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Generalization of the mode-matching technique
to the problems of scattering by semi-infinite

slow-wave structures

Subject and Purpose. The scattering matrix of a semi-infinite slow-wave structure formed by grooves in a rectangular waveguide
is investigated with a view to developing a calculation technique for a semi-infinite periodic grating.

Methods and Methodology. The mode-matching technique is generalized to semi-infinite periodic structures. The fields of the
periodic part of the structure are series expanded in terms of periodic structure eigenmodes, which on imposing the boundary
condition at infinity yields the linear matrix equation for finding the scattering matrix. Only propagating modes of the periodic
structure are considered. To be sure that the field representations are reliable, the field matching is performed at a period some-
what distant from the junction of the regular and periodic waveguides.

Results. Matrix equations have been obtained for determining the scattering matrix blocks corresponding to the semi-infinite
grating. The reliability of these equations has been checked through a number of investigations, including tests for convergence,
reciprocity, energy balance and a test for scattering matrix conservation once one period is added to the semi-infinite structure.
For the main confirmation, the scattering matrix of a finite fragment of the slow-wave structure was calculated in two ways to
compare: through the scattering matrices of the semi-infinite slow-wave structure and through a cascade assembly of the scat-
tering matrices of the waveguide elements making up the structure.

Conclusion. An algorithm of the scattering matrix calculation for a semi-infinite grating has been obtained. It can be used in

building a rigorous hot model for vacuum electronics devices with slow-wave structures involved. Fig. 8. Ref.: 9 items.

Key words: semi-infinite grating, slow-wave structure, mode-matching technique.

The problem of finding the scattering matrix of a
semi-infinite periodic structure is relevant in the
calculation of complex resonators of vacuum de-
vices using slow-wave structures. It is important
here to have the field expansion of the field in ei-
genmodes of the slow-wave structure since the
electron beam interacts only with one of them. De-
spite the fact that the field for any finite fragment
of the slow-wave structure can be found by wide-
ly used mode-matching technique and the me-
thod of generalized scattering matrices [1-3], this
information is insufficient to build a hot model
of the device. It is also not enough to expand this
field in series of the eigenmodes of the slow-wave
structure since this approach does not allow taking
into account the change in the amplitude of such a
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mode when interacting with the electron beam. It
is necessary to know the scattering matrix of the
semi-infinite slow-wave structure. It will allow
one to take into account the reflection, transmis-
sion and transformation of the modes of the peri-
odic structure at the boundaries of the slow-wave
structure.

This waveguide problem is equivalent to the
problem of scattering by a periodic half-space. A
few solution approaches to the problem are known.

In [4], the problem of scattering of a plane wave
by a half-space periodically filled with plasmonic
nanospheres is considered. The problem is solved
by the discretized Wiener-Hopf method.

In works [5, 6], an approach to solve the prob-
lem of scattering by a half-space filled with strip

ISSN 1028-821X. Radiofiz. Electron. 2020. Vol. 25, No. 4



Generalization of the mode-matching technique to the problems of scattering by semi-infinite...

gratings is proposed. The problem is reduced to a
nonlinear matrix equation that has a non-unique
solution. This problem arises in connection with
the absence of the requirement of the condition at
infinity for the solution of the nonlinear equation.
Only one of the solutions satisfies the condition at
infinity. The choice of the required physical solu-
tion turns out to be difficult when considering the
structure in multimode regime.

In [7], the problem is solved more rigorously.
The field in the periodic half-space is expanded
in series of the pre-calculated eigenmodes of the
periodic structure which transfer energy from the
junction with the free half-space. This provided the
only solution satisfying the condition at infinity.

The present work uses an approach similar to
[7]. The difference is that, first, the waveguide
problem for a semi-infinite slow-wave structure is
considered. Second, the method proposed here is
constructed in such a way that it is sufficient to
take into account only the propagating modes of
the slow-wave structure, which reduces the size of
the inverted matrices.

The method uses the scattering matrix of a finite
fragment of the slow-wave structure. It is based
on the application of the mode-matching tech-
nique and the generalized scattering matrix meth-
od. It was implemented and used [8] to build a hot
model of vacuum electronics devices without a de-
tailed description. This work is devoted to the de-
scription of the method and some features of its
implementation.

