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Abstract

The Antarctic minke whale (Balaenoptera bonaerensis) is regarded a Southern
Hemisphere endemic found throughout the Southern Hemisphere, generally south
of 60°S in austral summer. Here they have been routinely observed in highest den-
sities adjacent to and inside the sea ice edge, and where they feed predominantly on
krill. Detecting abundance trends regarding this species by employing visual moni-
toring is problematic. Partly this is because the whales are frequently sighted with-
in sea ice where navigational safety concerns prevent ships from surveying. In this
respect species-habitat models are increasingly recognized as valuable tools to
predict the probability of cetacean presence, relative abundance or density
throughout an area of interest and to gain insight into the ecological processes af-
fecting these patterns. The objective of this study was to provide this background
information for the above research needs and in a broader context use species dis-
tribution models (SDMs) to establish a current habitat suitability description for the
species and to identify the main environmental covariates related to its distribution.
We used filtered 464 occurrences to generate the SDMs. We selected eight predic-
tor variables with reduced collinearity for constructing the models: mean annuals
of the surface temperature (°C), salinity (PSS), current velocity (m/s), sea ice con-
centration (fraction, %), chlorophyll-a concentration (mg/m?), primary productivity
(g/m’/day), cloud cover (%), and bathymetry (m). Six modelling algorithms were
tested and the Bayesian additive regression trees (BART) model demonstrated the
best performance. Based on variable importance, those that best explained the envi-
ronmental requirements of the species were sea ice concentration, chlorophyll-a
concentration and topography of the sea floor (bathymetry), explaining in sum
around 62% of the variance. Using the BART model, habitat preferences have been
interpreted from patterns in partial dependence plots. Areas where the AMW have
particularly high likelihood of occurrence are East Antarctica, NE of the Weddell
Sea, areas around the northern tip of the Antarctica Peninsula, areas bordering the
Scotia—Weddell Confluence. Given the association of AMWSs with sea ice, the
pagophilic character of their biology makes them particularly vulnerable to climate
change and a near-perfect biological indicator for tracking these changes.
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Komn'toTepHa Moje/ib NOIIMPEHHS] AHTAPKTUYHOI0 CMYyrada
(Balaenoptera bonaerensis)

