extent and the same resolution.  
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Because collinearity among environmental variables may lead to overfitting, we used Spearman 

rank correlation coefficients in the 'caret' R package [Kuhn 2008] to exclude redundant variables 

with significant correlation coefficients (|rs| > 0.8) from the analyses.  

There is a large suite of algorithms available for modelling the distribution of species, but be-

cause there is no single ‘best’ algorithm some authors have reasonably suggested that niche or distri-

bution modelling studies should begin by testing a suite of algorithms [e.g. Qiao et al. 2015]. Ac-

cordingly, we assessed the relative performance of commonly used SDM algorithms based on enve-

lope and statistical models, and machine learning techniques: BIOCLIM [Busby 1991; Booth et al. 
2014], generalized linear models [Guisan et al. 2002], Maxent [Phillips et al. 2006], random forests 

[Breiman 2001] and boosted regression trees [Elith et al. 2008]; these were employed using the 'sdm' 

package within the statistical software R [Naimi & Araújo 2016]. In addition, we tested Bayesian 

additive regression trees (BART), a relatively new alternative to other popular classification tree 

methods, having yet to find a wider application in predicting species distributions, and based on in-

ductive learning process carried out using the Bayes theorem. For running SDMs with BARTs, we 

used the recently developed ‘embarcadero’ R package [Carlson 2020]. As part of their output, most 

algorithms rank the environmental layers used to train the SDM based on their relative importance in 

building the models. Importantly, they also allow the construction of response curves to elucidate the 

effect of selected variables on habitat suitability [Phillips & Dudik 2008]. Of particular interest are 

patterns in partial dependence plots, which are plots of the marginal effect of a predictor variable 

when other variables are held constant [Pearson 2020]. Models were evaluated by 10-fold cross-

validation using 20% of the occurrence dataset. 

The AUC (area under the curve) was used to assess the predictive performance of the models 

[Hosmer & Lemeshow 1989]. Models with mean test-AUC values of AUC<0.7 are considered of 

poor predictive performance, 0.7≤AUC<0.8 moderate, and AUC≥0.8 good to excellent performance 

[Duan et al. 2014]. Presently, there is a discussion about the reliability of AUC to measure the per-

formance of models based on presence-only methods [Lobo et al. 2008; etc.], therefore to have a 

complementary measure of model performance we calculated the true skill statistic (TSS) [Allouche 

et al. 2006]. The TSS can assume values between −1 and 1 and values of TSS<0.2 can be considered 

as reflecting poor model predictive performance, 0.2≤TSS<0.4 as fair, 0.4≤TSS<0.6 moderate, and 

TSS≥0.6 as good to excellent performance. However, model selection based solely on discriminato-

ry ability, without consideration of overfitting, tends to result in overly complex models [Rados-

avljevic & Anderson 2014]. In this respect, overfitted models will often produce jagged response 

curves that likely appear to be modelling noise, rather than biological response [Tobeña et al. 2016]. 

Model robustness and reliability were assessed by comparing model results to the current knowledge 

of AMW ecology and distribution. 

We used the 10th percentile training presence threshold value to generate contour lines separat-

ing suitable areas from unsuitable [Liu et al. 2005]. This threshold value provides a better ecologi-

cally significant result when compared with more restricted threshold values [Phillips & Dudík 

2008]. 
 

Results and Discussion 

After filtering the presence data consisting of 1022 georeferenced records, we used 464 occur-

rences to generate the SDMs. We selected eight predictor variables with reduced collinearity for 

constructing the models. These represent mean annuals of the surface temperature (ºC), salinity 

(PSS), current velocity (m/s), sea ice concentration (fraction, %), chlorophyll-a concentration 

(mg/m³), primary productivity (g/m
3
/day), cloud cover (%), and bathymetry (m). 

The outputs of the SDM algorithms varied in terms of discrimination accuracy evaluated by the 

AUC and TSS (Table 1). According to these results, the Bayesian additive regression trees model 

demonstrates the best performance (AUC = 0.88, TSS = 0.66), very closely followed by the random 

forests model (AUC = 0.88, TSS = 0.65). To make a choice between them we inspected the covari-

ate response curves generated by both models in terms of ‘smoothness.’  
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SDM methods AUC TSS Table 1. Discrimination accuracy of em-

ployed SDM algorithms 

Таблиця 1. Точність дискримінації вико-

ристаних алгоритмів 

BIOCLIM 0.70 0.37 

Generalized Linear Model 0.78 0.50 

Maxent 0.83 0.60 

Random forests 0.88 0.65 

Boosted regression trees 0.82 0.57 

Bayesian additive regression trees  0.88 0.66 

 

In this respect, the random forests model suggested overfitting, therefore the Bayesian additive 

regression trees algorithm was selected to perform an in-depth analysis of the niche of the AMW in 

relation to the selected environmental predictors and the distribution of the species in the Antarctic 

region. In addition, the package ‘embarcadero’ includes an automated variable selection procedure 

being highly effective at identifying informative subsets of predictors, allows to generate and plot 

partial dependence curves.  

