# Одержання, структура, властивості

УДК 541.16

**S. F. Matar<sup>1</sup>, V. L. Solozhenko<sup>2,</sup>** \* <sup>1</sup>Lebanese German University (LGU), Sahel Alma, Jounieh, Lebanon <sup>2</sup>LSPM–CNRS, Université Sorbonne Paris Nord,

Villetaneuse, France

\*vladimir.solozhenko@univ-paris13.fr

# Пошук з перших принципів нових ультратвердих алотропів вуглецю високої щільності: гексагональні С<sub>6</sub>, С<sub>9</sub> і С<sub>12</sub>

Гексагональні алотропи вуглецю  $C_6$ ,  $C_9$  і  $C_{12}$  з топологією **qtz**, **sta** і **lon** відповідно було передбачено на основі кристалохімії та розрахунків з перших принципів. Нові алотропи є механічно (пружні властивості) і динамічно (фонони) стабільними фазами і характеризуються ультрависокою твердістю за Віккерсом, виключно високою для **qtz**  $C_6$  і  $C_{12}$ , близькою до раніше вивченої **qtz**  $C_3$ . Електронні зонні структури всіх нових алотропів демонструють поведінку від напівпровідникової до ізоляційної. **lon**  $C_{12}$  можна розглядати як новий "суперлонсдейліт".

**Ключові слова**: алотропи вуглецю, розрахунки з перших принципів, щільність, твердість, фонони, ізолятори.

#### ВСТУП І КОНТЕКСТ

Пошук і визначення параметрів своєрідних надтвердих алотропів вуглецю є постійною галуззю досліджень, особливо за допомогою сучасного програмного забезпечення для дослідження матеріалів, наприклад, програмного забезпечення на основі еволюційної кристалографії (USPEX) [1] та прогнозування кристалічної структури на основі оптимізації рою частинок (CALYPSO) [2]. Виявлені алотропи вуглецю зібрані в базі даних SACADA [3], щоб допомогти поінформувати дослідників про походження алотропів, упорядкованих за топологічними категоріями, ідентифікованими за допомогою програми TopCryst [4], наприклад, **dia** для алмазу, **lon** для "лонсдейліту" (рідкісна гексагональна форма алмазу, тут позначена як  $C_{12}$ ). Дані для цих структур опубліковано в Кембриджській базі структурних даних (див. [5] для одного з оригінальних алотропів вуглецю (C<sub>9</sub>), досліджених у цій роботі).

Такі структурні ідентифікації вимагають подальшого аналізу з квантовомеханічними обчисленнями для отримання величин, які точно визначають

© S. F. MATAR, V. L. SOLOZHENKO, 2023

бажану функцію, таких як твердість і механічна (пружні властивості) та динамічна (фонони) стабільність, а також електронна зонна структура. В обчисленнях використовують широко визнаний метод квантової механіки – теорію функціонала густини (ТФГ) [6, 7].)

Початковий гексагональний тривуглецевий алотроп C<sub>3</sub> нещодавно був визнаний у результаті досліджень *ab initio* надщільним і надтвердим [8], що підтверджує більш раннє твердження про такі властивості [9]. Структура гексагонального C<sub>3</sub> є похідною структури кремнезему (кварцу) і їй присвоєно топологію **qtz** (SACADA **qtz** #11). Для гексагонального C<sub>3</sub> також була запропонована п'ятикілецька вуглецева топологія **unj** (SACADA #29) [10]. Нарешті, нещодавно автори досліджували лінійні розташування С-С-С, відомі для ізольованої молекули, в ромбоедричному і гексагональному ультратвердих C<sub>3</sub>, що характеризуються змішаною гібридизацією вуглецю  $sp^3 - sp^2$  [11].

У цьому складному контексті метою цієї роботи є дослідження фізичних властивостей (механічних, динамічних та електронних) qtz  $C_3$  разом зі структурно пов'язаними новими алотропами вуглецю, а саме qtz  $C_6$ , qtz  $C_{12}$ , sta  $C_9$  та lon  $C_{12}$ .

# МЕТОДИКА ОБЧИСЛЕНЬ

Розроблені структури були піддані геометричним відновленням позицій атомів і констант ґраток до основного стану, що характеризується мінімальною енергією. Ітераційні обчислення проводили за допомогою пакета моделювання Vienna Ab initio Simulation Package (VASP) на основі ТФГ з використанням базисного набору плоских хвиль [12, 13]. Для атомних потенціалів використовували метод проекційних приєднаних хвиль [13]. Ефекти обміну і кореляції розглядали в рамках схеми узагальненої градієнтної апроксимації (УГА) [14]. Тестові розрахунки з гібридним функціоналом HSE06 [15] не привели до істотних змін результатів УГА. Відновлення атомів до геометрії основного стану було виконано за допомогою алгоритму спряженого градієнта [16].

