УДК 666.792.34:539.3

П. В. Мазур, О. М. Григорьєв, Л. М. Мелах, І. В. Козак, М. В. Карпець, Д. В. Ведель*

Інститут проблем матеріалознавства І. М. Францевича НАН України, м. Київ, Україна *vedeldv@gmail.com

Вплив В₃Si на структуру та властивості кераміки В₄C

Методом гарячого пресування отримано щільну композиційну кераміку на основі B_4C з добавкою від 10 до 50 % (за масою) B_3Si . Встановлено, що зі збільшенням кількості силіциду бору зменшується температура гарячого пресування для отримання матеріалу з високою щільністю. Показано, що для кожного зі складів існує оптимальна температура гарячого пресування, яка відповідає максимальному значенню твердості, що пов'язане з формуванням дрібнозернистої структури. Ущільнення відбувається під час реакційного гарячого пресування, яке полягає в розкладанні B_3Si на Si та BSi_n (n = 12-23) та подальшою взаємодією з B_4C з утворенням SiC та $B_{12}(Si,B,C)_3$. Модифікування карбіду бору кремнієм приводить до стабілізації твердості (~ 24–26 ГПа) в інтервалі навантажень від 2 до 200 Н. Найвищу міцність на згин — ~ 500 МПа, досягають за вмісту 20 % (за масою) B_3Si . Оптимальним складом, який поєднує високі значення твердості та міцності на згин є B_4C-20 % (за масою) B_3Si .

Ключові слова: карбід бору, силіцид бору, гаряче пресування, твердість.

ВСТУП

Карбід бору, що має унікальне поєднання високої (~ 32 ГПа) твердості та низької (2,5 г/см³) питомої ваги, з кожним роком привертає до себе все більше уваги але у нього є два основних недоліки. Перший – ковалентний тип хімічного зв'язку, і, як наслідок, висока (2350 °C) температура плавлення [1-4], що потребує температури гарячого пресування (ГП) вищої за 2100 °С [3–9]. Для вирішення даної задачі ведуться розробки композиційної кераміки на основі карбіду бору, де в якості активаторів спікання виступають оксиди (Sc₂O₃, Al₂O₃, TiO₂) [2–4], карбіди (Cr₃C₂,WC) [10], [11], бориди (TiB₂, TaB₂, CaB₆) [8], [12], [13] та силіциди (TiSi₂) [6]. Найбільш перспективними з точки зору спікання є дибориди перехідних металів IV-VI групи, які утворюють з карбідом бору ряд евтектик [14]. Тому через нижчу серед тугоплавких диборидів питому вагу (4,5 г/см³) диборид титану часто використовують в якості активатора спікання [4, 15, 16]. Однак, температура ГП залишається достатньо високою – ~ 2000 °С (рис. 1). Через використання реакційного ГП, де в якості добавок застосовують TiO_2 [7], TiH_2 [14], $CaCO_3$ [17], Sc_2O_3 [18], V₂O₃ [19] та ін., вдається знизити температури ГП за рахунок реакцій відновлення.

Введення тугоплавких сполук з питомою вагою більше 3 г/см³ приводить до збільшення щільності та перспективи використання самозв'язаного карбі-

© П. В. МАЗУР, О. М. ГРИГОРЬЄВ, Л. М. МЕЛАХ, І. В. КОЗАК, М. В. КАРПЕЦЬ, Д. В. ВЕДЕЛЬ, 2023

ду кремнію [17–19]. В [9] щільність карбіду бору не перевищувала 2,6 г/см³ і її досягали за рахунок введення від 2 до 6 % (моль) SiB₆. Оптимальні властивості отримували за вмісту SiB₆, що дорівнював 4 % (моль), а значення твердості становило 39 ГПа. З іншого боку, для повного ущільнення композита B_4C –SiB₆ необхідна температура ГП має становити 2250 °C.

Рис. 1. Залежність мікротвердості (■) та щільності (▲) від температури ущільнення кераміки на основі карбіду бору [2–16, 20–22].

Другим недоліком $B_4C \in$ його висока крихкість, яка призводить до різкого падіння твердості з підвищенням навантаження [2, 20, 21]. Така висока крихкість виникає за рахунок низької зсувної напруги в карбіді бору. Під час прикладення механічного навантаження між ікосаедрами бору виникає зсув, який призводить до руйнування ланцюгу C–C–C та утворення аморфного вуглецю [2, 20].

Здатність до аморфізації карбіду бору спробували пояснювати його атомною конфігурацією. В₄С має ромбоедричну елементарну комірку, яка складається з 12 атомних ікосаедрів В₁₂, з'єднаних трьохатомними ланцюгами С–В–С чи С–С–С. Багаточисленні дослідження були направленні на встановлення природи та механізму аморфізації. В [3] з використанням методу теорії функції щільності, показано, що політип В₁₂(CBC) є причиною аморфізації. В противагу його розрахункам, в [22] продемонстровано, що сильна взаємодія ланцюга С–В–С з ікосаедрами спочатку виключає, а в підсумку руйнує ікосаедри, що призводить до утворення аморфної фази і погіршення балістичних характеристик В₄С. Проведені розрахунки дають можливість припустити, що легування кремнієм стабілізує ікосаедри і повинно привести до супротиву аморфізації.

Тобто, найбільш оптимальною добавкою, з погляду питомої ваги, умов отримання та змін в структурі карбіду бору, які значно підвищують експлуатаційні характеристики, є добавки або чистого кремнію, або сполук B–Si. Як було зазначено вище, додавання B₆Si не знижує температуру ГП, тому найбільш оптимальною добавкою є B₃Si. Дана сполука має нижчу (1270 °C) температуру плавлення та більшу (~ 25 % (за масою) кількість кремнію Si), що повинно інтенсифікувати процес ущільнення.

