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Generalization of the mode-matching technique 
to the problems of scattering by semi-infinite 
slow-wave structures

Subject and Purpose. The scattering matrix of a semi-infi nite slow-wave structure formed by grooves in a rectangular waveguide 
is investigated with a view to developing a calculation technique for a semi-infi nite periodic grating.

Methods and Methodology. The mode-matching technique is generalized to semi-infi nite periodic structures. The fi elds of the 
periodic part of the structure are series expanded in terms of periodic structure eigenmodes, which on imposing the boundary 
condition at infi nity yields the linear matrix equation for fi nding the scattering matrix. Only propagating modes of the periodic 
structure are considered. To be sure that the fi eld representations are reliable, the fi eld matching is performed at a period some-
what distant from the junction of the regular and periodic waveguides.

Results. Matrix equations have been obtained for determining the scattering matrix blocks corresponding to the semi-infi nite 
grating. The reliability of these equations has been checked through a number of investigations, including tests for convergence, 
reciprocity, energy balance and a test for scattering matrix conservation once one period is added to the semi-infi nite structure. 
For the main confi rmation, the scattering matrix of a fi nite fragment of the slow-wave structure was calculated in two ways to 
compare: through the scattering matrices of the semi-infi nite slow-wave structure and through a cascade assembly of the scat-
tering matrices of the waveguide elements making up the structure.

Conclusion. An algorithm of the scattering matrix calculation for a semi-infi nite grating has been obtained. It can be used in 
building a rigorous hot model for vacuum electronics devices with slow-wave structures involved. Fig. 8. Ref.: 9 items.

Key words: semi-infi nite grating, slow-wave structure, mode-matching technique.

The problem of fi nding the scattering matrix of a 
semi-infi nite periodic structure is relevant in the 
calculation of complex resonators of vacuum de-
vices using slow-wave structures. It is important 
here to have the fi eld expansion of the fi eld in ei-
genmodes of the slow-wave structure since the 
electron beam interacts only with one of them. De-
spite the fact that the fi eld for any fi nite fragment 
of the slow-wave structure can be found by wide-
ly used mode-matching technique and the me-
thod of generalized scattering matrices [1–3], this 
information is insuffi  cient to build a hot model 
of the device. It is also not enough to expand this 
fi eld in series of the eigenmodes of the slow-wave 
structure since this approach does not allow taking 
into account the change in the amplitude of such a 

mode when interacting with the electron beam. It 
is necessary to know the scattering matrix of the 
semi-infi nite slow-wave structure. It will allow 
one to take into account the refl ection, transmis-
sion and transformation of the modes of the peri-
odic structure at the boundaries of the slow-wave 
structure.

This waveguide problem is equivalent to the 
problem of scattering by a periodic half-space. A 
few solution approaches to the problem are known.

In [4], the problem of scattering of a plane wave 
by a half-space periodically fi lled with plasmonic 
nanospheres is considered. The problem is solved 
by the discretized Wiener-Hopf method.

In works [5, 6], an approach to solve the prob-
lem of scattering by a half-space fi lled with strip 
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gratings is proposed. The problem is reduced to a 
nonlinear matrix equation that has a non-unique 
solution. This problem arises in connection with 
the absence of the requirement of the condition at 
infi nity for the solution of the nonlinear equation. 
Only one of the solutions satisfi es the condition at 
infi nity. The choice of the required physical solu-
tion turns out to be diffi  cult when considering the 
structure in multimode regime.

In [7], the problem is solved more rigorously. 
The fi eld in the periodic half-space is expanded 
in series of the pre-calculated eigenmodes of the 
periodic structure which transfer energy from the 
junction with the free half-space. This provided the 
only solution satisfying the condition at infi nity.

The present work uses an approach similar to 
[7]. The diff erence is that, fi rst, the waveguide 
problem for a semi-infi nite slow-wave structure is 
considered. Second, the method proposed here is 
constructed in such a way that it is suffi  cient to 
take into account only the propagating modes of 
the slow-wave structure, which reduces the size of 
the inverted matrices.

The method uses the scattering matrix of a fi nite 
fragment of the slow-wave structure. It is based 
on the application of the mode-matching tech-
nique and the generalized scattering matrix meth-
od. It was implemented and used [8] to build a hot 
model of vacuum electronics devices without a de-
tailed description. This work is devoted to the de-
scription of the method and some features of its 
implementation.

