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The objective of the work was development of a calculation model for practical prediction of the kinetics of formation 
of multicomponent endogenous nonmetallic inclusions in the weld metal. The proposed mathematical model is a non-
standard nonlinear boundary problem for a system of diffusion equations with the specific condition on the moving 
melt-inclusion interphase, and it allows for the kinetics and heterogeneity of the process under the conditions of the real 
thermal cycle of welding. The calculation program developed as a computer realization of the constructed model allows 
evaluating in a computer experiment the size and composition of endogenous nonmetallic oxide inclusions, depending 
on concentration and thermal conditions in the weld pool. 10 Ref., 2 Figures.
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Nonmetallic inclusions are a natural component of the 
structure of any steel, having a significant role in var-
ious processes and phenomena, both in its production 
and in subsequent service [1–3].

Mathematical models for prediction of the com-
position, size and quantity of nonmetallic inclusions, 
available in scientific publications, are character-
ized by that in their attempts to simplify their math-
ematical and computer realization, the authors have 
to make certain assumptions that do not completely 
correspond to the features of physico-chemical and 
thermo-physical processes in welding [4, 5]. In par-
ticular, we are talking about the need to allow for high 
gradients of temperatures and concentrations, which 
accompany formation of the weld, as well as an essen-
tial nonstationarity and heterogeneity of the respec-
tive processes. The above features can be taken into 
account, using for mathematical model definition the 
equations of the type of reaction diffusion with addi-
tion of a specific condition on the moving surface of 
the formed nonmetallic inclusion, what exactly was 
done in this work.

Physico-chemical description of the process. 
The mathematical model was based on the following 
physico-chemical description of the process of non-
metallic inclusion formation in the weld metal:

1) range of considered temperatures at cooling of 
weld pool metal is from 2300 to 1670 K, in keeping 
with the real thermal cycle of welding (upper limit 
of the temperature range corresponds to the lowest 
temperature of formation of Al2O3 aluminium oxide, 
which is the most high-melting compound compared 

to other components of nonmetallic inclusions in the 
specified system);

2) at the initial moment of time the deoxidizer el-
ements (Al, Ti, Si, Mn, etc.) are homogeneously dis-
solved in the melt;

3) nonmetallic inclusion nuclei have the shape of a 
sphere (with initial radius equal to critical radius cal-
culated through the free energy of formation) and are 
uniformly distributed in the melt volume;

4) inclusion formation begins in the liquid metal of 
the weld pool and goes on in the two-phase zone, in-
clusion growth occurring in the diffusion cell of a cer-
tain size by the reactive diffusion mechanism, namely 
reagents (oxygen and deoxidizer elements) are trans-
ported through diffusion transfer to the inclusion sur-
face, on which the respective chemical reaction of 
their interaction runs, and reaction products adsorb on 
the above surface;

5) probability of formation of inclusions of a cer-
tain composition depends on their melting tempera-
ture and formation energy so that unlike the known 
models, different sets of chemical reactions are con-
sidered within certain temperature subranges, and the 
composition of the melt metal matrix changes, respec-
tively;

6) diffusion regions of growing inclusions do not 
overlap;

7) at each moment of time during the entire pro-
cess a thermodynamically equilibrium state is in place 
on «inclusion-melt» interface;

8) temperature conditions of the process are as-
signed as functional dependence of temperature on 
time variable.© L.A. TARABORKIN and V.V. GOLOVKO, 2018
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Formulation of the mathematical model. In or-
der to formulate the respective mathematical model 
by this physico-chemical description, we will intro-
duce the following designations:

N is the total number of reagent elements (oxygen, 
deoxidizers, etc.) in the system;

i is the number of the considered chemical ele-
ment;

Ci is the content (concentration) of the i-th element 
in the melt, mole/cm3;