1. Description of the method. The structure
under investigation is shown schematically in
Fig. 1. It is a junction of a regular waveguide with
a semi-infinite periodic structure with a period .

Generally speaking, the regular waveguide can be
arbitrary, as well as the elements of the periodic
structure. In this paper, as an example, we consid-
er the junction of a rectangular waveguide with a
semi-infinite lamellar grating.

Let the basis of eigenmodes of a periodic struc-
ture be known. The method for finding them is de-
scribed in [9]. And let a mode with index p be in-
cident from port 0 corresponding to the regular
waveguide. Then at some distance equal to an inte-
ger number of the periods L = gl from the junction,
the field can be expanded in the series of modes

N
E(X,y,2)= AnpEn(X.y,2). (1)
n=1

Here E,(X,Vy,z) is the field of the N eigen-
mode of the periodic structure and Ay, are the un-
known coefficients.

The following nuance is important here. An ei-
genmode of the slow-wave structure can be back-
ward. The sign of the propagation constants should
be chosen so that the corresponding modes trans-
fer energy from the junction with the regular wave-
guide to infinity. This choice determines the solu-
tion that satisfies the condition at infinity.

If g is large enough, then it is possible to leave
only propagating modes in the basis. The addition
of evanescent modes to the basis increases the ac-
curacy of the field expansion at small .

Let us introduce the following designations: S
is the scattering matrix of the semi-infinite slow-
wave structure, P is the number of waves taken
into account at port 0 corresponding to the regu-
lar waveguide, N is the number of waves at port 1
(modes of the slow-wave structure), M is the num-
ber of waves in the groove.

0 1

—_—
Mode p with
amplitude 1,
p=1,...,P

L=ql,g>>1

>l
«

Fig. 1. Geometry of the problem
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A

z=0
Fig. 2. Expansion of the nth eigenmode field in waveguide
modes of the groove

Then the coefficients Ay, are related to the ele-
ments of the transmission matrix of the semi-infi-
nite structure by the relation

Anp =S50, )

where I, is the propagation constant of the nth
eigenmode of the slow-wave structure.

In the process of finding the eigenmodes of the
periodic slow-wave structure according to the ap-
proach described in [9], the representations of their
fields in the grooves are obtained (Fig. 2)

M
E.n (X, Y, Z) = 2 Amn é.m (X, Y)elym ‘4

m=1

M
+men €m (X, y)elym(A_Z)- 3)

m=1

Here y,, is the propagation constant of the
groove mode of number m, €,(X,y) is its trans-
verse field distribution, A is the groove width,
amn and by, are the amplitudes of the waveguide
modes in the groove, propagating or evanescing in
opposite directions.

Substituting (3) into (1), we obtain the represen-
tation of the total field in the groove g + 1 through
the waveguide modes of the groove

M N
E(xy,2)= zém (x,y)e'’m Zamn Anp +
n=1

m=1

%,_/
Omp
M ) N
+Y 8 (%, y)e"m AN b AL )
m=1 n=1
—_—
ﬁmp

Consider an auxiliary waveguide unit, which
is q periods of the slow-wave structure, with in-
put port 0 corresponding to the lamella and output
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port 1 corresponding to the end of the groove (Fig. 3).
Let us denote its scattering matrix by S.

The first series in (4) can be considered as the
result of scattering of the pth wave incident on this
element from port 0 and the combination of waves
determined by the second series in (4) from port 1.
Thus, we get

M

_ A5 ircA (1,0

U = ZSmk A By + s,
kel

m=1..M, p=1..,P. )

Substituting the representations of the ampli-
tudes oy and By, from (4) into (5), we obtain

N M N
11) iy A 1,0
2 3mAnp = X spic e "4 X b Ay + 51
=1 k=1 n=1

m=1..,.M, p=1..,P.

or in the matrix form

(a-s™gb) A =540 (6)
TN NxP MXP

. M
where ¢ = diag {e'7k A }k_l.