1. Description of the method. The structure 
under investigation is shown schematically in 
Fig. 1. It is a junction of a regular waveguide with 
a semi-infi nite periodic structure with a period l. 

Generally speaking, the regular waveguide can be 
arbitrary, as well as the elements of the periodic 
structure. In this paper, as an example, we consid-
er the junction of a rectangular waveguide with a 
semi-infi nite lamellar grating.

Let the basis of eigenmodes of a periodic struc-
ture be known. The method for fi nding them is de-
scribed in [9]. And let a mode with index p be in-
cident from port 0 corresponding to the regular 
waveguide. Then at some distance equal to an inte-
ger number of the periods L  ql from the junction, 
the fi eld can be expanded in the series of modes

1
( , , ) ( , , ) .

N

np n
n

E x y z A E x y z
=

= ∑
 

 (1)

Here ( , , )nE x y z


 is the fi eld of the nth eigen-
mode of the periodic structure and A np are the un-
known coeffi  cients.

The following nuance is important here. An ei-
genmode of the slow-wave structure can be back-
ward. The sign of the propagation constants should 
be chosen so that the corresponding modes trans-
fer energy from the junction with the regular wave-
guide to infi nity. This choice determines the solu-
tion that satisfi es the condition at infi nity.

If q is large enough, then it is possible to leave 
only propagating modes in the basis. The addition 
of evanescent modes to the basis increases the ac-
curacy of the fi eld expansion at small q.

Let us introduce the following designations: S 
is the scattering matrix of the semi-infi nite slow-
wave structure, P is the number of waves taken 
into account at port 0 corresponding to the regu-
lar waveguide, N is the number of waves at port 1 
(modes of the slow-wave structure), M is the num-
ber of waves in the groove.

 

                Fig. 1. Geometry of the problem
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Then the coeffi  cients A np are related to the ele-
ments of the transmission matrix of the semi-infi -
nite structure by the relation

(1,0) ,niL
np npA S e Γ=   (2)

where n is the propagation constant of the nth 
eigenmode of the slow-wave structure. 

In the process of fi nding the eigenmodes of the 
periodic slow-wave structure according to the ap-
proach described in [9], the representations of their 
fi elds in the grooves are obtained (Fig. 2)

1
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Here  m is the propagation constant of the 
groove mode of number m, ( , )me x y  is its trans-
verse fi eld distribution,  is the groove width, 
a mn and b mn are the amplitudes of the waveguide 
modes in the groove, propagating or evanescing in 
opposite directions.

Substituting (3) into (1), we obtain the represen-
tation of the total fi eld in the groove q + 1 through 
the waveguide modes of the groove
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 (4)

Consider an auxiliary waveguide unit, which 
is q periods of the slow-wave structure, with in-
put port 0 corresponding to the lamella and output 

port 1 corresponding to the end of the groove (Fig. 3). 
Let us denote its scattering matrix by s.

The fi rst series in (4) can be considered as the 
result of scattering of the pth wave incident on this 
element from port 0 and the combination of waves 
determined by the second series in (4) from port 1. 
Thus, we get

(1,1) (1,0)

1
,

1,..., , 1,..., .

k
M

i
mp kp mpmk

k
s e s

m M p P

γα βΔ

=
= +

= =

∑
 (5)

Substituting the representations of the ampli-
tudes  mp and   mp from (4) into (5), we obtain

(1,1) (1,0)

1 1 1
,

1,..., , 1,..., .

k
N M N

i
mn np kn np mpmk

n k n
a A s e b A s

m M p P

γ Δ

= = =
= +

= =

∑ ∑ ∑

or in the matrix form 

 
(1,1) (1,0)ˆ( ) ,

N P M PM N

a s b A sϕ
× ××

− =


 (6)

where { } 1
ˆ .k

Mi
k

diag e γϕ Δ
=

=

We have M  P equations for N  P unknowns. 
Since M  N due to the need to take into account 
evanescent modes in the grooves, the number of 
equations is larger than the number of unknowns.

There are two options for solving such a matrix 
equation.