Метод тетраедра Бльохля [17] з поправками за схемою Метфесселя та Пакстона [18] застосовували для оптимізації геометрії та енергетичних розрахунків відповідно. Для апроксимації зворотних просторових інтегралів зони Бріллюена було використано спеціальну k-точкову вибірку [19]. Для кращої надійності було проведено оптимізацію структурних параметрів разом із послідовними самоузгодженими циклами зі збільшенням k-сітки доти, поки сили, що діють на атоми, не стали менше 0,02 еB/Å, а компоненти напруги менше 0,003 eB/Å<sup>3</sup>.

Механічну стійкість було отримано з розрахунків пружних констант [20]. Для перевірки динамічної стабільності алотропів вуглецю було розраховано зонні структури фононної дисперсії. Фононні моди було розраховано з урахуванням гармонійного наближення через кінцеві переміщення атомів навколо їхніх положень рівноваги, щоб отримати сили із підсумовування за різними конфігураціями. Дисперсійні криві фононів в напрямку зони Бріллюена потім було отримано за допомогою інтерфейс-коду "Phonopy" на основі мови Python [21]. СІГ-файли та схеми структур, включаючи тетраедральні зображення, було створено за допомогою програмного забезпечення VESTA [22]. Електронні зонні структури та щільності станів було отримано за допомогою повнопотенційного методу розширених сферичних хвиль на основі ТФГ з використанням такої ж схеми УГА, що й у [23].

#### КРИСТАЛОХІМІЯ

 $C_3$  має структуру, одержану з одного з різновидів кварцу [10]. Структуру, що належить до просторової групи  $P6_222$ , #180, показано на рис. 1, *а* у кулестрижневому та тетраедричному представленнях з виділенням тетраедрично-го розташування. Ці представлення також застосовують до інших структур.



Рис. 1. Схеми кристалічних структур гексагональних алотропів вуглецю (з поліедричним представленням):  $a - \mathbf{qtz} \operatorname{C}_3[9]$ ;  $\delta - \mathbf{qtz} \operatorname{C}_6$ ;  $e - \mathbf{sta} \operatorname{C}_9$ ;  $e - \mathbf{qtz} \operatorname{C}_{12}$ ;  $\partial - \operatorname{lon} \operatorname{C}_{12}$ .



Рис. 1. (Продовження).

У табл. 1 наведено літературні [8] та поточні розраховані (у дужках) параметри гратки після повної необмеженої оптимізації геометрії. **qtz** C<sub>3</sub> є енергетично менш когезійним ( $E_{\text{ког}}$ /атом = -1,37 еВ/ат.), ніж тривуглець, утворений з лінійними структурними блоками С-С-С [11], знайденим з  $E_{\text{ког}}$ /атом = -1,55 еВ/ат. Крім того, як загальна тенденція, усі розглянуті тут алотропи є менш когезійними, ніж кубічний і гексагональний (лонсдейліт) алмаз з  $E_{\text{ког}}$ /атом = -2,46 еВ/ат.

| Алотропи вуглецю                           | <i>a</i> , Å | <i>c</i> , Å | $V_{\text{комірка}}$ , Å <sup>3</sup> | $V_{\text{атом}}, \text{\AA}^3$ | Позиція                                   |
|--------------------------------------------|--------------|--------------|---------------------------------------|---------------------------------|-------------------------------------------|
| $qtz C_3^{\#180} [8]$                      | 2,6010       | 2,7866       | 16,326                                | 5,44                            | C(3 <i>c</i> ) 1/2, 0, 0                  |
|                                            | (2,5975)     | (2,7925)     | (16,316)                              |                                 |                                           |
| <b>qtz</b> $C_6^{\#179}$                   | 2,5975       | 5,5858       | 32,63                                 | 5,43                            | C(6a) 0,498, 0, 0                         |
| <b>sta</b> C <sub>9</sub> <sup>#181</sup>  | 2,5889       | 8,6153       | 50,57                                 | 5,64                            | $C_1(3a) 0, 0, 0$                         |
|                                            |              |              |                                       |                                 | C <sub>2</sub> (6f) 1/2, 0, 0,2227        |
| $qtz C_{12}^{\#181}$                       | 5,1949       | 2,7953       | 65,27                                 | 5,44                            | C <sub>1</sub> (6g) 0,25, 0, 0            |
|                                            |              |              |                                       |                                 | C <sub>2</sub> (6 <i>i</i> ) 0,25, 0,5, 0 |
| <b>lon</b> $C_{12}^{\#179}$                | 2,5046       | 12,498       | 67,97                                 | 5,66                            | C(12c) 2/3, 1/3, 0,0210                   |
| <b>lon</b> C <sub>12</sub> <sup>#194</sup> | 2,5046       | 12,498       | 67,97                                 | 5,66                            | 3×C(4f) 2/3, 1/3, z                       |
|                                            |              |              |                                       |                                 | $z_1 = 0,0210$                            |
|                                            |              |              |                                       |                                 | $z_2 = 0,1457$                            |
|                                            |              |              |                                       |                                 | $z_3 = 0,8124$                            |