Отже, метою роботи є дослідження структуроутворення в системі B_4C-B_3Si та процесів, які відбуваються під час ГП, а також встановити як саме B_3Si впливає на твердість карбід бору за високих навантажень.

МАТЕРІАЛИ ТА МЕТОДИ

Було використано комерційно доступний порошок карбіду бору (середнім розміром частинок ~ 1 мкм з хімічним складом: 80 % (моль) бору та 20 % (моль) вуглецю) виробництва компанії "Епо Materials". Силіцид бору (B₃Si) отримували синтезом із елементів: аморфного бору та кремнію за температури 1300 °C [23]. Розмір силіциду бору становив ~ 3 мкм, з домішкою вільного кремнію ~ 1,8 % (за масою). Порошки карбіду бору та силіциду бору з вмістом: 10, 20, 30, 50 % (за масою) змішували в планетарному млині в середовищі ацетону з використанням розмельних шарів із B₄C–20 % (за об'ємом) ТіВ₂. ГП дисків діаметром 40 мм і товщиною 6 мм проводили в графітовій пресформі, яка попередньо була обмазана нітридом бору. Процес ГП проводили в температурному інтервалі, представленому в табл. 1. Після ГП матеріали шліфували та полірували, фінішною була обробкою за допомогою суспензії з розміром алмазних зерен ~ 1 мкм.

Вміст В ₃ Si, % (за ма- сою)	Режим ГП			Щільність, г/см ³		Вміст, % (за	а об'е	емом)	Розмір зерна, мкм		
	<i>T</i> , °C	<i>р</i> , МПа	t, хв	I	II	B ₁₂ (Si,B,C) ₃	SiC	TiB ₂	B ₁₂ (Si,B,C) ₃	SiC	TiB₂
	2000	32	15	2,53	2,56	98.2	1,0	0,8	3,2	1,9	2,4
10	2100	32	15	2,54	2,56	94,6	3,8	1,6	4,5	3,2	2,8
	2150	32	15	2,57	2,56	94,3	4,7	1,0	6,3	8,0	5,6
20	1900	32	15	2,56	2,58	93,8	4,9	1,3	4,2	3,9	2,0
	1950	32	15	2,58	2,58	93,0	5,5	1,5	3,2	4,2	2,5
	2000	32	15	2,57	2,58	90,1	8,5	1,4	3,5	6,7	3,0
30	1850	32	15	2,57	2,59	92,6	5,8	1,4	2,3	1,7	1,6
	1900	32	15	2,58	2,59	88,8	10,1	1,1	2,5	3,5	1,9
	1950	32	15	2,59	2,59	81,4	16,7	1,9	3,8	5,8	2,1
50	1650	32	15	2,42	2,48	-	_	-	-	-	-

Таблиця 1. Вміст В₃Ѕі в шихті в В₄С, режим ГП, щільність, об'ємний вміст фаз та розмір зерен кераміки

Примітка. І – експериментальні дані; ІІ – теоретичні дані.

Структуру матеріалів досліджували за допомогою скануючого електронного мікроскопа MIRA 3 ("Tescan Co.", Чехія) з енергодисперсійним датчиком X-Max ("Oxford Instruments", Oxford, Великобританія). Розмір зерен карбіду бору після ГП було визначено за допомогою фрактографічного аналізу (див. табл. 1).

Рентгенівський фазовий аналіз (РФА) виконували на установці ДРОН-4 в СиКα випромінюванні. Твердість визначали методом індентування на приладі FALCON 509 (Нідерланди) за навантажень від 2 до 300 Н. Міцність на триточковий згин визначали на зразках розмірами 3,5×4,5×36 мм з базою 30 мм.

РЕЗУЛЬТАТИ ДОСЛІДЖЕННЯ

Структура

Відповідно до результатів скануючого електронного мікроскопа, структура отриманих матеріалів була безпористою та гетерофазною (рис. 2–4). Незалежно від вмісту B₃Si в композитах були присутні три фази: чорна фаза – карбід

бору, сіра фаза – карбід кремнію, світла фаза – диборид титану (див. рис. 2–4). Кількість та середній розмір кожної фази в залежності від складу та температури ГП наведено в табл. 1.

Рис. 2. Мікроструктура кераміки B_4C-10 % (за масою) B_3Si , отриманої методом ГП за температури 2000 (*a*), 2100 (*b*), 2150 (*b*) °C.

Рис. 3. Структура кераміки B₄C–20 % (за масою) B₃Si отриманої методом ГП за температури 1900 (*a*), 1950 (*б*), 2000 (*в*) °C.

Рис. 4. Структура кераміки B₄C–30 % (за масою) B₃Si отриманої методом ГП за температури 1850 (*a*), 1900 (*б*), 1950 (*в*) °C.

B₄C–10 % (за масою) B₃Si. Мікроструктура композитів B₄C–10 % (за масою) B₃Si отримана за різних температур ГП представлена на рис. 2. За температури 2000 °C в структурі спостерігали включення SiC та невелику кількість твердого розчину на основі дибориду титану. Збільшення температури ГП до 2100 °C призводить до значного збільшення кількості SiC (див. рис. 2, δ), а за температури 2150 °C відбувається значний (~ 7–12 мкм) їхній ріст з одночасним ростом зерна карбіду бору до ~ 6,3 мкм (див. рис. 2, e, табл. 1).

B₄C–20 % (за масою) В₃Si. Додавання 20 % (за масою) силіциду бору до карбіду бору приводить до пониження температури ГП (~ 1950 °C) з одночасним збільшенням кількості карбіду кремнію в структурі (від 3 до 9 % (за об'ємом)) (див. рис. 3). Як і в попередньому випадку, збільшення температури ГП за 2000 °C призводить до значного росту зерна SiC (див. рис. 3, ϵ).