Option 1. 
We keep the fi rst N rows of the matrices 

(1,1) ˆD a s bϕ= −  and s (1,0).
Option 2. 
By left-multiplying of (6) by *D  we obtain

 
* * (1,0) .

N N N P N P
D D A D s

× × ×
= 

Hence it appears
* 1 * (1,0)( ) .A D D D s−=

Using (2), we obtain
(1,0) 1 * 1 * (1,0)ˆ ( ) ,S D D D s− −= Φ

where { } 1
ˆ .n

Ni L
n

diag e Γ
=

Φ =

In this work, the second option is implemented.
We can elementarily obtain
(0,0) (0,0) (0,1) * 1 * (1,0)ˆ ( ) .S s s b D D D sϕ −= + ]

Fig. 2. Expansion of the nth eigenmode fi eld in waveguide 
modes of the groove
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By analogous constructions, we obtain the ma-
trix expressions for the remaining blocks of the 
scattering matrix of the semi-infi nite structure:

(1,1) 1 * 1 * (1,1) 1ˆ ˆˆ( ) ( ) ,S D D D s a bϕ− − −= Φ − Φ

(0,1)

(0,1) * 1 * (1,1) 1ˆˆ ˆ( ( ) ( )) .

S

s a b D D D s a bϕ ϕ− −

=

= + − Φ

2. Dispersion analysis of a slow-wave structure. 
2.1. Calculation of the group velocity of an eigen-

mode of a slow-wave structure. An important chara-
cteristic of an eigenmode of a slow-wave structure 
is its group velocity v g. In particular, its sign makes 
it possible to determine the direction of the energy 
transfer by the mode and, therefore, the sign of the 
propagation constants in representation (1). It can 
be calculated in the two ways:

1) through the angle of the tangent to the dis-
persion curve

22 ,
tgg

d d f lv l
d d
ω ππ

ϕ α
= = =

Γ
  (7)

where  is the phase incursion of the mode per pe-
riod, and

2) through the average power fl ow P and the 
energy W stored per period according to the formula

v g  Pl / W.

The second approach is preferable since the cal-
culation of the derivative of the dispersion depen-
dence in (7) reduces the calculation accuracy.

The average power fl ow of the eigenmodes of 
the slow-wave structure through the cross section 
can be calculated from their mode expansions in 

the series of regular waveguide modes

*
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Here the index n  1, 2, ..., N corresponds to the 
propagating modes of the waveguide (Im  n  0). 
In the second series, the  sign corresponds to the 
E modes, the  sign corresponds to the H and T 
modes.

The power fl ow of the eigenmode of the slow-
wave structure is contributed not only by the propa-
gating but also by the evanescent modes of the 
waveguide if the expansion contains the same 
modes evanescing in the opposite direction.

This formula is also used to normalize the eigen-
modes of the slow-wave structure. The normaliza-
tion is chosen in the same way as for the modes of 
regular waveguides so that

*1 1Re .
2 2

S

P E H d s⎡ ⎤= × ⋅ =⎣ ⎦∫
  

To calculate the average energy stored per pe-
riod, it is necessary to sum up its values for 
each section of the period formed by the regular 
waveguide.

Let us derive the formula for the average energy 
W stored in the volume V of the groove

* *
0 0

1 ( ) .
4

V

W E E H H dvε ε μ μ= ⋅ + ⋅∫
   

Fig. 3. The auxiliary waveguide unit
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By substituting the analytic integrals, we obtain
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Here  n is the transverse wavenumber of the 
waveguide mode, W n is its waveguide impedance,

1, for -modes,
0, for other modes,ne

E
δ ⎧

= ⎨
⎩

1,  for -modes,
0, for other modes.nh

H
δ ⎧

= ⎨
⎩

The formula for the average energy stored in the 
volume above the lamella has the same form, with 
the only diff erence that in it  must be replaced 
by l – .

2.2. An example of the dispersion analysis of 
a slow-wave structure. As an example of a slow-
wave structure, consider a lamellar grating in a 
7.2    0.8 mm2 rectangular waveguide. Grooves  
0.14 mm deep are cut in the wide wall of the 
waveguide. The period of the slow-wave structure 
is l  =  0.1 mm. The lamella and the groove have a 
width of 0.05 mm.