BoJsiogumup Turap

Pesrome. AHtapkTiuHuii cmyrad (Balaenoptera bonaerensis) € eHAEMIKOM HIiBICHHOI MiBKYJI, 3yCTpIi4aeThCs,
SIK IPaBIJIO, Ha MiBAeHD Bix 60° mpa. mr. BaiTKy. TyT iX 3a3BHYail cOCTEepiraroTh 01 Kpalo MOPCHKOI KPUTH Ta
nocepe Hel, e BOHU Xap4yloThCs MEPEeBAXKHO KPHUIIeM. BUABUTH TeHIEHIII] YHCeNbHOCTI IbOTO BUIY 3a JOIO-
MOTOI0 Bi3yaJIbHOTO MOHITOPUHTY IpoOieMaTndyHo. YacTKOBO 1€ MOB’S3aHO 3 TUM, L0 KUTIB 4acTo 06avyarth Mo-
cepesl MOPChKOi KpHTH, /e MpobiaeMu Oe3leku HaBiraiii 3aBaaroTh KOPaOJsIM MPOBOJUTH CHOCTEPEKEHHS. Y
bOMY BiJIHOLICHHI KOMM'IOTEPHI MOJENI €KOJOT1YHOI Hilli Bce OlbIIe BH3HAIOTHCA IIHHUMH 1IHCTPYMEHTaMH
JUISL TIPOTHO3YBAHHS IMOBIPHOCTI MPUCYTHOCTI KUTOIIOIOHUX, BITHOCHOI YHCEIBHOCTI a0 IMiIBHOCTI Ha TepH-
TOpii, 0 MpeACTaBIIE IHTEPEC, a TAKOXK ISl OTPUMAHHS YSBICHHS IIPO €KOJIOTIYHI IPOIECH, IO BINIMBAIOTH Ha
MOUIMPEHHS [IUX TBAapUH. MeTa Oro OCHTIHKEHHS MOJIsATaia B TOMY, 00 OTpUMaTd iH(GOPMAIlito i 3a3Ha-
YEeHUX MOCIITHUIBKHUX MOTPed 1 B IIMPIIOMY KOHTEKCTi BUKOPHCTATH KOMIT'IOTEPHI MOJENi MOIINPEHHs BHIIB
(SDM) mnst BCTaHOBJIEHHSI TOTO, HACKUIBKY MIPUAATHE U iCHYBaHHS BUAY T€ YH iHIIE CepeJOBHUINE, Ta BU3HA-
YEeHHS OCHOBHHUX IapaMeTpiB OCTaHHBOTO, SIKi IIbOMY crpustoTh. s ctBopeHHs SDM mu Bukopucranu 464
BiZI(ITBTPOBAaHUX peecTpaliil Ta BUOpaIM BICIM Malo CKOPEIbOBAHUX IMPEIUKTOPIB: CEPeIHbOPIYHI 3HAYCHHS
temmeparypu noBepxHi mops (°C), comonicte (PSS), mBuaxicte Tedii (M/c), KOHIEHTpAIisl MOPCHKOI KPUTH
(aactka, %), KOHIEHTpALis X10podiny-a (Mr/mM?), IEPBHHHA HPOAYKTHUBHICTH (I/M*/100Yy), XMapHicts (%) Ta
6atumerpis (M). Byno nporecToBaHO MIiCTh ANTOPUTMIB MOJIETIOBAHHS, 1 MOJIeNb Oali€CiBCHKHX aJJUTHBHUX pe-
rpeciitanx aepes (BART) mpomeMoHCTpyBasia TiepeBary HaJll iHIIAMH. 32 MOJICIUTIO, OCHOBHUMU YHHHUKAMU,
SIKi (POPMYIOTB Hillly BUAY €: KOHIEHTPALlisi MOPCHKOI KPUTH, KOHIIEHTPAList XJIopodiny-a Ta peabed MOPCEKOTO
naHa (6aTUMeTpist), IO B CyMi MOACHIOE Omm3bKko 62% mucnepcii. Palfonn, ge cMyradi MaroTb 0COOIMBO BHCOKY
HMOBIpHICTh nepeOyBanHs, — 1e CxigHa AHTapKTHAa, paioHM Ha MIBHIYHHMA CXiX Big Mops Yenneimna, BOIU
HaBKOJIO MiBHIYHOT OKpaiHM AHTapKTHYHOTO MiBOCTPOBA, PAiOHH, IO MEXKYIOTb i3 3HTTSAM BOJ MOpIB Yeanen-
na ta Cxoma. BpaxoByroun 38’530k cMyradiB 3 MOPCBKOIO KPUTOI0, MaroinbHIHA XapakTep ixapoi 6iosorii po-
OuTh iX 0COOJMBO BPA3IMBHMH JI0 3MIHM KIIIMATy i TOMY LIl BUJ € Maibke ieaTbHIUM Oi0JIOTIYHUM iHAMKATO-
POM JUJIsI BIZICTE)KEHHS I[UX 3MiH.

KntouoBi cnoBa: Balaenoptera bonaerensis, [liBneHHHII OKeaH, MOJICITIOBAaHHA TTOIIMPEHHS BHUIIB, OalieciB-
CBKi aJUTHUBHI perpeciiiHi gepeBa, 0i0J0TiYHUN IHIUKATOP, 3MiHA KIIIMATy