Таблиця 1. Параметри кристалічної структури гексагональних алотропів вуглецю

Збільшивши гратку вуглецю, автори ідентифікували вдвічі більшу комірку з одиничними шестикратними положеннями С у просторовій групі  $P6_522$ , #179 для гексагонального C<sub>6</sub>. Розрахункові дані кристала наведено в табл. 1, а структуру показано на рис. 1,  $\delta$ . У топології **qtz** C<sub>6</sub> близький до **qtz** C<sub>3</sub>, і атомні усереднені об'єми також близькі, хоча й менші в новому C<sub>6</sub>. Автори також включили результати, отримані для п'ятикільцевого C<sub>6</sub> в топології **unf**, такій як **unj** C<sub>3</sub> (SACADA #29) [10].

У процесі подальшого збільшення стехіометрії, було отримано новий C<sub>9</sub> з просторовою групою C<sub>9</sub>  $P6_{4}22$ , #179 з тетраедричним вуглецем (див. табл. 1, рис. 1, e) і встановлено нову (не зі списку SACADA) **sta** топологію з викорис-

танням TopCryst. Згодом дані про його структуру було опубліковано в кристалографічній базі даних CCDC [5].

Для повноти картини, на додаток до шестикратної позиції, просторова група  $P6_522$ , #179 має 12-кратну особливу (12*c*) *x*, *y*, *z* позицію, яка була врахована під час розробки розширеної стехіометрії С<sub>12</sub>. В табл. 1 наведено параметри основного стану після повної релаксації геометрії до мінімуму енергії, а структуру показано на рис. 1, *d*. Тетраедричне розташування є більш правильним, ніж у С<sub>3</sub>, С<sub>6</sub>, С<sub>9</sub> та **qtz** С<sub>12</sub>, і було встановлено, що топології належить до алмазоподібної. Насправді подальший аналіз топології С<sub>12</sub> показав, що вона належить до типу **lon**, тобто лонсдейліту (гексогональний алмаз). Більш глибока кристалографічна характеристика привела до просторової групи лонсдейліта  $P6_3/mmc$ , #194 для С<sub>12</sub>, що характеризується розщепленням позиції (12*c*) на три позиції (4*f*) з параметрами, наведеними в останньому стовпці табл. 1. В результаті цього, автори надали новому С<sub>12</sub> категорію "суперлонсдейліт". Слід звернути увагу, що просторова група #179 є підгрупою просторової групи #194.

Порівняння об'ємів чотирьох алотропів вуглецю з різною стехіометрією можна здійснити шляхом їхнього усереднення на атом. Показано (див. табл. 1), що атомні об'єми  $C_3$ ,  $C_6$  і **qtz**  $C_{12}$  менші, ніж значення для  $C_9$  і  $C_{12}$ , що дозволяє очікувати більшої щільності для них (обговорено в розділах, присвячених твердості й щільності).

# МЕХАНІЧНІ ВЛАСТИВОСТІ ЗА КОНСТАНТАМИ ПРУЖНОСТІ

Далі проводили аналіз механічної поведінки пружних властивостей шляхом виконання кінцевих спотворень гратки. Після цього систему повністю можна описати модулями всебічного стиску *B* і зсуву *G*, отриманими шляхом усереднення констант пружності за допомогою методу Фойгта [20] на основі рівномірної деформації.