Найбільшу кількість карбіду кремнію в структурі було виявлено в композиті B_4C-30 % (за масою) B_3Si (див. рис. 4, табл. 1). Добавка B_3Si в кількості ~ 30 % (за масою) приводить до подальшого пониження до ~ 1800–1850 °C температури ГП (див. рис. 4). В даному композиті вже за температури 1950 °C спостерігали перекристалізацію карбіду кремнію, що свідчить про значну кількість рідкої фази під час ГП.

Слід відмітити, що вміст SiC зростає по мірі збільшення B₃Si в шихті та температури ГП. За фіксованого вмісту силіциду бору і варіювання температури ГП кількість утвореного карбіду кремнію має максимум з одночасним мінімумом розміру зерна карбіду бору (див. рис. 2–4, табл. 1). Як було показано в [24–26] введення SiC в B₄C приводить до уповільнення росту карбіду бору за рахунок розбіжності коефіцієнтів термічного розширення (β-SiC – 4,7·10⁻⁶ K⁻¹ [27], B₄C – (5,7–6)·10⁻⁶ K⁻¹ [28, 29]).

За низьких температур ГП присутня залишкова пористість та формується невелика кількість SiC. За оптимальної температури ГП залишкова пористість відсутня, утворені зерна SiC стримують ріст зерен B_4C і, як наслідок, отримуємо дрібнозернистий композит. Підвищення температури ГП за оптимальну призводить до значної рекристалізація карбіду кремнію, що негативно впливатиме на міцність кераміки [30], [31].

Слід відмітити, що в композиті B_4C-50 % (за масою) B_3Si , не відбувається формування карбіду кремнію під час ГП (рис. 5, 6). Проте за температури 1650 °С відбувається конгруентне плавлення B_3Si з утворенням B_6Si та кремнію, тобто, мікроструктура композита складається із B_4C-B_3Si (див. рис. 6, e).

Рис. 5. РФА з поверхні кераміки: B_4C-10 % (за масою) B_3Si , за температури 2100 °С (1), B_4C-20 % (за масою) B_3Si , за температури 1950 °С(2), B_4C-30 % (за масою) B_3Si , за температури 1900 °С (3); B_4C-50 % (за масою) B_3Si , за температури 1650 °С (4): • – (B_5i)₁₃C₂; • – 3C–SiC; • – B_3Si ; ∇ – Si; • – TiB₃.

В мікроструктурі гаряче пресованих матеріалів присутня фаза TiB₂, кількість ії включень становить до 2 % (за об'ємом) для всіх композицій. Її присутність пояснюється намолом з шарів, виготовлених із B₄C–20 % (за об'ємом) TiB₂, під час приготування порошкової суміші.

Рис. 6. Мікроструктура B₄C–B₃Si з відповідними спектрами MPCA: B₄C–20 % (за масою) B₃Si, T = 1950 °C (a); B₄C–30 % (за масою) B₃Si, T = 1900 °C (δ); B₄C–50 % (за масою) B₃Si, T = 1650 °C (b).

Відповідно до результатів електронної мікроскопії композитів, в системі B_4C-B_3Si зерна карбіду бору мають сферичну форму, що вказує на присутність рідкої фази під час ГП (див. рис. 2–4). Більш детальний аналіз фази B_4C за допомогою мікрорентгеноспектрального та рентгенфазового аналізів представлено на рис. 5–8.

За отриманими результатами в усіх зернах карбіду бору, не залежно від вмісту силіциду бору, присутній кремній, кількість розчиненого кремнію залежить від вмісту В₃Si в шихті та температури ГП (див. рис. 6). З іншого боку, в карбіді бору зростає кількість бору, що підтверджено методом мікрорентгеноспектрального аналізу (MPCA): В – ~ 80,2 % (ат.), С – ~ 19,8 % (ат.) для порошку та В – ~ 85 % (ат.), С – ~ 15 % (ат.) в кераміці, а також значною зміною періоду ґратки (див. рис. 8).

Розподіл хімічних елементів по перетину зерен карбіду бору наведено на рис. 7. Аналіз свідчить, що за високих температур ГП (2150 °C) та низького вмісту силіциду бору в шихті (10 % (за масою)) присутні окремі зерна карбіду бору зі збагаченим, майже в два рази, вмістом кремнію зі середнім значенням 0,23 % (ат.) і максимальним значенням 0,43 % (ат.) (див. рис. 7, *a*, табл. 2). Зниження температури ГП до 1900 °C з одночасним збільшенням вмісту силіциду бору до 30 % (за масою) призводить до збільшення середнього вмісту кремнію в зерні та виділення зерен карбіду бору, збагачених кремнієм, на границі потрійного стику (див. рис. 7, δ). Тобто, відбувається формування структури ядро–оболонка, яку також спостерігали в [32].

Отже, за високих (> 2000°С) температур відбувається формування окремих зерен карбіду бору збагачених на кремній, за нижчих температур (< 2000 °С) відбувається формування кільцевих структур.

Методом РФА (див. рис. 5) було підтверджено, що в результаті ГП відбуваються не тільки фазові, а і структурні зміни карбіду бору. Основним результатом було насичення бором та кремнієм B_4C та зміна параметрів гратки карбіду бору. Період гратки порошку карбіду бору становив: a - 5,6002 Å, c - 12,0622 Å, що відповідає хімічній формулі B_4C [33]. Одночасне підвищення як температури, так і вмісту силіциду бору, призводить до зростання періодів гратки карбіду бору (див. рис. 8).

Рис. 7. Розподіл хімічних елементів по перетину зерен карбіду бору для складів: B_4C-10 % (за масою) B_3Si , T = 2100 °C (a); B_4C-30 % (за масою) B_3Si , T = 1900 °C (δ).