Introduction

Minke whales are the smallest of the balaenopterid whales and two species of minke whales are
recognized, the common minke whale, Balaenoptera acutorostrata, and the Antarctic minke whale
(AMW), B. bonaerensis. The AMW is regarded a Southern Hemisphere endemic [Deméré 2014] and
is found throughout the Southern Hemisphere, generally south of 60°S in austral summer, where
they have been routinely observed in highest densities adjacent to and inside the sea ice edge [Wil-
liams et al. 2014; Herr et al. 2019], and where they feed predominantly on krill [Friedlaender et al.
2006]. The AMW is considered pagophilic in the sense of being better able than the larger baleen
whales to use habitat with high pack ice densities. AMWSs have small, compact bodies, and short
fins, making them well suited to life in the pack ice where they can easily maneuver in narrow spac-
es between ice floes [Ainley ef al. 2007]. Hard, pointed rostrums also allow minke whales to break
through thin ice to breathe, creating holes, which in turn may provide an ecological service to other
air-breathing marine predators such as seals and penguins [Ainley et al. 2007; Tynan et al. 2009].
Predator avoidance too has been suggested as another reason for AMWs to use sea-ice habitats, in-
accessible to Type A killer whales [Pitman & Ensor 2003].

Deriving precise and unbiased estimates of abundance of cetacean species in the Antarctic re-
gion is central for understanding population trends. In the case of the AMW, populations are still
being impacted by ongoing commercial whaling carried out against the backdrop of global climate
change and other anthropogenic impacts [Risch et al. 2019]. However, detecting abundance trends
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regarding this species by employing visual monitoring from boats, ships or airplanes, one of the
most common approaches to study marine mammal distribution and abundance [e.g. Barlow 2015],
is problematic. Partly, this is because the whales are frequently sighted within Antarctic sea ice
where navigational safety concerns prevent ships from surveying [Williams et al. 2014]. Despite
recent advances in visual monitoring methods [Ferguson et al. 2018], these approaches are yet lim-
ited and can only provide a snapshot of the true distribution, particularly for far-ranging species such
as minke whales [Kaschner et al. 2012]. Nevertheless, current population estimates and their trend
raise concerns and accordingly have resulted in the recent classification of the AMW as Near
Threatened under the [IUCN Red List and under Appendix I of CITES [Cooke et al. 2018].

In this respect quantitative species-habitat models are increasingly recognized as valuable tools
to predict the probability of cetacean presence, relative abundance or density throughout an area of
interest and to gain insight into the ecological processes affecting these patterns [Hammond et al.
2013; Robinson et al. 2017; Fiedler et al. 2018; Melo-Merino et al. 2020]. By fitting models of pres-
ence or abundance to relevant environmental variables, and then projecting them into geographic
space, dynamic responses to environmental variability can be predicted [Becker et al. 2018]. Predic-
tions from these models can also be used to develop and evaluate management and conservation
strategies [Fiedler et al. 2018] and provide a basis for adaptive surveys or sampling design as effort
could be concentrated in areas predicted to have greater abundance [Becker et al. 2012] and/or high-
er habitat suitability assumed to be correlated with the species’ abundance [Chavez-Rosales et al.
2019]. In our specific case we believe there is an opportunity, by exploring present relationships be-
tween the AMW and a number of oceanographic covariates, including sea ice concentration, to dis-
tinguish such areas of potential high habitat suitability regardless of logistic constraints and in the
long run help to build more robust abundance estimates for the species. The objective of this study
was to provide this background information for the above research needs and, in a broader context,
use species distribution models (SDMs) to establish a current habitat suitability description for the
cetacean species and to identify the main environmental covariates related to its distribution.

Materials and Methods

There is a large number of cetacean sighting records from an array of platforms, reflecting pres-
ence-only records, which, together with readily available and broad-scale environmental data, pro-
vide an opportunity to improve our knowledge of the distribution of the AMW using species distri-
bution modelling. Presence data was retrieved from online public databases, which were accessed
using the R package 'spocc' version 0.9.0 [Chamberlain 2018], supplemented from Ukrainian sources
and recent updates [Savenko 2020] obtained around or nearby the Akademik Vernadsky Ukrainian
Antarctic station. Only point records south of 60°S were considered. As required by SDM software,
each cetacean sighting was treated as a single presence record, independent of the number of animals
sighted. To reduce both spatial bias and spatial autocorrelation in occurrence data, we performed a
spatial thinning procedure by selecting only one presence point within each pixel of the predictor
variable maps using SAGA GIS [Conrad et al. 2015]. Because true absence data is not available, we
used pseudo-absence points randomly generated within a bounding box encompassing AMW pres-
ence points by employing the 'dismo' R package [Hijmans et al. 2011].

