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On some behavioral peculiarities
of magnetic-type eigenmodes of a spherical particle
with arbitrarily valued material parameters

Subject and Purpose. The spectral characteristics (eigenfrequencies, eigenmodes, Q-factors) of a spherical particle with arbi-
trarily valued permittivity and permeability are considered to take a further look into some important features of their behavior.
The real and imaginary parts of the material parameters of the particle can be both positive and negative. The emphasis is on
magnetic-type modes.

Methods and Methodology. The spectral problem is solved using the electromagnetic field expansion in vector spherical
wave functions.

Results. The first eigenfrequencies of a spherical particle have been calculated depending on its relative permittivity &4
and relative permeability 1, whose real and imaginary parts can take both positive and negative values. The eigenmodes split
into two, internal and external, eigenmode families. The internal eigenmodes bear an independent, associated with eigenmode
structure labeling in each quadrant of the plane (i, £1). The external eigenmodes, on the contrary, have a uniform labeling
throughout the whole (14, £1) plane and bear a structural resemblance to surface plasmon oscillations distributed in the vicinity
of the particle surface or outside it. In the first quadrant of the plane (x4, &), the external eigenmodes repeatedly interact with
the internal eigenmodes, leading to either mode hybridization or mode type exchange. In the third quadrant of the plane (i, &),
the external eigenmodes can interact with one another. The anomalous behavior of the spectral characteristics of a spherical
particle corresponds to the already known phenomenon of wave mode coupling described in the scientific literature well enough.

Conclusion. The performed study has revealed some new behavioral patterns as to the spectral characteristics of a spherical

particle with arbitrarily valued permittivity and permeability. Fig. 5. Ref.: 13 items.

Key words: spherical particle, dielectric ball, metamaterial, eigenfrequencies, eigenmodes.

The study of spherical particles with arbitrari-
ly valued material parameters is facilitated by the
fact that any formula obtained for an ordinary mat-
ter can be applied to the case when permittivity
and permeability can take arbitrary values. The ei-
genfrequency equations of spherical dielectric re-
sonators were first obtained by Mie and Debye in
1908-1909 [1, 2]. Over a wide permittivity range,
numerical calculations of complex-valued eigen-
frequencies were first performed in [3]. An excel-
lent eigenmode analysis of an isotropic spheri-
cal dielectric resonator was carried out in [4]. The
electrodynamic properties of a spherical parti-
cle with arbitrary real-valued material parameters
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were first considered in [5]. That time the particle
resonant properties were studied by analysis of re-
flection coefficient resonances at a real-valued
wave number. In [4, 5], it was noted, in particu-
lar, that in the particle of the kind, there are modes
demonstrating abnormal (i.e. qualitatively diffe-
rent from normal or ordinary) behavior of the
spectral curves. The described in [4, 5] abnormal
behavior of electric-type mode spectral curves was
thoroughly studied in [6] for a dielectric ball and
in [7] for a spherical particle with simultaneously
negative permittivity and permeability. The spect-
ral curves reported in [4-7] belong to the spectral
curve class of electrodynamic structures under the
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Fig. 1. Spherical particle

wave mode coupling conditions [8]. This circum-
stance is a driving factor to take a further look into
the resonant properties of a spherical particle by
analysis of its spectral characteristics in the com-
plex frequency range.

The present work is concerned with behavioral
patterns of spectral characteristics of a spherical
particle having arbitrarily valued permittivity and
permeability. The emphasis is on magnetic-type
modes.

No restrictions are imposed on the permittivity
and permeability, enabling simultaneously diffe-
rent signs of their real and imaginary parts. Corre-
spondingly, a question arises as to the refractive
index sign choice for a medium with complex-
valued material parameters. A complete analysis
of refractive index signs for loss and gain media
can be found in [9] (see, also, [10]). In the pre-
sent problem solution, a simple formula from [11]
is adopted. The final results coincide with the data
obtained by other algorithms of the refractive in-
dex calculation [10] (in view of the active media
comments in [10]).

Mathematical problems arise in the refractive
index sign determination and refer to the ques-
tion of complex square root calculation because
the complex plane can be cut into two Riemannian
surface sheets in different ways, each suitable for
a certain medium type. In the general case, how-
ever, it is hard to choose one. The mentioned am-
biguity prevents us from linking a proper value
of the refractive index to one of the two bran-
ches of the complex square root function. There-
fore the refractive index sign determination should
be performed based on some additional physical
considerations. Normally, refractive index sign is
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sought in conjunction with complex impedance
sign. A condition is proposed [11] that the sign
of the refractive index imaginary part and the sign
of the loss or gain energy density be coincident.