The modelling identified a number of environmental variables that mostly contributed to gener-

ating the potential distribution prediction of the AMW in the study area. Based on variable im-

portance, those that best explained the environmental requirements of the species were sea ice con-

centration, chlorophyll-a concentration and topography of the sea floor [bathymetry], explaining in 

sum around 62% of the variance. 

Using the BART model, habitat preferences can be interpreted from patterns in partial depend-

ence plots, where predicted habitat suitability is plotted against a marginal change in each variable, 

all other variables set to their average value. 

Firstly, we analyse sea ice concentration preferences. As mentioned, the species is pagophilic 

and observed densities of the AMW are the highest near the edge of the pack ice, likely because oc-

currences are typically recorded from observations made on ships unable to penetrate sea ice, but 

advanced surveys had shown that the AMW also occurs inside the ice pack and within polynyas 

[Williams et al. 2014]. The proportion of the population found within the pack ice is not well known 

but has been estimated, for instance, at 10–50% in the south-east Indian Ocean sector in summer 

[Kelly et al. 2014] and up to 20% of AMWs of the Weddell Sea were within ice covered waters 

[Williams et al. 2014].  

In a relatively recent study, satellite telemetry from three individuals revealed AMW summer 

foraging spaces can generally be associated with pack ice habitat, delimited by the sea ice extent 

(SIE), over the continental shelf [Lee et al. 2017]. SIE defines the ocean area covered by sea ice and 

a threshold of minimum sea ice concentration (15%) is used to identify the SIE [Worby & Comiso 

2004], although others [Zhao et al. 2015] consider it to be 13%. In the study conducted by Lee and 

co-authors [2017], one whale remained in pack ice concentrations greater than 50%. The other fol-

lowed the coastline and the SIE as it travelled through the Bellingshausen and Amundsen seas, pre-

dominantly within 50 km of the SIE. This whale remained in low ice concentrations, less than 50%, 

for its entire foraging season.  
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Fig. 1. Partial response curve, SIC = sea 

ice concentration (%), HS = habitat 

suitability. 

Рис. 1. Крива парціального відгуку 

стосовно концентрації морської кри-

ги, SIC = концентрація морської кри-

ги (%), HS = придатність середовища 

перебування. 
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The partial response curve, considering the association between habitat suitability (HS) and sea 

ice concentration (SIC) (Fig. 1), shows that in both cases the individuals most likely were in prefera-

ble areas where SICs best match their niche requirements. Starting from a threshold of minimum sea 

ice concentration of 15%, HS with increasing SIC demonstrates a sharp rise with a more or less 

steady growth trend towards a concentration of 60%, after which it rapidly declines, indicating pre-

dominantly unsuitable habitat. On the whole, SICs between 30 to 60% seem, according to the model, 

to be mostly favoured by the species. Using the 10th percentile training presence threshold value 

(HS = 0.245) suitable areas, in terms of SIC, occupy a wider range from around 12 to 69%, that is to 

say areas moderately off the SIE to areas considerably packed with ice.  

A recent report of occurrences throughout the full range of ice concentrations found AMW den-

sities generally lower in high ice concentrations [Herr et al. 2019]. Likely, in the pursue of krill 

closely linked with the under-ice environment [Nicol 2006], AMWs reach their prey under the ice in 

places extending from 27 km beyond the ice edge [Brierley et al. 2002] up to hundreds of kilometres 

into the ice-covered area, as in the Lazarev Sea [Flores et al. 2012] and other parts of the Southern 

Ocean [Herr et al. 2019], as far as there are regions of open water (such as leads, polynyas etc.). In 

this respect, AMWs exploit a unique niche among sympatric whale species feeding on krill in the 

Southern Ocean [Friedlaender et al. 2014]. 

Secondly, since cetacean distributions may primarily be driven by those of their prey, it is likely 

that such factors as chlorophyll-a concentration serve as proxies for spatio-temporal variation in prey 

density [Baines & Weir 2020]. Indeed, the corresponding partial response curve (Fig. 2) shows a 

steep rise of HS between concentrations 0.8 and 1.0 mg/m³, reaching an unprecedented value of al-

most 90% at the chlorophyll-a concentration of 1.35 mg/m³. Using the employed threshold value, 

suitable conditions are expected to appear above the concentration of 0.6 mg/m³. 