We have M x P equations for N X P unknowns.
Since M > N due to the need to take into account
evanescent modes in the grooves, the number of
equations is larger than the number of unknowns.

There are two options for solving such a matrix
equation.

Option 1.

We keep the first N rows of the matrices
D=a-s™@h and s"0.

Option 2.

By left-multiplying of (6) by D" we obtain
D"s®0)

DD A =
—_— = [ E—
Nx P

NxN Nx P
Hence it appears
A=(D'D)'D"s"O,
Using (2), we obtain
s - o(D"D) D" MY,
A~ . N
where @ = diag {e'r” - }n=1'

In this work, the second option is implemented.
We can elementarily obtain

§©00 =500 4 sOVGh(D'D) DY)
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0] " ¢ >
i Zampemg(x, y)e’n*
Mode p with e
amplitude 1, : :
p=1,..,P ‘ .
M : _
> Bupeni(x,y)e
- m1
P L=gl,g>>1 oA z
z=0

Fig. 3. The auxiliary waveguide unit

By analogous constructions, we obtain the ma-
trix expressions for the remaining blocks of the
scattering matrix of the semi-infinite structure:

s =D D)D" (s Wpa-b)d7,
=55 (a+b(D'D) D (s"Vpa-b) >

2. Dispersion analysis of a slow-wave structure.

2.1. Calculation of the group velocity of an eigen-
mode of a slow-wave structure. An important chara-
cteristic of an eigenmode of a slow-wave structure
is its group velocity Vg. In particular, its sign makes
it possible to determine the direction of the energy
transfer by the mode and, therefore, the sign of the
propagation constants in representation (1). It can
be calculated in the two ways:

1) through the angle o of the tangent to the dis-
persion curve

_deo_, _df 2zl

Vg =——=2rl—= ,
dr deo tga

(7
where ¢ is the phase incursion of the mode per pe-
riod, and

2) through the average power flow P and the
energy W stored per period according to the formula

vg:PI/W.

The second approach is preferable since the cal-
culation of the derivative of the dispersion depen-
dence in (7) reduces the calculation accuracy.

The average power flow of the eigenmodes of
the slow-wave structure through the cross section
can be calculated from their mode expansions in
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the series of regular waveguide modes

P:%Re![éxﬁ*}dh

N
e (SR

n=1

= >, EDIm(@nby)exp(=[ra|a).

n=N+1

Here the index n =1, 2, ..., N corresponds to the
propagating modes of the waveguide (Im ¥, = 0).
In the second series, the + sign corresponds to the
E modes, the — sign corresponds to the H and T
modes.

The power flow of the eigenmode of the slow-
wave structure is contributed not only by the propa-
gating but also by the evanescent modes of the
waveguide if the expansion contains the same
modes evanescing in the opposite direction.

This formula is also used to normalize the eigen-
modes of the slow-wave structure. The normaliza-
tion is chosen in the same way as for the modes of
regular waveguides so that

1 Lo 1
PzaRel[ExH ]ds=5.

To calculate the average energy stored per pe-
riod, it is necessary to sum up its values for
each section of the period formed by the regular
waveguide.

Let us derive the formula for the average energy
W stored in the volume V of the groove

W =%J.(€08E'E*+ﬂoﬂﬁ‘ﬁ*)dv.
v
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By substituting the analytic integrals, we obtain

+2ARe(ayby)exp (—|yn|A)] +

i

R o SIN(YRA
3+ )+ 2Ry 21 |,
n=1 7n
- 1-exp(-2|yn|A)
o 3 M () 02
W :ﬁ n=N+1 In
4
25 An |Wn [(an| |b | )A 2Re(a b*)sm(?/nA)
n 7n
z 5 An [\Nn |:( |2 +|bn|2)1_eXp (—2|7n|A)
| n=N+1 | n| 2|7/n|
[N
2 [( +]by[?) A~ 2Re (arb )S'”(7“A)]+
n=1 In
1 2 1 2\1=exp(=2[ya|A)
+ — | {|lan| +|b
+:u0,u n= N+1I\N ||:(| n| | n| ) 2|7/n|