Розраховані набори констант пружності  $C_{ij}$  (*i* та *j* відповідають напрямкам) наведено в табл. 2. Усі значення  $C_{ij}$  додатні. Константи пружності **lon**  $C_{12}$ мають найбільші значення, близькі до алмазу [24]. Структурно споріднені C<sub>3</sub> і C<sub>6</sub> мають трохи менші значення. С<sub>9</sub> має великі значення  $C_{ij}$ , але вони залишаються меншими, ніж в усіх інших досліджених алотропів вуглецю.

| Алотропи вуглецю                          | C <sub>11</sub> | C <sub>12</sub> | C <sub>13</sub> | C <sub>33</sub> | C <sub>44</sub> | B <sub>V</sub> | G <sub>V</sub> |
|-------------------------------------------|-----------------|-----------------|-----------------|-----------------|-----------------|----------------|----------------|
| <b>qtz</b> $C_3^{\#180}$                  | 1196            | 78              | 64              | 1162            | 559             | 439            | 558            |
| <b>qtz</b> $C_6^{\#179}$                  | 1186            | 88              | 64              | 1162            | 549             | 441            | 550            |
| <b>sta</b> C <sub>9</sub> <sup>#181</sup> | 1031            | 170             | 62              | 1081            | 430             | 415            | 448            |
| $qtz C_{12}^{\#181}$                      | 1158            | 86              | 54              | 1147            | 536             | 428            | 540            |
| lon $C_{12}^{\#179}$                      | 1211            | 107             | 11              | 1338            | 552             | 446            | 573            |
| lon $C_{12}^{\#194}$                      | 1211            | 107             | 11              | 1338            | 552             | 446            | 573            |

Таблиця 2. Константи пружності (*C<sub>ij</sub>*) і значення Фойгт-модулів всебічного стиску (*B<sub>v</sub>*) і зсуву (*G<sub>v</sub>*) гексагональних алотропів вуглецю (усі значення в ГПа)

Модулі всебічного стиску  $B_V$  і зсуву  $G_V$  було отримано з рівнянь, що відповідають гексагональній системі [25]:

$$B_V = \frac{1}{9} \{ 2(C_{11} + C_{12}) + 4C_{13} + C_{33} \};$$
  

$$G_V = \frac{1}{30} \{ C_{11} + C_{12} + 2C_{33} - 4C_{13} + 12C_{44} + 6(C_{11} - C_{12}) \}.$$

Останні два стовпці табл. 2 показують отримані  $B_V$  і  $G_V$ . С<sub>12</sub> має найбільші значення, близькі до прийнятих для алмазу  $B_V = 445$  ГПа і  $G_V = 550$  ГПа [26]. Інші алотропи також мають великі значення модулів всебічного стиску та зсуву, близькі до алмазу, особливо С<sub>3</sub> і С<sub>6</sub>, тоді як С<sub>9</sub> має найменші значення.

Твердість за Віккерсом  $H_V$  була передбачена за допомогою чотирьох сучасних теоретичних моделей. Термодинамічна модель [27], яка базується на термодинамічних властивостях і кристалічній структурі, демонструє дивовижне узгодження з наявними експериментальними даними [28] і тому її рекомендовано для оцінки твердості надтвердих і ультратвердих фаз [29]. Підхід Ляхова–Оганова [30] враховує топологію кристалічної структури, силу ковалентного зв'язку, ступінь іонності та спрямованості; однак у випадку ультратвердих фаз легких елементів ця модель дає занижені значення твердості [28, 29]. Дві емпіричні моделі, Мажника–Оганова [31] і Chen–Niu [32], використовують властивості пружності. Тріщиностійкість  $K_{Ic}$  оцінювали в рамках моделі Мажника–Оганова [31]. Результати для запропонованих на даний момент гексагональних алотропів вуглецю та інших з літературних джерел підсумовано в табл. З і 4.

Таблиця 3. Твердість за Віккерсом (*H<sub>v</sub>*) і модуль всебічного стиску (*B*<sub>0</sub>) гексагональних алотропів вуглецю, розрахованих авторами в рамках термодинамічної моделі твердості

| Алотропи<br>вуглецю                            | Просторова<br>група        | a = b, Å    | <i>c,</i> Å | р, г/см <sup>3</sup> | <i>Н<sub>V</sub>,</i> ГПа | <i>В</i> ₀, ГПа |
|------------------------------------------------|----------------------------|-------------|-------------|----------------------|---------------------------|-----------------|
| $qtz C_3^{\#180}[9]$                           | P6 <sub>2</sub> 22         | 2,605       | 2,801       | 3,635                | 101                       | 458             |
| $qtz C_3^{\#180}[8]$                           | P6 <sub>2</sub> 22         | 2,613       | 2,811       | 3,600                | 100                       | 454             |
| $qtz C_3^{\#180}$                              | P6 <sub>2</sub> 22         | 2,6010      | 2,7866      | 3,665                | 101                       | 462             |
| <b>unj</b> C <sub>6</sub> <sup>#178</sup> [33] | <i>P</i> 6 <sub>1</sub> 22 | 3,5626      | 3,3673      | 3,233                | 90                        | 407             |
| $qtz C_6^{\#179}$                              | P6 <sub>5</sub> 22         | 2,5975      | 5,58585     | 3,666                | 102                       | 462             |
| <b>sta</b> C <sub>9</sub> <sup>#181</sup>      | P6 <sub>4</sub> 22         | 2,5889      | 8,6153      | 3,590                | 99                        | 452             |
| <b>lon</b> $C_{12}^{\#179}$                    | P6 <sub>5</sub> 22         | 2,5046      | 12,498      | 3,525                | 98                        | 444             |
| $qtz C_{12}^{\#181}$                           | P6 <sub>4</sub> 22         | 5,1942      | 2,7925      | 3,668                | 102                       | 462             |
| <b>lon</b> $C_{12}^{\#179}$                    | P6 <sub>5</sub> 22         | 2,5046      | 12,498      | 3,525                | 98                        | 444             |
| lon $C_{12}^{\#194}$                           | $P6_3/mmc$                 | 2,5046      | 12,498      | 3,525                | 98                        | 444             |
| Лонсдейліт                                     | $P6_3/mmc$                 | 2,5221 [34] | 4,1186 [34] | 3,5164               | 97                        | 443             |
| Алмаз                                          | Fd-3m                      | 3,5666      | 51 [35]     | 3,5169               | 98                        | 445 [26]        |