Cetacean occurrence is usually modelled against a range of topographic, physical, and oceano-
graphic factors [Breen et al. 2016]. Since cetacean distributions may primarily be driven by those of
their prey, it is likely that such factors serve as proxies for spatio-temporal variation in prey density
[Baines & Weir 2020]. We used the R package 'sdmpredictors' version 0.2.9 to access potential pre-
dictor variables for current projections available for the study area [Bosch 2020]. We chose the Bio-
ORACLE version 2.0 dataset [Assis et al. 2018]. These variables represent temperature, salinity,
chlorophyll concentration, and current velocity, among other factors. Present values refer to the peri-
od between 2000 and 2014. Variables were available at a spatial resolution of 5 arc-minutes. Ba-
thymetry was included as a topographic layer derived from the ETOPO1 Global Relief Model
[Amante & Eakins 2009]. All the environmental layers were processed in SAGA GIS in datum
WGS84, with the same spatial extent and the same resolution.
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Because collinearity among environmental variables may lead to overfitting, we used Spearman
rank correlation coefficients in the 'caret' R package [Kuhn 2008] to exclude redundant variables
with significant correlation coefficients (|rg] > 0.8) from the analyses.

There is a large suite of algorithms available for modelling the distribution of species, but be-
cause there is no single ‘best’ algorithm some authors have reasonably suggested that niche or distri-
bution modelling studies should begin by testing a suite of algorithms [e.g. Qiao et al. 2015]. Ac-
cordingly, we assessed the relative performance of commonly used SDM algorithms based on enve-
lope and statistical models, and machine learning techniques: BIOCLIM [Busby 1991; Booth et al.
2014], generalized linear models [Guisan et al. 2002], Maxent [Phillips et al. 2006], random forests
[Breiman 2001] and boosted regression trees [Elith et al. 2008]; these were employed using the 'sdm’
package within the statistical software R [Naimi & Araujo 2016]. In addition, we tested Bayesian
additive regression trees (BART), a relatively new alternative to other popular classification tree
methods, having yet to find a wider application in predicting species distributions, and based on in-
ductive learning process carried out using the Bayes theorem. For running SDMs with BARTSs, we
used the recently developed ‘embarcadero’ R package [Carlson 2020]. As part of their output, most
algorithms rank the environmental layers used to train the SDM based on their relative importance in
building the models. Importantly, they also allow the construction of response curves to elucidate the
effect of selected variables on habitat suitability [Phillips & Dudik 2008]. Of particular interest are
patterns in partial dependence plots, which are plots of the marginal effect of a predictor variable
when other variables are held constant [Pearson 2020]. Models were evaluated by 10-fold cross-
validation using 20% of the occurrence dataset.

The AUC (area under the curve) was used to assess the predictive performance of the models
[Hosmer & Lemeshow 1989]. Models with mean test-AUC values of AUC<(0.7 are considered of
poor predictive performance, 0.7<AUC<0.8 moderate, and AUC>0.8 good to excellent performance
[Duan et al. 2014]. Presently, there is a discussion about the reliability of AUC to measure the per-
formance of models based on presence-only methods [Lobo et al. 2008; etc.], therefore to have a
complementary measure of model performance we calculated the true skill statistic (TSS) [Allouche
et al. 2006]. The TSS can assume values between —1 and 1 and values of TSS<0.2 can be considered
as reflecting poor model predictive performance, 0.2<TSS<0.4 as fair, 0.4<TSS<0.6 moderate, and
TSS>0.6 as good to excellent performance. However, model selection based solely on discriminato-
ry ability, without consideration of overfitting, tends to result in overly complex models [Rados-
avljevic & Anderson 2014]. In this respect, overfitted models will often produce jagged response
curves that likely appear to be modelling noise, rather than biological response [Tobefa et al. 2016].
Model robustness and reliability were assessed by comparing model results to the current knowledge
of AMW ecology and distribution.