+25nh 2|Wn|{(|an| +|b|)A+2Re( )

oo

+Z 5nh

n

2\1-exp(=2[yn|A)

—2ARe(anby)exp (—|7n|A)] +

sin(y,A)

—2ARe(anby)exp (—|yn|A)]

i),

An 2
—Z——1{|la,|” +1|b
|7n|2|Wn|[(| ol ) 2|y

L n=N+1

Here y, is the transverse wavenumber of the
waveguide mode, W, is its waveguide impedance,

é‘nh:{

The formula for the average energy stored in the
volume above the lamella has the same form, with
the only difference that in it A must be replaced
by |- A

2.2. An example of the dispersion analysis of
a slow-wave structure. As an example of a slow-
wave structure, consider a lamellar grating in a
7.2x 0.8 mm? rectangular waveguide. Grooves
0.14 mm deep are cut in the wide wall of the
waveguide. The period of the slow-wave structure
is | =0.1 mm. The lamella and the groove have a
width of 0.05 mm.

Using the method described in [9], we first find
the eigenmodes of the periodic lamellar grating
with a fixed index of Xx-dependences equal to 1,

14

for E-modes,
for other modes,

1
0,

for H-modes,
for other modes.

+2ARe(ayby)exp (—|yn|A)]

which corresponds to the fundamental H;, mode of
the input rectangular waveguide. The convergence
was investigated depending on the fy,; parameter,
which controls the calculation accuracy. The pro-
jection bases include all the modes that propagate
for the given fg; parameter. An acceptable (graphi-
cal) accuracy is achieved at fy,; =3 600 GHz.

In Fig. 4, the solid lines show the frequency de-
pendences of the phase incursion per period for the

80
70
60

f=340 GHz

M
350 400

200 250 300
Frequency, GHz

100 150

Fig. 4. Dispersion curves and tangents to them for n =1
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Fig. 5. Frequency dependences of the transmission coefficients (a) and the residual in the energy balance equation (b) for the
semi-infinite slow-wave structure calculated for g = 10 and different accuracy parameters f; (ports of incidence are indicated

in the legend)
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Fig. 6. Frequency dependences of the transmission coefficients (a) and the residual in the energy balance equation (b) for the
semi-infinite slow-wave structure calculated for ., = 3 600 GHz and different lengths of the auxiliary finite fragment gl (ports

of incidence are indicated in the legend)

eigenmodes of the slow-wave structure with the
index of X-dependence n = 1 and the dashed lines
are tangents to them at frequency f = 340 GHz. The
angles of inclination of the tangents were calcula-
ted through the group velocity, which, in turn, was
calculated through the average power flow and the
energy stored per period. As can be seen from the
figures, the group velocity is in good agreement
with the tangent.

3. Calculation of the scattering matrix of a
semi-infinite slow-wave structure. Below the
results of calculating the scattering matrix of the
junction of a 7.2 x 0.8 mm? rectangular waveguide
with a semi-infinite slow-wave structure with the
parameters described in Section 2 are represented.

The frequency dependences of the transmission
and residual in the energy balance equation (loss)
are shown in Fig. 5. For the calculation, the fields
were expanded in groove 11 (q = 10). The trans-
mission is presented only in single-mode regime to
better see the violation of the reciprocity. The ver-
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tical dashed, dotted, and solid lines correspond to
the cutoff frequencies of the groove, lamella, and
slow-wave structure.

As can be seen from the figures, the curves for
fout = 3600 GHz and 4 320 GHz coincide with gra-
phical accuracy. But the closer is the frequency to
the upper limit of the single-mode band, the more
the energy balance and the reciprocity are violated.