Mi is the molecular mass of the i-th element;
Di is the coefficient of diffusion of the i-th element 

in the melt, mole/(cm2∙s);
t is the time variable, s;
r is the geometrical variable in the spherical sys-

tem of coordinates;
a(t) is the current radius of the inclusion at mo-

ment of time t, cm;
T is the temperature as a function of time, T = T(t), K;
rm is the size of the diffusion cell related to volume 

fraction Vf and average volume of inclusions Vm, cm
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We will describe the volume mass transfer (beyond 

the inclusion) by Fick’s diffusion equation, which has 
the following form in the spherical system of coordi-
nates:
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on the interface the reagent concentration is calcu-
lated as equilibrium value 
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keeping with assumption 4):
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on the diffusion cell boundary the substance flow is 
absent that corresponds to the following equation:
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during the inclusion growth its radius becomes great-
er due to simultaneous precipitation of products of the 
respective chemical reaction on the inclusion surface:
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where Xi(T) is the characteristic function, which actu-
ally determines the set of oxides, which can be pres-
ent in the nonmetallic inclusions in each temperature 
range:
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where Ti denotes the melting temperature of i-th ox-
ide. Thus, assuming that T1 > T2 > T3 > T4 > ..., we 
obtain that at temperature below T2 the nonmetallic 
inclusion contains just the first oxide; at further lower-
ing of temperature to T3 the nonmetallic inclusion will 
form from both the first and second oxides; in the next 
temperature range it will form already from three ox-
ides, and so on (note that such a pattern corresponds 
to the one described in monograph [1]); coefficient 
k(Cj,eq, T) depends on the current concentration state at 
the inclusion surface, and it can be determined at any 
moment of time, on condition of an equilibrium redis-
tribution of the substance transported to the surface of 
the inclusion between the metal and slag phases.

The initial condition consists in that the reagent 
concentration fields are spatially homogeneous (in the 
area between the inclusion surface and boundary of 
the diffusion cell):
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(5)

● here, the initial conditions are calculated by a 
separate algorithm, which allows for the actual weld-
ing conditions;

● initial radius of the inclusion, according to as-
sumption 3), is equal to the nucleus critical radius:
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(6)

Thus, the mathematical model of nonmetallic in-
clusion formation is formulated as a nonlinear bound-
ary problem (1)–(6) for a system of equations of dif-
fusion type in a region with moving boundary, being a 
reactive diffusion problem in its sense.

A distinctive feature of this model is allowing for 
the nonstationarity of the process under the conditions 
of multicomponent nature of the system, in which in-
clusions form. Moreover, owing to nonstandard con-
dition (4) on a moving surface of the growing inclu-
sion, it is possible to avoid the technically difficult 
determination of constants of the mentioned reaction 
rates, the values of which are also strongly dependent 
on temperature.

On the other hand, boundary condition (4) on the 
interface makes it necessary to calculate the equilibri-
um state of the multicomponent system, which can be 
presented as that made of two solutions, namely metal 
and slag one.

An important stage of numerical modelling of the 
process of formation of endogenous nonmetallic in-
clusions is calculation of the initial content of alloying 
elements in the weld pool. Algorithm of this calcu-
lation is presented in detail in [6]. The above-men-
tioned algorithm is based on the model of alloying 
elements transition into the weld pool and the weld 
for submerged-arc welding and allows a numerical 
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evaluation of weight fractions of alloying elements in 
the weld pool and weld metal, based on information 
on the chemical composition of the used welding con-
sumables.

Algorithm of calculation of the concentrations 
on the moving interface. Applying the approach out-
lined in [7], we will believe that on the interface of 
the nonmetallic inclusion and liquid steel the reaction 
runs by the following equation:

	
,x yxM yQ M Q+ =
	

(7)

where M is the metal (alloying) element (Al, Mn, Ti, 
Si, etc.), Q is the nonmetal element (O, N, S, etc.).

For such a reaction the equilibrium constant is giv-
en by the following equation:
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where aMxQy
, aM, aQ are the activities of substances 

MxQy, M; Q, i
Qc  are the concentrations on M and Q in-

terphase, respectively, wt.%; fM, fQ are the coefficients 
of activity of M and Q, respectively; DG0 is the stan-
dard free energy of exchange for reaction (7).

Considering the ratio of M and Q flows on the in-
terface of the growing inclusion, the following equa-
tion can be derived:
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where b
Mc , b

Qc  are the concentrations of M and Q 
(wt.%) in the metal depth; mM, mQ are the atomic 
masses of M and Q; DM, DQ are the atomic masses of 
M and Q in the liquid steel.