Using the method described in [9], we fi rst fi nd 
the eigenmodes of the periodic lamellar grating 
with a fi xed index of x-dependences equal to 1, 

which corresponds to the fundamental H10 mode of 
the input rectangular waveguide. The convergence 
was investigated depending on the fcut parameter, 
which controls the calculation accuracy. The pro-
jection bases include all the modes that propagate 
for the given fcut parameter. An acceptable (graphi-
cal) accuracy is achieved at  fcut  3 600 GHz.

In Fig. 4, the solid lines show the frequency de-
pendences of the phase incursion per period for the 

Fig. 4. Dispersion curves and tangents to them for n  1
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eigenmodes of the slow-wave structure with the 
index of x-dependence n  1 and the dashed lines 
are tangents to them at frequency f  340 GHz. The 
angles of inclination of the tangents were calcula-
ted through the group velocity, which, in turn, was 
calculated through the average power fl ow and the 
energy stored per period. As can be seen from the 
fi gures, the group velocity is in good agreement 
with the tangent.

3. Calculation of the scattering matrix of a 
semi-infi nite slow-wave structure. Below the 
results of calculating the scattering matrix of the 
junction of a 7.2  0.8 mm2 rectangular waveguide 
with a semi-infi nite slow-wave structure with the 
parameters described in Section 2 are represented.

The frequency dependences of the transmission 
and residual in the energy balance equation (loss) 
are shown in Fig. 5. For the calculation, the fi elds 
were expanded in groove 11 (q  10). The trans-
mission is presented only in single-mode regime to 
better see the violation of the reciprocity. The ver-

tical dashed, dotted, and solid lines correspond to 
the cutoff  frequencies of the groove, lamella, and 
slow-wave structure.

As can be seen from the fi gures, the curves for 
fcut  3 600 GHz and 4 320 GHz coincide with gra-
phical accuracy. But the closer is the frequency to 
the upper limit of the single-mode band, the more 
the energy balance and the reciprocity are violated.

As the length of the fi nite fragment ql increa-
ses, the energy balance and reciprocity improve 
and eventually become acceptable, which is illu-
strated in Fig. 6. At fi rst sight, it seems that the 
larger the q value, the more accurate the result. 
However, increasing q has two opposite eff ects. 
On the one hand, the accuracy increases due to the 
attenuation of the modes of the slow-wave struc-
ture that are not taken into account. On the other 
hand, it decreases due to the deterioration of the 
accuracy of the phase factor in (2) since its accu-
racy is proportional to q (not shown in Fig. 6). In 
practice, a compromise value for q must be found.

Fig. 5. Frequency dependences of the transmission coeffi  cients (a) and the residual in the energy balance equation (b) for the 
semi-infi nite slow-wave structure calculated for q  10 and diff erent accuracy parameters fcut (ports of incidence are indicated 
in the legend)
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In addition, the conservation of the scattering 
matrix was tested once one period was added to 
the semi-infi nite slow-wave structure. This was 
the key property in the derivation of the nonlinear 
equation of a semi-infi nite structure in [5, 6]. The 
results coincide with a good accuracy. 

The interaction of a semi-infi nite structure with 
a resonant object is of interest. Let us deepen the 
fi rst groove so that it becomes resonant. Let us 
choose its depth equal to h0  0.78 mm, which 
corresponds to a quarter-wave groove at 96 GHz. 
The corresponding frequency response is shown in 
Fig. 7. The results are plausible: there is reciproc-
ity, energy balance, and total refl ection resonance. 
As expected, refl ection resonances are observed 
near the frequencies that are multiples of 96 GHz.

4. The problem of homogenization of the 
slow-wave structure. The possibility of using 
the scattering matrix of a semi-infi nite slow-wave 

structure to reconstruct the scattering matrix of its 
fi nite fragment was investigated. This is a kind of 
homogenization of the fi nite slow-wave structure 
fragment, when the calculation is performed using 
the scattering matrices of the slow-wave structure 
junctions with a regular waveguide, and the phase 
incursion between the boundaries of the fragment 
is calculated according to the phase velocity of the 
eigenmode. The study showed that such homo-
genization is possible only for a fragment whose 
length is an integer number of the periods. For this, 
the fragment must begin and end with waveguides 
of diff erent sizes: one corresponds to the groove, 
and the other to the lamella (i.e., it must look like 
the auxiliary element in Fig. 3). To calculate it, 
one needs to know the matrices of two semi-in-
fi nite slow-wave structures with diff erent input 
ports. Again, one port corresponds to the groove 
and the other to the lamella. The comparison of the 
transmission and refl ection results for 1 024 pe-
riods is shown in Fig. 8. There is a good qualitative 
agreement between the results. It is expected that 
the calculation accuracy can be improved by ta-
king into account a few evanescent eigenmodes of 
the slow-wave structure.