We used the 10th percentile training presence threshold value to generate contour lines separat-
ing suitable areas from unsuitable [Liu et al. 2005]. This threshold value provides a better ecologi-
cally significant result when compared with more restricted threshold values [Phillips & Dudik
2008].

Results and Discussion

After filtering the presence data consisting of 1022 georeferenced records, we used 464 occur-
rences to generate the SDMs. We selected eight predictor variables with reduced collinearity for
constructing the models. These represent mean annuals of the surface temperature (°C), salinity
(PSS), current velocity (m/s), sea ice concentration (fraction, %), chlorophyll-a concentration
(mg/m?), primary productivity (g/m’/day), cloud cover (%), and bathymetry (m).

The outputs of the SDM algorithms varied in terms of discrimination accuracy evaluated by the
AUC and TSS (Table 1). According to these results, the Bayesian additive regression trees model
demonstrates the best performance (AUC = 0.88, TSS = 0.66), very closely followed by the random
forests model (AUC = 0.88, TSS = 0.65). To make a choice between them we inspected the covari-
ate response curves generated by both models in terms of ‘smoothness.’
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SDM methods AUC TSS Table 1. Discrimination accuracy of em-
BIOCLIM 0.70 037 ployed SDM algorithms

Generalized Linear Model 0.78 0.50 ~  Tabmmwt 1. Tounicts uckpuminaii Buio-
Maxent 0.83 0.60 PHCTaHUX AITOPUTMIB

Random forests 0.88 0.65

Boosted regression trees 0.82 0.57

Bayesian additive regression trees 0.88 0.66

In this respect, the random forests model suggested overfitting, therefore the Bayesian additive
regression trees algorithm was selected to perform an in-depth analysis of the niche of the AMW in
relation to the selected environmental predictors and the distribution of the species in the Antarctic
region. In addition, the package ‘embarcadero’ includes an automated variable selection procedure
being highly effective at identifying informative subsets of predictors, allows to generate and plot
partial dependence curves.

The modelling identified a number of environmental variables that mostly contributed to gener-
ating the potential distribution prediction of the AMW in the study area. Based on variable im-
portance, those that best explained the environmental requirements of the species were sea ice con-
centration, chlorophyll-a concentration and topography of the sea floor [bathymetry], explaining in
sum around 62% of the variance.

Using the BART model, habitat preferences can be interpreted from patterns in partial depend-
ence plots, where predicted habitat suitability is plotted against a marginal change in each variable,
all other variables set to their average value.

Firstly, we analyse sea ice concentration preferences. As mentioned, the species is pagophilic
and observed densities of the AMW are the highest near the edge of the pack ice, likely because oc-
currences are typically recorded from observations made on ships unable to penetrate sea ice, but
advanced surveys had shown that the AMW also occurs inside the ice pack and within polynyas
[Williams ef al. 2014]. The proportion of the population found within the pack ice is not well known
but has been estimated, for instance, at 10-50% in the south-east Indian Ocean sector in summer
[Kelly et al. 2014] and up to 20% of AMWs of the Weddell Sea were within ice covered waters
[Williams et al. 2014].

In a relatively recent study, satellite telemetry from three individuals revealed AMW summer
foraging spaces can generally be associated with pack ice habitat, delimited by the sea ice extent
(SIE), over the continental shelf [Lee et al. 2017]. SIE defines the ocean area covered by sea ice and
a threshold of minimum sea ice concentration (15%) is used to identify the SIE [Worby & Comiso
2004], although others [Zhao et al. 2015] consider it to be 13%. In the study conducted by Lee and
co-authors [2017], one whale remained in pack ice concentrations greater than 50%. The other fol-
lowed the coastline and the SIE as it travelled through the Bellingshausen and Amundsen seas, pre-
dominantly within 50 km of the SIE. This whale remained in low ice concentrations, less than 50%,
for its entire foraging season.