Then, the interphase concentrations of M and Q, 
i.e. i

Mc , i
Qc  can be found by solving equations (8) 

and (9).
Considering the special structure of equations of 

this system, we obtained the following equation for 
the sought value of oxygen concentration i

Qc  on the 
interface
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where for brevity we denote:
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We will solve equation (10) approximately by 

bitwise division method with the number of digits 
10, providing the number of decimal places, corre-
sponding to the order of the specified accuracy of 
the solution.

Finding i
Qc  for the i-th element, we numerically 

determine the value of concentration of the alloying 
element on the interface by equation (9).

Algorithm for evaluation of average density of 
nonmetallic inclusion. In condition (4) the current 
value of nonmetallic inclusion density, depending on 
the process time, appears on the moving interphase. 
Used as the estimate of the above density, was aver-
age density of the nonmetallic inclusion, determined 
from those considerations that the ratio between the 
quantity of oxides in the nonmetallic inclusion at each 
moment of time is numerically the same, as that in 
the equilibrium state of the oxide phase for the given 
temperature. It is rational to calculate the quantitative 
composition of the oxide phase by the slag theory, 
as that of a system with a collective electron phase, 
which in practically important cases is supported by 
the required set of numerical parameters [8].

In what follows, we shall number the values relat-
ing to elements and respective oxides by i index, for 
brevity.

Having denoted as Ci(i = 1, n), C0 the concentra-
tions of i-th element-deoxidizer and oxygen, respec-
tively; their coefficients of activity as fi(i = 1, n), f0; 
coefficients of activity of oxides in molten slag rel-
ative to standard state of pure oxides as gi, we deter-
mine equilibrium constants Ki of reactions (6) of i-th 
oxide formation by the following formula:
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where xi are the mole fractions of the oxide phase 
components.

Set of relations (11) is a system of equations with 
respect to the molar fractions of the oxide phase com-
ponents. Solving this system, taking into account the 
calculated coefficients of activities, we obtain the 
refined content of oxygen in steel and the respective 
composition of the slag phase, formed at certain equi-
librium conditions.

Calculated composition of the oxide phase is equal 
to, (wt.%):
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where index i denotes the following oxides of ele-
ments in slag: FeO, MnO, SiO2, Al2O3, TiO, etc.; Mi is 
the molecular mass of the respective oxide.

Algorithm of numerical realization of problem 
(1)–(6) and calculated model. The main difficulty 
when solving problem (1)–(6) is the need to allow for 
boundary condition (4) on the moving interface. Used 
for this purpose was the grid method from the numer-
ical solution of this type of problems in the so-called 
variant of «catching» the unknown melt-inclusion in-
terphase in the discrete grid node, earlier used in [4] 
for a problem with one diffusion equation.
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As in mathematical model (1)–(6) the diffusion 
equations in the system are connected only through 
the condition on the moving interphase (4), the men-
tioned condition can be used for iterative refining of 
the step in time, that allows considering diffusion 
equations (1) in each time step as independent ones.

In order to solve the defined problem by the differ-
ence method, we will form grid ω, uniform along ra-
dial coordinate r, with constant step h, which at each 
moment of time t = tk consists of a plurality of points. 

	
( ) ( ) ( ){ }, 0, .k k
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Let moment of time tk be such that during time 
from tk to tk+1 = tk + tk inclusion radius changes by the 
value of grid step h, so that a(tk+1) – a(tk) = h. Then 
plurality of grid nodes at moment of time t = tk+1 will 
be described by the following equation
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Denoting the content of an arbitrary melt compo-

nent by Cn = Cn(r, t) and using standard designations, 
we will write a discrete equation, approximating the 
respective differential equation in system (1) on grid 
w(k+1), in the following form
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where

	

( ) ( )( )
( ) ( )( ) ( )

1 1
, 1

1
, , 1 2

, ,

, , .2

k k
n i n i k

k k k k
n i n i k n i n k

C C r t

C C r t d D T t

+ +
+

+
±

=

 t 
= = ±       	

Difference analogs of boundary conditions (2) and 
(5) have the following form
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Value of time step tk, during which inclusion 
boundary moves per one node of the grid is obtained 
as the limit of time iterations ( ) ( ) ( ) ( )0 1 2, , , ... , s

k k k kt t t t . The 
above iteration process for refining the time step for 
transition from the k-th to (k+1)-th time layer was re-
alized as follows:

1) the value of time step in the previous layer, i.e.  
( )0

-1k kt = t  
was used as the initial approximation for tk;

2) having ( )s
kt  

values, we solve by the method of 
sweeping N systems of linear difference equations 

of (12)–(14) form with ( )s
k kt = t  for 1,n N=  and thus 

determine ( )1
,
k

n iC +  values. Note that here the follow-
ing quantity Xn of n-th component of the melt will be 
transported to inclusion surface during time ( )s

kt :
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3) we solve problem (9)–(10) for calculation of 

equilibrium concentrations of metal elements on 
boundary a(tk+1);

4) proceeding from the found equilibrium compo-
sition, we calculate the average inclusion density ( )

1
s

k+r  
and mass m(s) of the substance which precipitated into 
a layer of thickness h(s);

5) if the condition of completion of iteration pro-
cess is true
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for sufficiently small values ε (for instance, e = 10–4), 
then we assume time step value ( )s

k kt = t  and go over 
to the next time layer; if this condition is not fulfilled, 
we find the next approximation ( )1s

k
+t  for the time lay-

er from the following relationship
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which is the difference analog of condition (6);
6) in equality (11) we establish ( ) ( )1

,0 ,eq
k s

n nC C+ =  and 
go back to item 2).

Example of computation results. Computer re-
alization of the developed calculation model was per-
formed using Visual C++ programming system.

Figures 1, 2 give graphic illustrations of the re-
spective computations by the developed computer 
program for one of the 20 studied variants of the met-
al of welds deposited by arc welding process using 
experimental fluxes, in keeping with the requirements 
of DSTU ISO 6847 standard [10].

Complete description of the conditions of perfor-
mance of comparative analysis, as well as computa-
tion and experimental results requires separate con-
sideration in the next publication.

The following values were used as input parame-
ters during numerical estimation of initial content of 
alloying elements in the weld pool:

Figure 1. Change of the composition of nonmetallic inclusions at 
cooling of the weld pool: 1 – Al2O3; 2 – TiO2; 3 – MnO; 4 – SiO2
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● flux composition, represented in the oxide lay-
er; it was assumed that the initial composition of the 
slag system coincides with that of flux and contains 
the following (all or some of those listed below) com-
ponents: SiO2 = 40 %, Al2O3 = 40 %, CaF2 = 20 %, 
MgO = 0 %, MnO = 0 %, TiO2 = 0 %, CaO = 0 %, 
the sum of percentages of which should be equal to 
100 %;

● alloying element content in steel, wt.%: 0.88 Si, 
0.001 Ti, 0.64 Mn; 0.02 Al;

● alloying element content in welding wire, wt.%: 
0.065 Si, 0.01 Ti, 0.98 Mn, 0.002 Al;

● oxygen content, wt.%: 0.02 in steel and 0 in 
the wire;

● relative fraction (0.33) of base metal in weld 
pool metal;

● temperature characteristics of the mod-
eled process were calculated by the procedure of 
N.N. Rykalin.

Conclusions

A mathematical model of the considered process 
was developed on the basis of physico-chemical de-
scription of formation of endogenous nonmetallic 
multicomponent inclusions in the weld metal. The 
mathematical model allows for the kinetics and het-
erogeneity of the process, in particular, the nonsta-
tionary diffusion transfer of reagents (specifically, 
deoxidizer-elements) to the inclusion surface and 
reaction on melt-inclusion interface, as well as pres-

ence of a two-phase zone during weld solidification. 
The mathematical model is a nonstandard nonlinear 
boundary problem for a system of diffusion equations 
with the specific condition on a moving interface.

The mathematical model was the basis for devel-
opment of a calculation model, which envisages ther-
modynamic calculation of the local equilibrium state 
on the moving interface and numerical solution of the 
boundary problem for a system of differential equa-
tions of parabolic type based on discretization, using 
the grid method in the variant of catching the moving 
boundary into the grid node.

Developed respective computer program can be 
used for numerical prediction in a computational ex-
periment of the size and composition of oxide (after 
some modification also oxysulphide) nonmetallic in-
clusions, depending on the concentration and thermal 
conditions in the weld pool.
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Figure 2. Results of calculation of final composition of nonmetal-
lic inclusions in the deposited metal, wt.%