Таблиця 3 надає загальну інформацію про кристалічні структури, щільність, твердість і об'ємні модулі згідно з термодинамічною моделлю. Якщо зосередити увагу на щільності, то є чіткі докази більш високої щільності алотропів **qtz** ( $C_3$ ,  $C_6$  і  $C_{12}$ ) порівняно з іншими алотропами вуглецю. Найменшу щільність спостерігали для п'ятикільцевої відкритої структури **unj**  $C_6$  [10, 33].

Аналіз усіх даних (див. табл. 3 і 4) дозволяє зробити висновок, що висока щільність зумовлює високі значення твердості, які є найвищими для згаданих вище алотропів **qtz**; але це не дозволяє стверджувати, що їхня твердість вища, ніж у алмазу. Нарешті, об'ємні модулі також вищі для **qtz** C<sub>3</sub>, C<sub>6</sub> і C<sub>12</sub> алотропів, але залишаються в межах алмаз/лонсдейліт.

Таблиця 4. Механічні властивості гексагональних вуглецевих алотропів: твердість за Віккерсом (*H<sub>V</sub>*), модуль всебічного стиску (*B*), модуль зсуву (*G*), модуль Юнга (*E*), коефіцієнт Пуассона (v) і тріщиностійкість (*K*<sub>lc</sub>)

|                                           | H <sub>V</sub> |    |     | В   |       | C     | <b></b>  | ··*  | K     |                      |
|-------------------------------------------|----------------|----|-----|-----|-------|-------|----------|------|-------|----------------------|
| Алотрони                                  | Т              | LO | MO  | CN  | $B_0$ | $B_V$ | Gv       | L    | v     | N <sub>IC</sub>      |
| вуплецю                                   | ГПа            |    |     |     |       |       |          |      |       | МПа∙м <sup>0,5</sup> |
| $qtz C_3^{\#180}[9]$                      | 101            | 89 | -   | -   | 458   | 433   | _        | -    | -     | _                    |
| $qtz C_3^{\#180}[8]$                      | 100            | 89 | 99  | 98  | 454   | 416   | 521      | 1103 | 0,06  | 5,9                  |
| $qtz C_3^{\#180}$                         | 101            | 90 | 106 | 104 | 462   | 439   | 558      | 1176 | 0,054 | 6,4                  |
| unj $C_6^{\#178}$                         | 90             | 82 | -   | -   | 407   | -     | -        | _    | -     | _                    |
| <b>qtz</b> $C_6^{\#179}$                  | 102            | 90 | 105 | 101 | 462   | 441   | 550      | 1165 | 0,060 | 6,4                  |
| <b>sta</b> C <sub>9</sub> <sup>#181</sup> | 99             | 88 | 83  | 75  | 452   | 416   | 448      | 989  | 0,104 | 5,5                  |
| $qtz C_{12}^{\ \#181}$                    | 102            | 90 | 103 | 101 | 462   | 428   | 540      | 1140 | 0,056 | 6,2                  |
| <b>lon</b> $C_{12}^{\#179}$               | 98             | 90 | 109 | 107 | 444   | 446   | 573      | 1204 | 0,050 | 6,6                  |
| <b>lon</b> $C_{12}^{\#194}$               | 98             | 90 | 109 | 107 | 444   | 446   | 573      | 1204 | 0,050 | 6,6                  |
| Лонсдейліт                                | 97             | 90 | 99  | 94  | 443   | 432   | 521      | 1115 | 0,070 | 6,2                  |
| Алмаз                                     | 98             | 90 | 100 | 93  | 445 [ | 26]   | 530 [26] | 1138 | 0,074 | 6,4                  |

Примітка. Т – термодинамічна модель; LO – модель Ляхова–Оганова; МО – емпірична модель Мажника–Оганова; CN – емпірична модель Chen–Niu; *E*\* і v\* – значення, розраховані з використанням ізотропного наближення.