бору за результатами мікрорентгеноспектрального аналізу та об'єм гратки карбіду бору за методом рентгенофазового аналізу											
Вміст В₃Si.	Температура	Вміст елементів, % (ат.)	Об'єм ґратки								

Таблиця 2. Вміст В₃Sі в шихті, температура ГП, хімічний склад карбіду

Вміст В₃Si,	Температура	Вміст е	лементі	Об'єм ґратки		
% (за масою)	ГП, °С	В	С	Si	B ₁₂ (Si,BC) ₃ , Å ³	
0	_	85	15	0	326	
10	2000	83,77	15	0,23	331	
10	2150	83,58	15	0,42	343	
20	1900	83,87	15	0,13	340	
20	1950	83,82	15	0,18	341	
30	1900	83,67	15	0,33	342	

Слід відмітити, що підвищення температури на 50 град приводить до значного зростання періоду гратки карбіду бору. Найбільшого ефекту, досягали за найвищої температури та кількості B₃Si ~ 30 % (за масою), що також узгоджується з результатами MPCA (див. рис. 6, 7). Параметр гратки карбіду бору

відповідає хімічній формулі $B_{12}C_3$ [33], що узгоджується з розрахунками за формулою $B_{12}(Si,BC)_3$, проведеними в [34]. Цікавим є стабілізація параметра *с* вже за вмісту силіциду бору в кількості 20 % (за масою). Схожа ситуація, насичення гратки кремнієм за параметром *с* спостерігали в системі B_4C –SiB₁₄ [35].

Рис. 8. Залежність параметру ґратки a (l-3) та c (4) від температури, вміст B_3Si в шихті: B_4C-10 % (за масою) B_3Si (\blacksquare); B_4C-20 % (за масою) B_3Si (\bullet); B_4C-30 % (за масою) B_3Si (\blacktriangle).

Отже, в результаті ГП відбувається взаємодія між вихідними матеріалами B_4C і B_3Si та утворенням карбіду кремнію, карбіду бору з хімічною формулою $B_{12}C_3$, в якому додатково розчинений кремній. Для кожного зі складів B_4C-x % (за масою) B_3Si існує своя оптимальна температура ГП, перевищення якої призводить до значної рекристалізації SiC і, як наслідок, до зниження механічних характеристик.

Механічні властивості

Як відомо, найбільш важливою механічною характеристикою для карбіду бору є його твердість та її залежність від навантаження. Залежність твердості від температури ГП та навантаження на індентор наведено на рис. 9. Із отриманих результатів слідує, що існує максимум твердості за оптимальної температури ГП (див. рис. 9, *a*). Так, у випадку нижчої температури ГП, ніж оптимальна, утворюється невелика кількість карбіду кремнію та присутня залишкова пористість, у разі перевищення (> 2000 °C) оптимальної температури ГП збільшується розмір зерен карбіду кремнію (див. рис. 2–4). За розміру зерен карбіду кремнію більше 5 мкм його об'єм під час індентування може бути більшим, ніж об'єм карбіду бору, що негативно впливає на значення твердості, тому що твердість SiC (24–28 ГПа [36]) нижча, чим B₄C (30– 37 ГПа [5]).

Для більшості крихких тіл у разі збільшення навантаження на індентор твердість знижується [12, 37–39], і даний випадок не є виключенням (див. рис. 9, δ). Слід відмітити, що для чистого карбіду бору чи карбіду бору із додавання 10 % (за масою) B₃Si, за навантаження від 100 H спостерігали різке падіння твердості через відколювання матеріалу за рахунок високої крихкості матеріалів (рис. 10, *a*, *в*). Додавання до карбіду бору від 20 % (за масою) B₃Si значно знижує крихкість композиційної кераміки і приводить до стабілізації твердості, яка за навантаження 200 H становить ~ 24 ГПа, а відбиток після

індентування був чітким, без характерного викрашування, яке притаманне для чистого B₄C (див. рис. 6, δ , c).

Рис. 9. Залежність твердості від температури ГП (*a*) і навантаження на індентор (δ): B₄C–10 % (за масою) B₃Si (*1*), B₄C–20 % (за масою) B₃Si (*2*), B₄C–30 % (за масою) B₃Si (*3*), B₄C–50 % (за масою) B₃Si (*4*).

Рис. 10. Відбиток після індентування за навантаження 200 Н: B₄C–10 % (за масою) B₃Si, T = 2150 °C (*a*, *b*, *d*) і B₄C–20 % (за масою) B₃Si, T = 1950 °C (*b*, *c*, *e*).

Міцність на згин карбіду бору з добавкою силіциду бору наведено в табл. 3. Як і для більшості керамічних матеріалів, міцність кераміки залежить

від розміру зерна [39]. За оптимальних температур ГП і за вмісту B₃Si в кількості 20 % (за масою) спостерігали максимізацію міцності за рахунок того, що саме за даного співвідношення розмір зерна матриці є найменшим у порівнянні з іншими композитами (див. табл. 1).