As the length of the finite fragment (l increa-
ses, the energy balance and reciprocity improve
and eventually become acceptable, which is illu-
strated in Fig. 6. At first sight, it seems that the
larger the g value, the more accurate the result.
However, increasing ( has two opposite effects.
On the one hand, the accuracy increases due to the
attenuation of the modes of the slow-wave struc-
ture that are not taken into account. On the other
hand, it decreases due to the deterioration of the
accuracy of the phase factor in (2) since its accu-
racy is proportional to g (not shown in Fig. 6). In
practice, a compromise value for  must be found.
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Fig. 7. Resonant frequency response of the semi-infinite slow-
wave structure with deepened resonant first groove calculated
for f, = 3600 GHz, q = 1024, hy = 0.78 mm
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Fig. 8. Frequency response of a finite fragment of the slow-
wave structure: comparison of the two calculation approaches.
The fragment is 1 024 periods long

In addition, the conservation of the scattering
matrix was tested once one period was added to
the semi-infinite slow-wave structure. This was
the key property in the derivation of the nonlinear
equation of a semi-infinite structure in [5, 6]. The
results coincide with a good accuracy.

The interaction of a semi-infinite structure with
a resonant object is of interest. Let us deepen the
first groove so that it becomes resonant. Let us
choose its depth equal to hy = 0.78 mm, which
corresponds to a quarter-wave groove at 96 GHz.
The corresponding frequency response is shown in
Fig. 7. The results are plausible: there is reciproc-
ity, energy balance, and total reflection resonance.
As expected, reflection resonances are observed
near the frequencies that are multiples of 96 GHz.

4. The problem of homogenization of the
slow-wave structure. The possibility of using
the scattering matrix of a semi-infinite slow-wave
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structure to reconstruct the scattering matrix of its
finite fragment was investigated. This is a kind of
homogenization of the finite slow-wave structure
fragment, when the calculation is performed using
the scattering matrices of the slow-wave structure
junctions with a regular waveguide, and the phase
incursion between the boundaries of the fragment
is calculated according to the phase velocity of the
eigenmode. The study showed that such homo-
genization is possible only for a fragment whose
length is an integer number of the periods. For this,
the fragment must begin and end with waveguides
of different sizes: one corresponds to the groove,
and the other to the lamella (i.e., it must look like
the auxiliary element in Fig. 3). To calculate it,
one needs to know the matrices of two semi-in-
finite slow-wave structures with different input
ports. Again, one port corresponds to the groove
and the other to the lamella. The comparison of the
transmission and reflection results for 1024 pe-
riods is shown in Fig. 8. There is a good qualitative
agreement between the results. It is expected that
the calculation accuracy can be improved by ta-
king into account a few evanescent eigenmodes of
the slow-wave structure.

The scattering matrix of a finite number of
grooves in a rectangular waveguide cannot be
calculated using only the scattering matrix of a
semi-infinite slow-wave structure, cannot be cal-
culated, since the phase incursion of the eigen-
mode of the periodic structure is not determined
for a non-integer number of the periods. This is a
typical problem that arises during the homogeniza-
tion of metamaterials when an attempt is made to
replace a finite layer of the metamaterial with a di-
electric with equivalent material parameters.

Naturally, a finite number of grooves in a rect-
angular waveguide can be calculated by the gene-
ralized scattering matrix method by connecting the
finite slow-wave structure fragment starting with a
lamella and ending with a groove with a step tran-
sition from the groove to the lamella.

Conclusion. An efficient method for calculating
the scattering matrix of a semi-infinite slow-wave
structure has been proposed. The convergence of
the method has been investigated. A number of
tests were carried out to check the reliability of its
implementation. Also, a representation of the group
velocity of the slow-wave structure eigenmode in
terms of its expansion coefficients in series of wave-
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guide modes in the partial regions of the period has  tors as part of vacuum electronics devices [8]. The
been obtained. The obtained scattering matrix has  method can be generalized to study the scattering
been already used to build a hot model of resona- by a half-space filled with a metamaterial.
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C.0. Cmewenxo™?