#### ДИНАМІЧНІ ВЛАСТИВОСТІ ФОНОНІВ

Важливий критерій фазової стабільності одержують із властивостей фонону. Фонони – це кванти коливань, їхня енергія квантується сталою Планка h, яку використовують у зведеній формі  $\hbar$  ( $\hbar = h/2\pi$ , отримуючи енергію фононів:  $E = \hbar \omega$  ( $\omega$  – частота).

Усі чотири алотропи вуглецю досліджували за допомогою вивчення фононів для визначення їхніх відповідних динамічних властивостей. На рис. 2 показано фононні смуги. У горизонтальному напрямку смуги розвиваються вздовж основних ліній гексагональної зони Бріллюена (зворотний *k*-простір). Вертикальний напрямок показує частоти  $\omega$  в терагерцах (ТГц).

Існують оптичні моди 3N-3 з більшою (до кількох терагерц) енергією, ніж три акустичні моди, починаючи з нульової енергії ( $\omega = 0$ ) у точці Г (центр зони Бріллюена). Вони відповідають решіткам жорстких мод трансляції кристала (дві поперечні і одна поздовжня). Решта смуг відповідають оптичним модам і досягають максимального значення за  $\omega \approx 40$  ТГц у С<sub>12</sub>, що спостерігали для алмазу за допомогою раманівської спектроскопії [36].

Що стосується  $C_3$ , то фонони мають негативну частоту вздовж  $\Gamma$ –А (\*, див. 2, *a*), тобто вздовж вертикального напрямку зони Бріллюена, що вказує на нестабільність відносно перехідного стану, тобто структура може бути нестабільною, і можливим є фазовий перехід. Однак зауважимо, що автори роботи [9], присвяченій "qtz"  $C_3$ , заявляли про всі позитивні фонони, не показавши відповідних зонних структур. Хоча ми не ставимо під сумнів їхні результати, однак зазначимо, що в тих самих протоколах розрахунку для всіх чотирьох форм вуглецю інші стехіометрії вуглецю не показують негативних фононів, і їх вважають динамічно стабільними. Припускаємо, що розширення стехіометрії вуглецю в досліджуваних на даний час рядах є стабілізуючим фактором структури вуглецю.



Рис. 2. Фононні зонні структури гексагональних алотропів вуглецю:  $a - \mathbf{qtz} C_3$  (#180);  $\delta - \mathbf{qtz} C_6$  (#179);  $s - \mathbf{sta} C_9$  (#181);  $2 - \mathbf{qtz} C_{12}$  (#181);  $\partial - \mathbf{lon} C_{12}$  (#194).

# ЕЛЕКТРОННІ ЗОННІ СТРУКТУРИ ТА ГУСТИНА СТАНІВ

З використанням параметрів кристалічних граток, наведених в табл. 1, електронні зонні структури було отримано за допомогою методу розширених сферичних хвиль [23] на основі повноелектронної теорії функціонала густини (див. рис. 3). Смуги розвиваються вздовж основних напрямків примітивних тетрагональних зон Бріллюена. Оскільки всі чотири системи характеризуються шириною забороненої зони між валентною зоною і порожньою зоною провідності, відлік енергії вздовж вертикальної осі енергії здійснюється по відношенню до вершини валентної зони. Зонні структури  $C_3$  і  $C_6$  різні, хоча схожі за формою. Найнижча смуга зони провідності знаходиться на лінії М в обох структурах. Однак для валентної зони найвища смуга знаходиться в точці А в  $C_3$ , тоді як у  $C_6$  найвища валентна смуга знаходиться в точці Г – таке зустрічається частіше. У  $C_9$  ширина забороненої зони мала (~ 0,5 еВ), що вказує на напівпровідниковий характер. Нарешті, найбільшу заборонену зону спостерігали у алмазоподібного  $C_{12}$  зі значенням близьким до 4 еВ з непрямою  $\Gamma_{вал. зона}$ – $M_{3oна пров.}$  поведінкою.



Рис. 3. Електронні зонні структури гексагональних алотропів вуглецю:  $a - \mathbf{qtz} C_3$  (#180);  $\delta - \mathbf{qtz} C_6$  (#179);  $s - \mathbf{sta} C_9$  (#181);  $2 - \mathbf{qtz} C_{12}$  (#181);  $\partial - \mathbf{lon} C_{12}$  (#194).