Римільний	Ущільнення			Фазорий	Щіль-	Hv.	HV	HV	Hvaa	Міцність	Літе-
скпал	Мотол	Τ,	Р,	Фазовии склад	ність,	ги ₁ , ГПа	гл _{и10,} ГПа	гл ₁₀₀ , ГПа	гло ₂₀₀ , ГПа	на згин,	рату-
овіад	метод	°C	МПа		г/см ³	1110				МПа	ра
B_4C	ІПС*	2100	60	B_4C	2,45	-	31,3	-	-	_	[44]
B ₄ C-20 %	ГП	2000	32	B ₄ C,	2,70	-	-	22,0	-	-	[45]
(за масою)				Al ₂ O ₃ , C							
Al_2O_3											
$B_4C-43~\%$	ΓП	2000	30	B_4C , TiB_2	3,10	23,0	-	-	-	506	[46]
(за масою) TiB ₂											
B ₄ C-25 %	Плав-	2280	-	B ₄ C, ZrB ₂	3,22	34,0	-	_	-	-	[47]
(моль) ZrB ₂	лення										
B ₄ C-20 %	Плав-	2380	-	B ₄ C, HfB ₂	4,00	32,0	-	_	-	-	[48]
(моль) HfB_2	лення										
B ₄ C-40 %	Плав-	2250	_	B ₄ C,	3,90	31,0	-	_	_	-	[49]
(моль) NbB ₂	лення			NbB_2							
B ₄ C-40 %	Плав-	2370	_	B_4C , TaB_2	4,70	36,5	25,9	_	_	-	[13]
(моль) ТаВ ₂	лення										
$B_4C-45 \%$	Плав-	2150	-	B_4C, VB_2	3,39	25,8	23,7	-	-	_	[16]
(моль) VB ₂	лення										
$B_4C20~\%$	ІПС*	1800	50	B_4C, TiB_2	2,83	31,0	-	-	-	_	[50]
(за масою)											
TiH ₂											
B ₄ C-20 %	CIEC**	2000	60	B_4C , TiB_2	2,92	-	32,0	-	-	750	[51]
(за об'ємом)											
TiB ₂											
B ₄ C-30 %	CIEC**	2000	60	B_4C , TiB_2	3,12	-	31,0	-	-	850	[51]
(за об'ємом)											
11B ₂	all at the	2000	(0)				20.0			1000	
$B_4C-40\%$	CIEC**	2000	60	B_4C, T_1B_2	3,32	-	30,0	-	-	1000	[51]
(3a 00 €MOM) T;D.											
T = D C	ШС*	1700	100	D C TiD			21.7				[1]
11, B, C		2000	20	D_4C-IID_2	_	_	21,7	_	_	_	[1]
C, B–10 %	1 1 1	2000	30	B_4C-ZrB_2	_	_	31.3	_	_	_	[/]
(за масою) 7r											
	гп	2000	20				227				[7]
$\mathbf{U}, \mathbf{B} = 10\%$	1 1 1	2000	50	$\mathbf{D}_4\mathbf{U} - \mathbf{L}\mathbf{I}\mathbf{B}_2$	-	_	33.1	-	_	_	[/]
$Zr\Omega_{2}$											
B ₁ C_20 %	РГП***	1850	30	B ₁ C CrB.	2 90	29.0	_	_	_	600	[4 15]
(моль) CrB ₂		1000	20	$\mathcal{D}_4 \mathcal{C}, \mathcal{C} \mathcal{D}_2$	2,70	27,0				000	[1,10]

Таблиця 3. Порівняння твердості матеріалів на основі карбіду бору

B ₄ C_20 %	ГП			B.C. SiC	2 64	28.0	_	_	_	~ 450	[4]
(32 OD'EMOM)	1 11			$\mathbf{D}_{4}\mathbf{C}, \mathbf{D}\mathbf{C}$	2,04	20,0				- +50	[ד]
(Sa OO EMOM)											
BC 30 %	гп	1800	32	B.C. TiB.	2 08	_	_	_	183	_	[6]
(33 MacOIO)	1 11	1000	52	SiC	2,70				10,5		[U]
TiSi2				510							
B ₄ C-30 %	ГП	2150	30	B ₄ C	2 54	35.0	_	_	274	420	[12]
(за об'ємом)		2100	20	CaB ₂ .C	_,	20,0			_/,.	.20	[]
CaB ₆				2, 2, -							
B ₄ C-8 % (за	ΙПС	1700	60	B ₄ C, SiC	_	_	36,7	_	_	650	[52]
масою) Si											
B ₄ C -10 %	ΓП	2050	32	$(B,Si)_{13}C_2,$	2,57	_	30,8	25,2	_	450	Дана
(за масою)				SiC							po-
B ₃ Si											бота
B ₄ C -20 %	ΓП	1950	32	(B,Si) ₁₃ C ₂ ,	2,58	_	29,8	23,7	24,62	520	Дана
(за масою)				SiC							po-
B ₃ Si											бота
$B_4C{-}30~\%$	ΓП	1900	32	(B,Si) ₁₃ C ₂ ,	2,57	-	27,2	24,8	22,38	420	Дана
(за масою)				SiC							po-
B ₃ Si											бота
$B_4C{-}50~\%$	ΓП	1650	32	$(B,Si)_{13}C_2,$	2,42	-	26,2	24,7	19,8	340	Дана
(за масою)				SiC							po-
B ₃ Si											бота

Таблиця 3. (Продовження)

*ІПС – іскро-плазмове спікання.

**CIEC - спікання імпульсним електричним струмом.

***РГП – реакційне ГП.

Отже, для кераміки системи B_4C-B_3Si спостерігали значну залежність механічних характеристик від температури ГП. Максимальної твердості досягали за оптимальної температури ГП за рахунок формування дрібнозернистої структури B_4C та SiC. Найвищі механічні показники було досягнуто за кількості B_3Si 20 % (за масою) за рахунок забезпечення найменшого розміру зерна карбіду бори (~ 3 мкм) та оптимального вмісту утвореного SiC – ~ 5,5 % (за об'ємом).

ОБГОВОРЕННЯ РЕЗУЛЬТАТІВ

Відповідно до результатів МРСА (див. рис. 2–4, 6, 7) та рентгенофазового аналізу (див. рис. 5, 8) під час ГП в системі B_4C-B_3Si відбувається взаємодія з утворенням: $(B,Si)_{13}C_2$ та SiC.

Автори припускають, що процес структуроутворення можна описати наступним чином: під час нагрівання за температури 1270 °С відбувається розкладання силіциду бору B_3 Si на B_6 Si + Si, відповідно до діаграми стану B–Si [40]. У разі підвищення температури до 1385 °С в системі з'являється рідка фаза на основі кремнію. Подальше підвищення температури до температур ГП (1850–2100 °С) призводить до того, що B_6 Si, розкладається до BSi_n (n = 12-23) та рідкого кремнію. Сама фаза BSi_n має структуру, подібну до β-В та в присутності 9 % (ат.) Si утворює рідку фазу [40]. Отже, з кожним розкладанням B₃Si відбувається вивільнення додаткового кремнію в системі, що вже за температури 1385 °C сприяє переходу системи в спікання за присутності рідкої фази. Максимальна кількість рідкої фази можлива за температури ~ 1850 °C. Утворена рідина реагує з карбідом бору з формування карбіду кремнію. З іншого боку, під час розкладання силіциду бору відбувається формування високобористих сполук BSi_n (n = 12-23), які, відповідно до [35], можуть повістю розчинитись в карбіду бору, тим самим відбувається утворення високобористого карбіду бору з розчиненим в ньому кремнієм B₁₂(Si,BC)₃.