1. Calculation method. Let us consider a
spherical particle of radius a (Fig. 1), relative per-
mittivity €; = &1 +ie{ and relative permeability
M1 = p1+iuy. The relative permittivity and the
relative permeability of the surrounding space are,
respectively, £ > 0 and iy > 0. The wave number
inside and outside the particle is kg = ky/&stss,
s =0,1, where k= w/c is the wave number in vacu-
um. A spherical coordinate system (I, 8, ¢) with
the origin at the center of the particle is intro-
duced, where T is the radius-vector of the obser-
vation point. The electromagnetic field inside and
outside the particle (in the incident field absence)
is sought as

_ . |(E%HY), r>a,
(EH)=1_"", (1)
(E,H7), r<a,
where
e} n
E°(N)=Y ), DaMW(F ko) =
n=lm=-n
i i {D°<+)Me<3)(r k0)+}
O =0 3 58 NE)(F k)=
'uo n=lm=-n
Y {D%”Ne“)(r,kow}
mon=(m) [+1DG INSE (F, ko)
— i n —_
E'(r) =Y, 2 Dhn M (F k) =
n=lm=—
i i {D“”Me(l)(r k)+}
m=on=(m1) [+1Dnn Mt (F k) )
Mry=—— k = 2 Drn NG (F k) =
I 'u n=lm=-n
U {D,%(:)Ne“’(r k1)+}
Ik'ulm 0n=(m,21) +|Dr1n(n)N01)(r kl)
def

def
-1
h(n:_rn)z[hmn—( H™h_ mn:|[1+5m0] v (ml) =
= max(m,1), and D%n and D%nn are the unknown
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coefficients. The vector spherical wave functions
N?Q,?(F, k) and Mnﬁ'g (f,ks) and the even and
odd vector spherical wave functions Neﬂ)(F, ks),

NSM (F ks) and MED (F k), MAYV(F k) [12,
13] entering (1)—(3) accurate to the normalization
factors adopted in the work are defined in [6, 7].
From here on, the time dependence of the fields is
assumed to be exp(—i wt).

With the boundary condition that the tangential
components of the E and H fields are continuous
on the particle surface (r = a), we obtain the dis-
persion equation of the magnetic-type eigenmodes
(the TE or H modes)

k
L@ oa) - 20 (k@) (ko) =0, (4)
1 M1

where wn(2)=\/§3n+yz(2) and  {n(2)=

1/ > Hn(}r)l/z(z) are the Riccati-Bessel func-

tions of the first and third kind and Jy,,1/2(2) and
0 +]/2(Z) are the Bessel and Hankel functions of

a half-integer index. Assuming Dmn known, we
find

~o _ ko yn(kia) DL
mn — mn -
ki ¢n(koa)

Care should be taken of the following points.
First, the natural area of the analytical continu-
ation of the boundary value problem solution in
wave number is the complex plane except for k=0
(Ricatti-Bessel functions are analytic in this area).
Second, as the arguments of the functions in (4)
involve /& 11, a question of proper choice of the
root sign arises. We will calculate /& 11 by the
formula [11] (see above)

Jerus = Jer \Juq sign Re[%} :

where the square roots are considered in the princi-
pal value sense when the cut is along the negative
half-axis of the real axis (\/E >0, z is a non-ne-
gative real number). This principal value selection
is used to advantage in the most important mathe-
matical Application Packages.

2. Brief eigenmode analysis. A distinctive fea-
ture of magnetic-type modes is a nonzero radi-
al component H, of the magnetic field (E,=0).
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a b
Fig. 2. The |E| distribution for the eigenmodes: a — TE ;-
(H1=-2, & =-1);b-TEq3 (U =5, &1 =1)
Accordingly, magnetic type modes are de-

scribed (see (1)—(3)) by the vectors Mrgr?(ﬁks)
and Nﬂ%(?,ks) (the radial component present).
The eigenfrequencies of these modes come from
(4). That the azimuthal index m does not enter
equation (4) means the eigenmode degeneracy
with respect to m. The degeneracy rate is 2n+1,
which follows from (2), (3) in terms of the even

and odd vector spherical wave functions. For
the TE-modes, the modes TEg,q (M =0, ..., n)

described by the fields Eﬁmq(F):B,.sn(,T)IVIrﬁﬁ')
and Hr?wnq(r)— kk BS(+)Ne(I) and the modes

S

TEmng (M=1, ..., n) given by the fields

=B )Mn‘i,ﬁ') and H,?nnq(r)_

mnq(r)—
— =B Npy

S
and B, O(+)

(Blnfﬁ) = Dl,.,%) D0(+)) correspond

w

to the normalized eigenfrequency Knqa= —Ma,
C

where ( is the root number of equation (4). For

certainty, the eigenmodes TE q (TEgnq) will be
analyzed. The TE (nq modes have the three com-
ponents E ,, Hy, and Hy, with H, and H 4 calcula-
ted through the only electric field component E .
Hence, while on the subject of the TE j,q mode
structure, the spatial distribution of the E , com-
ponent is meant.