#### ВИСНОВКИ

Нові алотропи вуглецю  $C_6$ ,  $C_9$  і  $C_{12}$  запропоновано на основі прикладної кристалохімії, підтвердженої кількісними оцінками за допомогою розрахунків в рамках квантово-механічної теорії функціонала густини. Нові алотропи з крупнішими тетраедричними сітками належать до різних топологій: **qtz**  $C_6$  (похідне кварцу), **sta**  $C_9$  (нова топологія) і **lon**  $C_{12}$  (лонсдейлітоподібний).

Встановлено, що всі фази є енергетично когезійними, з одного боку, і механічно (пружні властивості) і динамічно (фонони) стабільними, з іншого. Виявлено, що їхні електронні властивості коливаються від властивостей широкозонних ізоляторів до властивостей напівпровідників. Винятково висока твердість за Віккерсом передбачена для **qtz** C<sub>6</sub>, і є близькою до раніше заявленого **qtz** C<sub>3</sub> і, як може здаватися, трохи вища, ніж у алмазу. **lon** C<sub>12</sub> можна розглядати як новий "суперлонсдейліт".

Чудові механічні властивості нових алотропів вуглецю дозволяють розглядати їх як потенційні надтверді матеріали [37], однак слід вивчити експериментальні шляхи їхнього синтезу.

> S. F. Matar<sup>1</sup>, V. L. Solozhenko<sup>2</sup> <sup>1</sup>Lebanese German University (LGU), Sahel Alma, Jounieh, Lebanon <sup>2</sup>LSPM–CNRS, Université Sorbonne Paris Nord, Villetaneuse, France First principles search for novel ultrahard high-density carbon allotropes: hexagonal C<sub>6</sub>, C<sub>9</sub> and C<sub>12</sub>

Hexagonal carbon allotropes  $C_6$ ,  $C_9$  and  $C_{12}$  with **qtz**, **sta** and **lon** topologies, respectively, were predicted on the basis of crystal chemistry and first principles calculations. The new allotropes are mechanically (elastic properties) and dynamically (phonons) stable phases and are characterized by ultra-high Vickers hardness, exceptionally high for **qtz**,  $C_6$  and  $C_{12}$ , close to the previously studied **qtz**,  $C_3$ . The electronic band structures of all new allotropes show semi-conducting to insulating behavior. **lon**  $C_{12}$  can be considered as novel "superlonsdaleite".

*Keywords*: carbon allotropes, first principles calculations, density, hardness, phonons, insulators.

- 1. Oganov A.R. Crystal structure prediction: reflections on present status and challenges. *Faraday Discuss.* 2018. Vol. 211. P. 643–660.
- Wang Y., Lv J., Zhu L., Ma Y. CALYPSO: A method for crystal structure prediction. *Comput. Phys. Commun.* 2012. Vol. 183. P. 2063–2070.
- Hoffmann R., Kabanov A.A., Golov A.A., Proserpio D.M. Homo Citans and carbon allotropes: For an ethics of citation. Angew. Chem. Int. Ed. 2016. Vol. 55. P. 10962–10976; SACADA database (Samara Carbon Allotrope Database), www.sacada.info
- Shevchenko A.P., Shabalin A.A., Karpukhin I.Yu., Blatov V.A. Topological representations of crystal structures: generation, analysis and implementation in the *TopCryst* system. *Sci. Technol. Adv. Mater.* 2022. Vol. 2. P. 250–265.
- 5. Matar S.F. CCDC 2233635: Crystal Structure Determination, 2022, DOI: 10.5517/ccdc.csd. cc2dz8rf
- Hohenberg P., Kohn W. Inhomogeneous electron gas. *Phys. Rev. B.* 1964. Vol. 136. P. 864– 871.
- Kohn W., Sham L.J. Self-consistent equations including exchange and correlation effects. *Phys. Rev. A*. 1965. Vol. 140. P. 1133–1138.
- Luo B., Wu L., Zhang Z., Li G., Tian E. A triatomic carbon and derived pentacarbides with superstrong mechanical properties. *iScience*. 2022. Vol. 25. art. 104712.
- Zhu Q., Oganov A.R., Salvadó M.A., Pertierra P., Lyakhov A.O. Denser than diamond: *Ab* initio search for superdense carbon allotropes. *Phys. Rev. B*. 2011. Vol. 83. art. 193410.
- Öhrström L., O'Keeffe M. Network topology approach to new allotropes of the group 14 elements. Z. Kristallogr. 2013. Vol. 228. P. 343–346.
- Matar S.F., Etourneau J., Solozhenko V.L. First-principles investigations of tricarbon: From the isolated C<sub>3</sub> molecule to a novel ultra-hard anisotropic solid. *Carbon Trends*. 2022. Vol. 6. art. 100132.
- 12. Kresse G., Furthmüller J. Efficient iterative schemes for *ab initio* total-energy calculations using a plane-wave basis set. *Phys. Rev. B.* 1996. Vol. 54. art. 11169.