Утворення $B_{12}(Si,BC)_3$ під час реакційного ГП, призводить до зміни не тільки хімічного складу, а і кристалографічної орієнтації карбіду бору. Відомо, що легування карбіду бору кремнієм, бором чи алюмінієм змінює хімічний зв'язок між атомами С–С, які з'єднують ікосаедри карбіду бору, на С–В– С [20], С–Si–C [41], Al [42], Mg [43]. Таке модифікування призводить до зменшення аморфізації карбіду бору та збереження твердості за підвищення навантаження. Схожий ефект відбувається і в даному випадку, з тою відмінністю, що відбувається одночасне насичення як бором, так і кремнієм (див. рис. 3, 4). Така модифікація карбіду бору призводить до збереження твердості навіть за навантаження 300 H (див. рис. 5, δ). Із порівняння твердості отриманих композитів на основі карбіду бору з літературними даними видно, що система B_4C-B_3Si є перспективною за щільністю, твердістю та температурою ГП (див. табл. 2).

Отже, композити системи B_4C-B_3Si мають унікальне поєднання низької щільності та збереженням високої твердості за високих (> 100 H) навантажень. Низьку щільність досягають через використання компонентів, щільність яких не перевищує 3,2 г/см³. Водночас високої твердості досягають за рахунок модифікування зав'язків C-C кремнієм та бором, що значно підвищує тріщиностійкість і твердість кераміки.

ВИСНОВКИ

Методом ГП отримано щільну кераміку системи B_4C-B_3Si з вмістом останнього 10, 20, 30 та 50 % (за масою). Збільшення кількості силіциду бору зменшує температуру ГП.

Показано, що ущільнення відбувається під час реакційного ГП з формуванням (B,Si)₁₃C₂ та SiC.

Встановлено, що модифікування карбіду бору, що змінює його хімічну формулу на B₁₂(Si,BC)₃, дозволяє зберегти високий (~ 22–26 ГПа) рівень твердості у разі збільшення навантаження на індентор.

Оптимальну температуру ГП за щільністю, високою міцністю і твердістю мають такі сполуки: B₄C–10 % (за масою) B₃Si, T = 2050 °C; B₄C–20 % (за масою) B₃Si, T = 1950 °C; B₄C–30 % (за масою) B₃Si, T = 1900 °C.

P. V. Mazur, O. M. Grigoriev, L. M. Melakh, I. V. Kozak, M. V. Karpets, D. V. Vedel Frantsevich Institute for Problems of Materials Sciences, National Academy of Sciences of Ukraine, Kyiv, Ukraine The influence of B_3Si on the structure and properties of B_4C ceramics

 B_4C -50 wt % B_3Si (T-1650 °C). A dense composite ceramic based on B_4C with an addition of 10 to 50 wt % of B_3Si was obtained by hot pressing. The increasing amount of

boron silicide in boron carbide lad to decreases a temperature of hot pressing to obtain a fully dense composite. There is the optimal hot pressing temperature for each composition, which corresponds to the maximum value of hardness, which is associated with the formation of a finegrained structure composite. During densification, the reactive hot pressing occurs, which consists in the decomposition of B_3Si to Si and BSi_n (n = 12-23) and further interaction with B_4C to form SiC and $B_{12}(Si,B,C)_3$. The modification of boron carbide with silicon lad to stabilization hardness (~ 24–26 GPa) in the load range from 2 to 200 H. High bending strength of ~500 MPa was achieved at a the B_4C-20 wt % B_3Si .

Keywords: boron carbide, boron silicide, hot pressing, hardness.