The eigenmode spectrum of a spherical parti-
cle splits into internal (the field inside the particle)
and external (the field in the vicinity of the particle
surface and outside it) modes (Fig. 2). It consists
of two families determined by different dependen-
ces on the particle permittivity. So, the roots of the
characteristic equations of the internal and exter-
nal modes are suitable to label differently. To avoid
confusion, we leave the labeling TE yq to the inter-
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Fig. 3. Re(ka) (a) and 1g(Q) (b) depending on w7 for the
eigenmodes TE g1+ (1), TE o1 (2), TE g1 (3), and TE o153 (4)
(e/=15, ef=u7=0)

Re(ka)

Fig. 4. Re(ka) depending on x; and & for the eigenmodes
TE o1+ (gray colored), TE 3;; (black bottom surface) and
TE o1, (black top surface) (u7 = €7 = 0). The surface section
with the plane &/ = 1.5 is shown in Fig. 3, the eigenmode type
indicated

nal modes and attach the labeling TE ynq- with in-
dex g primed to the external modes. For the axially
symmetric modes TE ,q/, index n denotes the num-

6

ber of |E| antinodes along the coordinate 6 in the
spherical coordinate system, and index q” denotes
the root number of equation (4). For the internal
eigenmodes TE g, index g denotes the number of
|E| antinodes along the coordinate r in the spheri-
cal coordinate system. In the present work (unlike
[3, 4]), the mode labeling is defined by the electro-
magnetic field structure rather than the eigenfre-
quency real part increase. The latter is acceptable
when the dependences of the eigenfrequency real
parts do not meet. The grounds for the classifica-
tion by electromagnetic field structure are given by
the eigenmode wave coupling described in [6, 7].

3. Behavioral peculiarities of spectral cha-
racteristics. Let us consider the eigenfrequen-
cy behavior in the first quadrant of the plane
(u1, &) with u{=¢e'=0 (uy=gy=1).Fig. 3pre-
sents the (normalized) eigenfrequency real parts
Re(ka) and the Q-factor logarithms 1g(Q) (Q =
=-0.5Re(ka) / Im(ka)) for the eigenmodes TE y;;-,
TEoi1, TEp12, and TE ;3 as y1 functions at dif-
ferent & values: & = 1.0 (a), 1.5 (b), 2.0 (¢), 3.0
(d), and 4.0 (e). The symbols like 3 +1 ~or 3~
mark hybrid-type eigenmodes [6]. The plots are
similar to those obtained for electric-type modes
in [6]. We claim that the discovered and investiga-
ted in [6] phenomenon of wave mode coupling in a
dielectric sphere with y1 =1 (u7=&’=0) takes
place for magnetic-type modes, too. The sphere
relative permeability u7 is a control parameter
of this phenomenon (with & fixed). The external
mode TE ;- comes into interaction with the inter-
nal modes.

The Re(ka) and 1g(Q) of the modes TE -,
TE 11, and TE 1, are plotted in Fig. 4 as functions
oftwo, u1 and &, variables. As seen, in the vicini-
ties of some points of the plane (u1, &), two eigen-
frequencies locally form a single double-sheet sur-
face. The cuts of this surface by the & = const
plane show that the real and imaginary parts of the
eigenmodes behave differently, as described in [6].
In particular, both mode hybridization and mode
type exchange are locally seen. Fig. 4 shows mul-
tiple mode transformations in the plane (u1, &) .
It is safe to assume that via a proper u7 and &’
selection, the eigenmode degeneration in the com-
plex frequency domain can be achieved [4].

In Fig. 3, one can also observe Ig(Q) resonance
minima. As w7 uo (1> Mg, € =¢&), the
Q-factor of the dielectric ball oscillations tends to
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zero (I9(Q)—>—), and the field is ejected out of
the resonator as vacuum is approached (the oscil-
lation amplitude therewith tends to zero). As &
increases, this limiting case is drawn away. The
field is partially ejected from the dielectric sphere,
causing Ig(Q) minima. As & increases, these mi-
nima gradually fade. The oscillations in the Q mi-
nimum vicinity resemble the TE ;- and the TEq
mode structure (depending on the extent to which
the antinodes of the original eigenmodes TE ;-
and TE (4 are ejected out of the resonator). In this
connection, they are called hybrid modes. When
moving away from the 1g(Q) minimum towards
smaller g7 values, hybrid oscillations with the
TEg1q and TE;;- mode features appear, too. These
oscillations have antinodes inside the ball and an
antinode with a significantly lower amplitude in
the ball surface vicinity. These two hybridity types
fundamentally differ from the oscillation hybridity
under the wave mode coupling condition when hy-
brid oscillations have features of two oscillations
entering wave mode coupling.