Next in the row of influential variables is ocean depth. It has been documented that the distribu-

tion of AMWs is related to the continental shelf break [Ainley et al. 2012]. The corresponding curve 

for ocean water depth (Fig. 3) showed a sharp positive response with areas shallower than approxi-

mately 3000 m (using a Maxent model, authors cited above consider it to be around 3500 m), reach-

ing a maximum at around 1000 m, a mark close to the continental shelf break, slightly declining and 

rising once again as the distance to the shore decreases.  
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Fig. 2. Partial response curve, CHL-A = 

chlorophyll-a concentration (mg/m³). 

Рис. 2. Крива парціального відгуку сто-

совно концентрації хлорофілу-а, CHL-A 

= концентрація хлорофілу-а (мг/м³). 
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Fig. 3. Partial response curve, DEPTH = 

depth below zero [km]. 

Рис. 3. Крива парціального відгуку сто-

совно глибини моря, над яким перебува-

ють смугачі, DEPTH = глибина від пове-

рхні (км). 
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Once again, referring to the study conducted by Lee and co-authors [2017], two of the tracked 

whales demonstrated bimodal distributions in bathymetry, remaining in the shallow waters of the 

continental shelf early in the season and moving into deeper water as the season progressed, a behav-

iour which appears to be consistent with our model. Generally speaking, the shelf break is defined as 

the line between the shelf and the upper continental slope. Around Antarctica, the ice load and the 

resulting isostatic equilibrium and erosion result in a deep shelf. Some authors consider the shelf 

break to be mostly located between 400 and 600 m water depth [Arndt et al. 2013], others around 

800 m [Murase et al. 2013] or 1000 m [Atkinson et al. 2008].  

Our model indicates that the shelf break and shelf waters inshore of it seem to be areas with the 

habitats attractive to the AMW and where higher densities of the species have been recorded [Herr et 

al. 2019]. The importance of the vicinity of the shelf break area in various locations throughout the 

Southern Ocean is that Antarctic krill, a dominant prey item for AMWs, occurs here in higher densi-

ties [Siegel & Watkins 2016]. Using the employed threshold value, suitable conditions should appear 

in waters shallower that 2790 m, but the best being around 800–1000 m and/or in nearshore habitats.  

The combination of sea ice concentration, chlorophyll-a concentration, and bathymetry in the 

present study’s model appears to successfully predict the presumed foraging habitat and distribution 

for the AMW (Fig. 4). Areas where the AMW have particularly high likelihood of occurrence are 

East Antarctica, NE of the Weddell Sea, areas around the northern tip of the Antarctica Peninsula, 

areas bordering the Scotia–Weddell Confluence.  
 

 

 

Fig. 4. Result of the Bayesian additive regression trees [BART] modelling: modelled habitat suitability for Antarctic 

minke whales in the Southern Ocean. Warmer colours indicate better habitat suitability. Yellow dot: Akademik Ver-

nadsky Ukrainian Antarctic station. 

Рис. 4. Результат моделювання за алгоритмом байєсівських адитивних регресійних дерев (BART): модель 

регіонів Південного океану придатних для перебування антарктичних смугачів. Тепліші кольори вказують на 

регіони з більш придатними для тварин умовами. Жовтий кружечок показує місце розташування Української 

антарктичної станції «Академік Вернадський» 
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Conclusions 

The spatial distribution of biological organisms is one of the fundamental pieces of information 

necessary to understand their ecology. Detailed current knowledge of the distributions of cetaceans 

and their suitable habitat is important for the effective management and conservation not only of 

cetacean species but also of entire marine ecosystems [Kanaji et al. 2015].  

The application of presence-only SDMs for marine species is particularly attractive due to often 

logistical and economic costs of obtaining systematic species’ distribution data [Smith et al. 2021]. 

Exploring present relationships between AMW and environmental variables can highlight potential 

reasons for shifts in abundance estimates and help to build more robust survey methods for the future 

[Williams et al. 2014], provide a basis for adaptive surveys or sampling design as effort could be 

concentrated in areas predicted to have better habitat suitability.  

Suitable habitat for AMWs predicted by the SDM is interpreted as regions where the species is 

most likely to be found, and represent priority areas where monitoring efforts (including passive 

acoustic monitoring and aerial and/or vessel-based surveys) should be focused in the coming years. 

Given the pagophilic character of the biology of AMWs, this makes them particularly vulnerable to 

climate change and a near-perfect biological indicator for tracking these changes. 
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