- Dudina D. V., Hulbert D.M., Jiang D., Unuvar C., Cytron S.J., Mukherjee A.K. In situ boron carbide-titanium diboride composites prepared by mechanical milling and subsequent Spark Plasma Sintering. J. Mater. Sci. 2008. Vol. 43. P. 3569–3576.
- Domnich V., Reynaud S., Haber R.A., Chhowalla M. Boron carbide: Structure, properties, and stability under stress. J. Am. Cer. Soc. 2011. Vol. 94. P. 3605–3628.
- Proctor J.E., Bhakhri V., Hao R., Prior T.J., Scheler T., Gregoryanz E., Chhowalla M., Giulani F. Stabilization of boron carbide via silicon doping. *J. Phys. Condens. Matter.* 2014. Vol. 27. P. 15401–15409.
- Zhang W., Yamashita S., Kita H. Progress in pressureless sintering of boron carbide ceramics – a review. Adv. Appl. Ceram. 2019. Vol. 118. P. 222–239.
- 5. Crouch I.G., Franks G.V., Tallon C., Thomas S., Naebe M. Glasses and ceramics. Elsevier Ltd, 2017.
- 6. Григорьев О.Н., Мелах Л.М., Коротеев А.В., Иванов С.М., Бега Н.Д., Котенко В.А. Ударостойкая керамика системы В₄С-TiSi₂. *Наукові нотатки*. 2017. № 5. С. 86–93.
- Guo W.M., Wu L.X., You Y., Lin H.T., Zhang G.J. Three-step reactive hot pressing of B₄C– ZrB₂ ceramics. *J. Eur. Ceram. Soc.* 2016. Vol. 36. P. 951–957.
- Skorokhod V., Krstic V., High strength-high toughness B₄C–TiB₂ composites. J. Mater. Sci. Lett. 2000. Vol. 19. P. 237–239.
- Moradkhani A., Baharvandi H., Determining the fracture resistance of B₄C–Nano SiB₆ nanocomposite by Vickers indentation method and exploring its mechanical properties. *Int. J. Refract. Metals. Hard Mater.* 2017. Vol. 68. P. 159–165.
- Zakhariev Z., Radev D. Properties of polycrystalline boron carbide sintered in the presence of W₂B₅ without pressing. J. Mater. Sci. Lett. 1988. Vol. 7. P. 695–696.
- Li X., Jiang D., Zhang J., Lin Q., Chen Z., Huang Z. Pressureless sintering of boron carbide with Cr₃C₂ as sintering additive. J. Eur. Ceram. Soc. 2014. Vol. 34. P. 1073–1081.
- Galanov B.A., Kartuzov V.V., Grigoriev O.N., Melakh L.M., Ivanov S.M., Kartuzov E.V., Swoboda P. Penetration resistance of B₄C–CaB₆ based light-weight armor materials. *Proc. Eng.* 2013. Vol. 58. P. 328–337.
- Demirskyi D., Sakka Y., Vasylkiv O. Consolidation of B₄C–TaB₂ eutectic composites by spark plasma sintering. *J. Asian Ceram. Soc.* 2015. Vol. 3. P. 369–372.
- Ordan'yan S.S., Dmitriev A., Bizhev K., Stepanenko E. Interaction In B₄C– MeB₂ System, Powder Metall. Metal. Ceram. 1987. Vol. 53. P. 1689–1699.
- Yamada S., Hirao K., Yamauchi Y., Kanzaki S. Sintering behavior of B₄C–CrB₂ ceramics. J. Eur. Ceram. Soc. 2003. Vol. 23. P. 561–656.
- Demirskyi D., Sakka Y., Vasylkiv O. Consolidation of B₄C–VB₂ eutectic ceramics by spark plasma sintering. *J. Asian. Ceram. Soc.* 2015. Vol. 3. P. 369–372.
- Makarenko G.N., Gordienko S.P., Fedorus V.B., Timofeeva I.I., Marek E.V., Zaitseva Z.A. Interaction of boron carbide with calcium oxide. *Powder Metall. Metal. Ceram.* 1994. V. 32. P. 85–88.
- Makarenko G.N., Gordienko S.P., Fedorus V.B., Timofeeva I.I., Marek E.V., Zaitseva Z.A. Interaction of boron carbide with scandium oxide. *Powder Metall. Metal Ceram.* 1994. Vol. 32. P. 828–831.
- Makarenko G.N., Gordienko S.P., Fedorus V.B., Timofeeva I.I., Marek E.V. Interaction of boron carbide with vanadium oxide. *Powder Metall. Metal Ceram.* 1998. Vol. 37. P. 113–115.
- Xiang S., Ma L., Yang B., Dieudonne Y., Pharr G.M., Lu J., Yadav D., Hwang C., La Salvia J.C., Haber R.A., Hemker K.J., Xie K.Y. Tuning the deformation mechanisms of boron carbide via silicon doping. *Sci. Adv.* 2019. Vol. 5. P. 1–7.