Equation (4) finds the eigenfrequencies ka
whose real parts give electromagnetic field eigen-
frequency values and whose imaginary parts de-
scribe attenuation of the modes. Calculations of
the eigenfrequencies in the third quadrant of the
plane (u1, &) show that extra solutions corre-
sponding to electromagnetic field modes not de-
caying with time are possible. The result is un-
expected but it, unfortunately, takes place. In this
connection, physically correct solutions are neces-
sary to select based on the condition Im(ka) < 0.
The introduction, for example, the u«{>0 and
&> 0 values into the calculations only worsens
the result. The introduction of 4#7<0 and &'<0
shows (Fig. 5) that as g1 <0 increases in abso-
lute value, then, starting with a certain point, the ka
imaginary part gets negative, suggesting that the
solution becomes physically correct. It should also
be noted that the existence of physically incorrect
solutions of (4) leads to resonances of the Mie co-
efficients [5], which enables the author of [5] to
draw a conclusion about internal mode existence
in the third quadrant of the plane (1, &). Physi-
cally incorrect solutions arise in the first quadrant,
too, as soon as w7 <0 and &’<0 are introduced
into the calculations: as g1 >0 increases, then
starting with some g1 value, the ka imaginary part
becomes positive.
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Fig. 5. Re(ka) (a) and Im(ka) (b) depending on x; and &
for the eigenmode TE ;- (€7 = u7 =0)

The plasmon oscillation TE y;;- deserves espe-
cial attention. Unlike the internal eigenmodes, it
occurs in all the quadrants of the plane (1, &),
and its eigenfrequency is characterized by impor-
tant patterns (Figs. 3-5). Let a point belonging to
the first quadrant of the plane (u1, &) describe a
simple curve starting from the first quadrant and
bypassing the origin clockwise. Then as the pa-
rameters (1, &) vary along this curve, the eigen-
frequency of the eigenmode TE ;- at & < &,
M1 > g (thefirst quadrant) first passes to the fourth
quadrant, then to the third and second quadrants
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and, finally, returns to the first quadrant (but now
with a zero-valued real part). That is, this eigen-
mode frequency behaves as if it belonged to some
helical surface with its axis at the point (g, &p).
In this case, during the passage from the fourth to
the third quadrant (over some g1 variation inter-
val), as well as during the passage from the sec-
ond to the first quadrant, the eigenfrequency real
part vanishes. The eigenfrequency behavior in the
first quadrant (at & > ¢&p) was described above
(Figs. 3 and 4). During the passage from the first
quadrant of the plane (w1, &) to the fourth one,
the eigenmode TE ;- field is increasingly pressed
to the surface as & decreases. During the fourth to
the third quadrant passage, the field is completely
ejected out of the particle at the point (u1), where
the Im(ka) is at its minimum. With a further x4
decrease, the field is restored and has a form of a
“classical” plasmon eigenmode whose Q-factor in-
creases during the passage to the second quadrant.

We have considered some behavioral peculia-
rities of the n = 1 eigenmodes, the simplest to ana-
lyze. As n increases, the eigenfrequency and eigen-
mode behavior can get more complexity (from the
visualization standpoint), especially under wave
mode coupling conditions. Thus, by analogy with
electric-type modes [7], it has been found that the
TE o317 and TE 3, eigenmodes come into interac-
tion in the third quadrant of the plane (i1, £1). As
a consequence, when the particle material param-
eters vary in the critical point vicinity [7], either
mode hybridization or mode type exchange is lo-
cally observed. Unlike the TE ;- oscillation, the
real part of the plasmon oscillation frequency in
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ITPO AESKI OCOBJIMBOCTI ITOBEJAIHKN
BJIACHUX KOJIUBAHb MATHITHOI'O TUITY COEPUYHOI YACTUHKU
3 JOBUUJIbHUMU 3HAYEHHAMU MATEPIAJIBHUX [TAPAMETPIB