0.5
0.4

0.3 Fig. 1. Partial response curve, SIC = sea

ice concentration (%), HS =habitat

0.2 suitability.

0.1 Puc. 1. Kpua mnapuiansHOro BiAryky
CTOCOBHO KOHIIEHTpallii MOPCHKOI KpH-
ru, SIC = KOHIIEHTpallisi MOPCHKOI KpH-
ru (%), HS = npunatHicTh cepenoBuia
repeOyBaHHS.

0.0
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The partial response curve, considering the association between habitat suitability (HS) and sea
ice concentration (SIC) (Fig. 1), shows that in both cases the individuals most likely were in prefera-
ble areas where SICs best match their niche requirements. Starting from a threshold of minimum sea
ice concentration of 15%, HS with increasing SIC demonstrates a sharp rise with a more or less
steady growth trend towards a concentration of 60%, after which it rapidly declines, indicating pre-
dominantly unsuitable habitat. On the whole, SICs between 30 to 60% seem, according to the model,
to be mostly favoured by the species. Using the 10th percentile training presence threshold value
(HS = 0.245) suitable areas, in terms of SIC, occupy a wider range from around 12 to 69%, that is to
say areas moderately off the SIE to areas considerably packed with ice.

A recent report of occurrences throughout the full range of ice concentrations found AMW den-
sities generally lower in high ice concentrations [Herr et al. 2019]. Likely, in the pursue of krill
closely linked with the under-ice environment [Nicol 2006], AMWSs reach their prey under the ice in
places extending from 27 km beyond the ice edge [Brierley et al. 2002] up to hundreds of kilometres
into the ice-covered area, as in the Lazarev Sea [Flores et al. 2012] and other parts of the Southern
Ocean [Herr et al. 2019], as far as there are regions of open water (such as leads, polynyas etc.). In
this respect, AMWSs exploit a unique niche among sympatric whale species feeding on krill in the
Southern Ocean [Friedlaender et al. 2014].

Secondly, since cetacean distributions may primarily be driven by those of their prey, it is likely
that such factors as chlorophyll-a concentration serve as proxies for spatio-temporal variation in prey
density [Baines & Weir 2020]. Indeed, the corresponding partial response curve (Fig. 2) shows a
steep rise of HS between concentrations 0.8 and 1.0 mg/m?, reaching an unprecedented value of al-
most 90% at the chlorophyll-a concentration of 1.35 mg/m?®. Using the employed threshold value,
suitable conditions are expected to appear above the concentration of 0.6 mg/m?.

Next in the row of influential variables is ocean depth. It has been documented that the distribu-
tion of AMWs is related to the continental shelf break [Ainley et al. 2012]. The corresponding curve
for ocean water depth (Fig. 3) showed a sharp positive response with areas shallower than approxi-
mately 3000 m (using a Maxent model, authors cited above consider it to be around 3500 m), reach-
ing a maximum at around 1000 m, a mark close to the continental shelf break, slightly declining and
rising once again as the distance to the shore decreases.