- Khan A.U., Etzold A.M., Yang X., Domnich V., Xie K.Y., Hwang C., Behler K.D., Chen M., An Q., LaSalvia J.C., Hemker K.J., Goddard W.A., Haber R.A. Locating Si atoms in Sidoped boron carbide: A route to understand amorphization mitigation mechanism. *Acta Mater*. 2018. Vol. 157. P. 106–113.
- An Q., Goddard W.A. Microalloying boron carbide with silicon to achieve dramatically improved ductility. J. Phys. Chem. Lett. 2014. Vol. 5. P. 4169–4174.
- Samsonov G.V., Sleptsov V.M. Preparation of BORON-SILICON alloys. Soviet Powder Metall. Metal Ceram. 1964. Vol. 6. P. 488–496.
- 24. So S.M., Choi W.H., Kim K.H., Park J.S., Kim M.S., Park J., Lim Y.S., Kim H.S. Mechanical properties of B₄C–SiC composites fabricated by hot-press sintering. *Ceram. Int.* 2020. Vol. 46. P. 9575–9581.
- Matović B., Maletaškić J., Prikhna T., Urbanovich V., Girman V., Lisnichuk M., Todorović B., Yoshida K., Cvijović-Alagić I. Characterization of B₄C–SiC ceramic composites prepared by ultra-high pressure sintering. *J. Eur. Ceram. Soc.* 2021. Vol. 41. P. 4755–4760.
- Da Rocha R.M., de Melo F.C.L. Pressureless sintering of B₄C–SiC composites for armor applications. *Adv. Ceram. Armor.* 2010. Vol. 5. P. 1041–1046.
- 27. Reeber R.R., Wang K.A.I. Thermal expansion of b-SiC, GaP and InP. *MRS Online Proc. Library.* 1995. Vol. 410. P. 211–216.
- Kuliiev R., Orlovskaya N., Hyer H., Sohn Y., Lugovy M., Ha D., Radovic M., Castle E.G., Reece M.J., Sasikumar P.V.W., Conti L., Graule T., Kuebler J., Blugan G. Spark plasma sintered B₄C-structural, thermal, electrical and mechanical properties. *Materials*. 2020. Vol. 13. P. 1–21.
- 29. Tsagareishvili G.V., Nakashidze T.G., Jobava J.S., Lomidze G.P., Khulelidze D.E., Tsagareishvili D.S., Tsagareishvili O.A. Thermal expansion of boron and boron carbide. *J. Less-Common Metals.* 1986. Vol. 117. P. 159–161.
- Magnani G., Antolini F., Beaulardi L., Burresi E., Coglitore A., Mingazzini C. Sintering, high temperature strength and oxidation resistance of liquid-phase-pressureless-sintered SiC–AlN ceramics with addition of rare-earth oxides. J. Eur. Ceram. Soc. 2009. Vol. 29. P. 2411–2417.
- Magnani G., Sico G., Brentari A. Two-step pressureless sintering of silicon carbide-based materials. 13th Int. Ceram. Congress. Part C. 2014. Vol. 89. P. 70–75.
- 32. Hayun S., Frage N., Dariel M.P. The morphology of ceramic phases in B_xC–SiC–Si infiltrated composites. *J. Solid. State Chem.* 2006. Vol. 179. P. 2875–2879.
- Aselage T.L., Tissot R.G. Lattice constants of boron carbides. J. Am. Ceram. Soc. 1992. Vol. 75. P. 2207–2212.
- Vasiliev O., Muratov V., Mazur P., Bilyi V., Karpets M., Bekenev V., Garbuz V., Khomko T., Kartuzov V. Silicon in intericosahedra chains of boron carbide. *J. Eur. Ceram. Soc.* 2022. Vol. 42. P. 5515–5521.
- 35. Li J., Goto T., Hirai T. Microstructure and thermoelectric properties of B₄C−SiB_n−Si composites prepared by arc melting. *J. Ceram. Soc. Japan.* 1998. Vol. 106. P. 194–197.
- 36. Salmany Kozekanan B., Moradkhani A., Baharvandi H., Ehsani N. Mechanical properties of SiC–C–B₄C composites with different carbon additives produced by pressureless sintering, *Int. J. Appl. Ceram. Technol.* 2021. Vol. 18. P. 957–971.
- Grigoriev O., Krivoshey G., Perepelitsa N., Khoroshun L. Internal stresses in quasi-binari Si₃N₄-based composites. *Plant Lab.* 1992. Vol. 10. P. 37–39.
- Grigoriev O., Subbotin V.I., Kovalchuk Y., Gogotsi Y.G. Structure and properties of SiC– TiB₂ ceramics. J. Mater. Proc. Manufact. Sci. 1998. Vol. 7. P. 99–110.
- Meyers M.A., Chawla K.K. Mechanical Behavior of Materials, 2nd ed. Cambridge: Cambridge University Press, 2008.
- Olesinski R.W., Abbaschian G.J. The B–Si (Boron–Silicon) system. Bull. Alloy Phase Diagrams. 1984. Vol. 5. P. 478–484.
- Vasiliev O., Muratov V., Mazur P., Bilyi V., Karpets M., Bekenev V., Garbuz V., Khomko T., Kartuzov V. Silicon in intericosahedra chains of boron carbide. *J. Eur. Ceram. Soc.* 2022. Vol. 42. P. 5515–5521.
- 42. Prikhna T.A., Barvitskyi P.P., Karpets M.B., Muratov V.B., Sverdun V.B., Khaber P., Kartuzov V.V., Moshchil' V.E., Dub S.N., Loshak M.G., Aleksandrova L.I., Kovylyaev V.V., Garbuz V.V., Marchenko A.A. Structure and properties of superhard materials based on aluminum dodecaboride α-AlB₁₂. J. Superhard Mater. 2017. Vol. 39. P. 299–307.
- 43. Zhang W., Cao X., Zhang J., Zou J., Wang W., He Q., Ren L., Zhang F., Fu Z. B₄C-based hard and tough ceramics densified via spark plasma sintering using a novel Mg₂Si sintering aid. *Ceram. Int.* 2022. Vol. 49, iss. 1, P. 145 153

- 44. Grasso S., Hu C., Vasylkiv O., Suzuki T.S., Guo S., Nishimura T., Sakka Y. High-hardness B₄C textured by a strong magnetic field technique. *Scr. Mater.* 2011. Vol. 64. P. 256–259.
- Grigoriev O., Tkachenko Y., Kovalchuk V., Yurechenko D., Ivashchenko O., Firsov V., Yulyugin V. Structure, strength, and wear resistance of materials of the system B₄C–Al₂O₃. *J. Chem. Inf. Model.* 2019. Vol. 53. P. 1689–1699.
- 46. Yue X.Y., Zhao S.M., Lü P., Chang Q., Ru H.Q. Synthesis and properties of hot pressed B₄C–TiB₂ ceramic composite. *Mater. Sci. Eng. A.* 2010. Vol. 527. P. 7215–7219.
- Ordan'yan S.S., Dmitriev A.I. Interaction in the system B₄C–ZrB₂. Soviet Powder Metall. Metal Ceram. 1989. Vol. 28. P. 424–426.
- Ordan'yan S. Interaction in the system B₄C-HfB₂. Powder Metall. Metal Ceram. 1989. P. 99–101.
- Ordan'yan S.S., Dmitriev A., Bizhev K., Stepanenko E. Interaction in B₄C–MeVB₂ systems. *Angewandte Chemie Int. Edition*, 2018. Vol. 6. P. 951–952.
- Jingzhe F., Weixia S., Zhuangfei Z., Chao F., Yuewen Z., Liangchao C., Qianqian W., Biao W., Xiaopeng J. Preparation and properties of B₄C–TiB₂ ceramics prepared by spark plasma sintering. *Chinese Physics B.* 2012. Vol. 30, P. 2010–2021.
- Huang S.G., Vanmeensel K., Malek O.J.A., Van der Biest O., Vleugels J. Microstructure and mechanical properties of pulsed electric current sintered B₄C-TiB₂ composites. *Mater. Sci. Eng. A.* 2011. Vol. 528. P. 1302–1309.
- Rehman S.S., Ji W., Khan S.A., Fu Z., Zhang F. Microstructure and mechanical properties of B₄C densified by spark plasma sintering with Si as a sintering aid. *Ceram. Int.* 2015. Vol. 41. P. 1903–1906.

Надійшла до редакції 30.01.20

Після доопрацювання 02.06.20

Прийнята до опублікування 10.08.20