IIpeamer i MeTa podoTH. Po3misagaeThest MoBeAiHKa CIIEKTPATBHIX XapaKTEPUCTHK (BIACHUX YacTOT, BIACHUX KOJIMBAHb, J0-
OpoTHOCTE! BIACHHUX KOJNMBAaHb) CEPUIHOI YACTUHKH 3 TOBUIBHUMHU 3HAUSHHSIMH JIICNEKTPUYHOI 1 MAarHITHOI IPOHUKHOCTI.
Mertoro i€l poOOTH € BUBYEHHS JEIKUX BOKIUBHX 3aKOHOMIPHOCTEH IMOBENIHKY CHEKTPAIBEHUX XapaKTePHCTHK YaCTHKH SIK 3
JIONTATHUMH, TaK 1 BiJ]’€MHIMH 3HAUCHHSIMH JIHCHHX Ta yIBHAX YaCTHUH MaTepialbHUX MapaMeTpiB. AKIIEHT pOOHUTHCS HA KOJIH-
BaHHSX MarHiTHOTO THITY.

Metoau i metomoJiorisi po6oTn. [[jiss TOCATHEHHS MMOCTABICHOI METH HABEICHO PO3B’S3aHHS BINIOBIIHOI CIIEKTPaIbHOT
3amadi. MeTos po3B’si3aHHs 3aCHOBAHMH Ha 300pakeHHI €JIeKTPOMArHITHOTO OIS Y BUDVIS/IL PO3KIIaJeHHS 32 BEKTOPHUMH ce-
PUYHHIMH XBIJIHOBUMH (YHKIISIMH.

PesyasTaTu po6oTn. Po3paxoBaHo 3a1eKHOCTI HEPIINX BIACHUX YacTOT ChepUIHOT YACTUHKH Bif BITHOCHOT Ni€NEKTPUIHOT
£ 1 BiTHOCHOT MAarHITHOI /| IPOHUKHOCTEH, JiiCHI Ta ySIBHI YaCTUHHU KX MOXXYTh HaOyBaTH SIK TOJAaTHUX, TaK 1 Bil’€MHUX
3Ha4YeHb. KomMBaHHS MOMIIAIOTHCS HA J[Ba CiMelicTBa — BHYTPIIIHI 1 30BHINIHI. BHYTpIIIHI KOJMBAaHHS B KOXKHOMY 3 KBaJIPaHTIB
IUTOMMHY ([, £1) MAIOTh He3aJIeXHy KiacHu(ikalilo, 3aCHOBaHy Ha CTPYKTypi kouBaHb. Ha BiqMiHy BiJ BHYTpIIIHIX, 30BHIII-
Hi KOJIMBAaHHS MAaIOTh €JUHY KJIacHU(iKaIlifo B IUIOMMHI (|, £;). 32 CBOEIO CTPYKTYPOIO 30BHIIIHI KOJIMBAHHS MAIOTh BHIIISI
MIOBEPXHEBHX IIa3MOHHHX KOJIUBAHb, SIKI PO3MOICHI B OKOJIi IIOBEPXHI YaCTUHKHM 200 103a Hero. Y HepuIoMy KBaJpaHTi IUIo-
muHA (U, £1) BOHHU 0araro pasiB BCTYNAIOTh Y B3a€MOJIIO 3 BHYTPIIIHIMU KOJIMBAaHHSIMH, IO TIPUBOAUTE ab0 1o ribpuan3amii
KOJINBaHb, a00 10 0OMiHy THIIaMH KOJIMBaHb. Y TPETbOMY KBaJpaHTI IUIOIUHN ( [/1, £|) 30BHIIIHI KOJIUBAHHI MOXYTh BCTYIaTH
y B3a€EMOJIIO OIHE 3 OHUM. AHOMAJIbHA ITOBE/IIHKA CIIEKTPAIbHUX XapaKTEePUCTHK C(HEpHIHO] YACTHHKH BiATIOBINAE BXKE BiJ0-
MoMy i mo0Ope onmcaHoMy B HayKOBIiH JIiTepaTypi SBHUILY MIXKTHIIOBOTO 3B’SI3KY KOJIMBAHb.

BucnoBok. Pe3ynsrati IpoBeeHUX OCHTIIKEHb JO3BOJWIIN BCTAHOBUTH HOBI 3aKOHOMIPHOCTI ITOBENIHKH CIEKTPAJILHAX
XapaKTepUCTUK c(hepIUIHOT JACTHHKH 3 IOBUIEHUMH 3HAYEHHSAMH 11 Ji€IeKTPHIHOI I MArHITHOI IPOHUKHOCTI.

Knrouosi cnosa: cihepuuna uacmunka, oieneKmpuyHa Kyas, Memamamepian, 61acHi 4acmomu, 61aCcHi KOTUSAHHS.
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