'ketnTyT pamiodisuku ta enexrponikn im. O.51. Yenkora HAH Vrpaiau
12, Byn. Akan. [Ipockypu, Xapkis, 61085, Ykpaina

2 XapkiBchKuii HalioHATBHIH yHiBepenTeT imeni B.H. Kapasina
4, 1. CBobonu, Xapkis, 61022, Ykpaina

V3ATAJIBHEHHSA METOY YACTKOBUX OBJIACTEM
HA TIPOBJIEMU PO3CIFOBAHH HAITIBHECKIHYEHHUMMN
CIIOBUIbHIOBAJIbBHUMU CUCTEMAMU

IIpeamet i MeTa po6oru. [loCimi/keHO MATPHII0 PO3CIIOBAHHS HAMIBHECKIHYEHHOI CIIOBLIFHIOBAIBFHOI CHCTEMH, YTBOPEHOL
KaHaBKaMH B IIPSIMOKYTHOMY XBHJICBOJ1. MeToro mociikeHHs Oyi10 po3poOieHHs MEeTOy po3paxyHKy HariBHECKIHUSHHO] I1e-
PlOfUYHOT CTPYKTYPH.

MeTtoau Ta MeToaoJoris. [Io0ynoBaHo y3araJbHEHHSI METORY YaCTKOBHX 00NacTel Ha HalliBHECKIHYECHHI ITePiOANYHI CTPYK-
Typu. Ilomnst mepiogndHOT YacTUHU CTPYKTYPH PO3KIANAIOTHECS B PSAM 3 BIACHUX MOJ IE€PIOANYHOI CTPYKTYPH 3 ypaxyBaHHIM
YMOBH Ha HECKIHYEHHOCTI, III0 JO3BOJISIE OTPHMATH JiHii{HE MaTpUIHEe PIBHSIHHS I 3HAXOMKEHHS MaTpHIl po3ciroBaHHs. Po3-
DISAAINACH JIHUIIE MOH HMEePioIuIHOI CTPYKTYpH, INo momupiooTses. 11lo6 3poOuty mi npencraBieHHs JOCTOBIPHUMH, ITOJIS
Y3TOKYBAJINCh Ha TIEPiofi, U0 BiJJaICHOMY BiJl 3WICHYBAaHHS PETYISPHOTO XBHIIEBOAY 3 IIEPIOAUYHIM.

PesyabTaTn po6orn. OTpuMaHO MaTpU4HI PIBHAHHS [UIS BU3HAUCHHS OJIOKIB MaTpHUIll pO3CiIOBAaHHS HaliBHECKIHUYCHHOI
CTpyKTypH. sl IepeBipKH TOCTOBIPHOCTI OTPUMAHMX PIBHSHB OyJIO IPOBEIEHO HHU3KY HOCITIIKeHb. Jlo iX 4Hclla BXOIHMIH
TECT Ha 30DXKHICTh, B3a€EMHICTh, €HEPIreTHYHUH OaylaHC Ta 30epeKeHHsI MAaTPHIll PO3CIIOBAHHS IPH JIOAABAHHI OJHOTO IEepioxy
JI0 HalliBHECKIHYEHHOI cTpyKTypu. OCHOBHE MiATBEpKEHHSI OTPUMAaHE HIISIXOM IOPIBHAHHS MaTPUIIl PO3CISIHHS CKiHUCHHOTO
(parMeHTa CIIOBUIBHIOBAJIBEHOI CHCTEMH, OAEPXKAHOI ABOMA CIOCOOaMHU: Yepe3 MaTpHIli PO3CilOBaHHS HAIlIBHECKIHUEHHOI CIIO-
BIIBHIOBAJIBHOI CHCTEMH 1 4epe3 KacKa Hy 30ipKy MaTpHIlb PO3CIIOBaHHS XBIWJIEBIIHUX SJIEMEHTIB, IO CKJIAJAIOTh CTPYKTYPY.

BucnoBku. OTpUMaHO aNrOpUTM PO3paxyHKY MaTPHIl PO3CiIOBaHHS HaIliBHECKIHYEHHOI CTPYKTypu. Bin Moxe OyTu BU-
KOPHUCTaHMH IJIs1 TOOYXOBH CTPOTO1 «Tapsaoi» MOAeNl IPUCTPOIB BaKyyMHOI €JIEKTPOHIKHY 3 BAKOPHCTAHHSIM CIOBIUITBHIOBAIIb-
HUX CHCTEM.

Knwwuoei cnosa: nanieneckinuenna Ipamka, CNOBINbHIOBAIbHA cUCmeMd, Memoo 4acmrosux ooracmell.
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