The scattering matrix of a fi nite number of 
grooves in a rectangular waveguide cannot be 
calculated using only the scattering matrix of a 
semi-infi nite slow-wave structure, cannot be cal-
culated, since the phase incursion of the eigen-
mode of the periodic structure is not determined  
for a non-integer number of the periods. This is a 
typical problem that arises during the homogeniza-
tion of metamaterials when an attempt is made to 
replace a fi nite layer of the metamaterial with a di-
electric with equivalent material parameters.

Naturally, a fi nite number of grooves in a rect-
angular waveguide can be calculated by the gene-
ralized scattering matrix method by connecting the 
fi nite slow-wave structure fragment starting with a 
lamella and ending with a groove with a step tran-
sition from the groove to the lamella.

Conclusion. An effi  cient method for calculating 
the scattering matrix of a semi-infi nite slow-wave 
structure has been proposed. The convergence of 
the method has been investigated. A number of 
tests were carried out to check the reliability of its 
implementation. Also, a representation of the group 
velocity of the slow-wave structure eigenmode in 
terms of its expansion coeffi  cients in series of wave-

Fig. 7. Resonant frequency response of the semi-infi nite slow-
wave structure with deepened resonant fi rst groove calculated 
for fcut  3 600 GHz, q  1 024, h0  0.78 mm
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УЗАГАЛЬНЕННЯ МЕТОДУ ЧАСТКОВИХ ОБЛАСТЕЙ 
НА ПРОБЛЕМИ РОЗСІЮВАННЯ НАПІВНЕСКІНЧЕННИМИ 
СПОВІЛЬНЮВАЛЬНИМИ СИСТЕМАМИ

Предмет і мета роботи. Досліджено матрицю розсіювання напівнескінченної сповільнювальної системи, утвореної 
канавками в прямокутному хвилеводі. Метою дослідження було розроблення методу розрахунку напівнескінченної пе-
ріодичної структури.

Методи та методологія. Побудовано узагальнення методу часткових областей на напівнескінченні періодичні струк-
тури. Поля періодичної частини структури розкладаються в ряди з власних мод періодичної структури з урахуванням 
умови на нескінченності, що дозволяє отримати лінійне матричне рівняння для знаходження матриці розсіювання. Роз-
глядались лише моди періодичної структури, що поширюються. Щоб зробити ці представлення достовірними, поля 
узгоджувались на періоді, дещо віддаленому від зчленування регулярного хвилеводу з періодичним.

Результати роботи. Отримано матричні рівняння для визначення блоків матриці розсіювання напівнескінченної 
структури. Для перевірки достовірності отриманих рівнянь було проведено низку досліджень. До їх числа входили 
тест на збіжність, взаємність, енергетичний баланс та збереження матриці розсіювання при додаванні одного періоду 
до напівнескінченної структури. Основне підтвердження отримане шляхом порівняння матриці розсіяння скінченного 
фрагмента сповільнювальної системи, одержаної двома способами: через матриці розсіювання напівнескінченної спо-
вільнювальної системи і через каскадну збірку матриць розсіювання хвилевідних елементів, що складають структуру.

Висновки. Отримано алгоритм розрахунку матриці розсіювання напівнескінченної структури. Він може бути ви-
користаний для побудови строгої «гарячої» моделі пристроїв вакуумної електроніки з використанням сповільнюваль-
них систем.

Ключові слова: напівнескінченна ґратка, сповільнювальна система, метод часткових областей.

guide modes in the partial regions of the period has 
been obtained. The obtained scattering matrix has 
been already used to build a hot model of resona-

tors as part of vacuum electronics devices [8]. The 
method can be generalized to study the scattering 
by a half-space fi lled with a metamaterial.