L0 s
0.8 1
0.6 1
0.4 - Fig. 2. Partial response curve, CHL-A =
- 1 3
CHL-A chlorophyll-a concentration (mg/m?3).
0.2 T T T T T ) Puc. 2. KpuBa mapuiajgpHOTO BiATYKy CTO-
0.7 0.8 0.9 1.0 1.1 1.2 1.3 COBHO KOHIIeHTpalii xmopodiny-a, CHL-A
= KOHIIEHTpallis XJopodimy-a (Mr/m?).
0.5 -
HS
0.4 -
Fig. 3. Partial response curve, DEPTH =
0.3 A depth below zero [km].
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3000 2500 -2000 -1500 -1000 500 0 to1h cmyradi, DEPTH = rmu0uHa Bix mose-

pxHi (KM).
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Once again, referring to the study conducted by Lee and co-authors [2017], two of the tracked
whales demonstrated bimodal distributions in bathymetry, remaining in the shallow waters of the
continental shelf early in the season and moving into deeper water as the season progressed, a behav-
iour which appears to be consistent with our model. Generally speaking, the shelf break is defined as
the line between the shelf and the upper continental slope. Around Antarctica, the ice load and the
resulting isostatic equilibrium and erosion result in a deep shelf. Some authors consider the shelf
break to be mostly located between 400 and 600 m water depth [Arndt et al. 2013], others around
800 m [Murase et al. 2013] or 1000 m [Atkinson et al. 2008].

Our model indicates that the shelf break and shelf waters inshore of it seem to be areas with the
habitats attractive to the AMW and where higher densities of the species have been recorded [Herr et
al. 2019]. The importance of the vicinity of the shelf break area in various locations throughout the
Southern Ocean is that Antarctic krill, a dominant prey item for AMWs, occurs here in higher densi-
ties [Siegel & Watkins 2016]. Using the employed threshold value, suitable conditions should appear
in waters shallower that 2790 m, but the best being around 800—1000 m and/or in nearshore habitats.

The combination of sea ice concentration, chlorophyll-a concentration, and bathymetry in the
present study’s model appears to successfully predict the presumed foraging habitat and distribution
for the AMW (Fig. 4). Areas where the AMW have particularly high likelihood of occurrence are
East Antarctica, NE of the Weddell Sea, areas around the northern tip of the Antarctica Peninsula,
areas bordering the Scotia—Weddell Confluence.
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Fig. 4. Result of the Bayesian additive regression trees [BART] modelling: modelled habitat suitability for Antarctic
minke whales in the Southern Ocean. Warmer colours indicate better habitat suitability. Yellow dot: Akademik Ver-
nadsky Ukrainian Antarctic station.

Puc. 4. Pesymprar MomentoBaHHs 3a aNTOPUTMOM OaleCiBCHKUX aguTUBHHUX perpeciiiHux nepeB (BART): moxens
perioniB [TiBgeHHOTO OKeaHy NMPUIATHUX IJIS epeOyBaHHA aHTAPKTUYHUAX CMyTadiB. Ternrim KoJbopH BKa3ylOTh Ha
perioHu 3 OiIBLI MPUAATHUMH JUIs TBapUH yMoBaMH. JKOBTHI KpYKEUOK MOKa3ye Miclie po3TallyBaHHs YKpaiHChKOT
AHTAPKTUYHOT CcTaHIli «AKameMik BepHaacbkuii»
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Conclusions

The spatial distribution of biological organisms is one of the fundamental pieces of information
necessary to understand their ecology. Detailed current knowledge of the distributions of cetaceans
and their suitable habitat is important for the effective management and conservation not only of
cetacean species but also of entire marine ecosystems [Kanaji ez al. 2015].

The application of presence-only SDMs for marine species is particularly attractive due to often
logistical and economic costs of obtaining systematic species’ distribution data [Smith ez al. 2021].
Exploring present relationships between AMW and environmental variables can highlight potential
reasons for shifts in abundance estimates and help to build more robust survey methods for the future
[Williams et al. 2014], provide a basis for adaptive surveys or sampling design as effort could be
concentrated in areas predicted to have better habitat suitability.

Suitable habitat for AMWs predicted by the SDM is interpreted as regions where the species is
most likely to be found, and represent priority areas where monitoring efforts (including passive
acoustic monitoring and aerial and/or vessel-based surveys) should be focused in the coming years.
Given the pagophilic character of the biology of AMWs, this makes them particularly vulnerable to

climate change and a near-perfect biological indicator for tracking these changes.
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