- Kresse G., Joubert J. From ultrasoft pseudopotentials to the projector augmented wave. *Phys. Rev. B*. 1994. Vol. 59. P. 1758–1775.
- Perdew J., Burke K., Ernzerhof M. Generalized gradient approximation made simple. *Phys. Rev. Lett.* 1996. Vol. 77. P. 3865–3868.
- 15. Heyd J., Scuseria G.E., Ernzerhof M. Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 2006. Vol. 124. art. 219906.
- Press W.H., Flannery B.P., Teukolsky S.A., Vetterling W.T. *Numerical Recipes*, 2nd ed., Cambridge University Press: New York, USA, 1986.
- 17. Blöchl P.E., Jepsen O., Anderson O.K. Improved tetrahedron method for Brillouin-zone integrations. *Phys. Rev. B.* 1994. Vol. 49. P. 16223–16233.
- Methfessel M., Paxton A.T. High-precision sampling for Brillouin-zone integration in metals. *Phys. Rev. B.* 1989. Vol. 40. P. 3616–3621.
- Monkhorst H.J., Pack J.D. Special points for Brillouin-zone integration. *Phys. Rev. B.* 1976. Vol. 13. P. 5188–5192.
- Voigt W. Über die Beziehung zwischen den beiden Elasticitätsconstanten isotroper Körper. Annal. Phys. 1889. Vol. 274. S. 573–587.
- Togo A., Tanaka I. First principles phonon calculations in materials science. Scr. Mater. 2015. Vol. 108. P. 1–5.
- 22. Momma K., Izumi F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. *J. Appl. Crystallogr.* 2011. Vol. 44. P. 1272–1276.
- 23. Eyert V. Basic notions and applications of the augmented spherical wave method. *Int. J. Quantum Chem.* 2000. Vol. 77. P. 1007–1031.
- Krishnan R.S., Chandrasekharan V., Rajagopal E.S. The four elastic constants of diamond. *Nature*. 1958. Vol. 182. P. 518–520.
- 25. Wallace D.C. Thermodynamics of crystals. New York, USA: John Wiley and Sons, 1972.
- Brazhkin V.V., Solozhenko V.L. Myths about new ultrahard phases: Why materials that are significantly superior to diamond in elastic moduli and hardness are impossible. *J. Appl. Phys.* 2019. Vol. 125. art. 130901.
- Mukhanov V.A., Kurakevych O.O., Solozhenko V.L. The interrelation between hardness and compressibility of substances and their structure and thermodynamic properties. *J. Superhard Mater.* 2008. Vol. 30. P. 368–378.
- 28. Matar S.F., Solozhenko V.L. Crystal chemistry and ab initio prediction of ultrahard rhombohedral B<sub>2</sub>N<sub>2</sub> and BC<sub>2</sub>N. *Solid State Sci.* 2021. Vol. 118. art. 106667.
- 29. Solozhenko V.L., Matar S.F. Prediction of novel ultrahard phases in the B–C–N system from first principles: Progress and problems. *Materials*. 2023. Vol. 16. art. 886.
- 30. Lyakhov A.O., Oganov A.R. Evolutionary search for superhard materials: Methodology and applications to forms of carbon and TiO<sub>2</sub>. *Phys. Rev. B*. 2011. Vol. 84. art. 092103.
- 31. Mazhnik E., Oganov A.R. A model of hardness and fracture toughness of solids. J. Appl. Phys. 2019. Vol. 126. art. 125109.
- Chen X.Q., Niu H., Li D., Li Y. Modeling hardness of polycrystalline materials and bulk metallic glasses. *Intermetallics*. 2011. Vol. 19. P. 1275–1281.
- O'Keeffe M., Adams G.B., Sankey O.F. Predicted new low energy forms of carbon. *Phys. Rev. Lett.* 1992. Vol. 68. P. 2325–2328.
- Ownby P.D., Yang X., Liu J. Calculated X-ray diffraction data for diamond polytypes. J. Am. Ceram. Soc. 1992. Vol. 75. P. 1876–1883.
- Bindzus N., Straasø T., Wahlberg N., Becker J., Bjerg L., Lock N., Dippel A.-C., Iversen B.B. Experimental determination of core electron deformation in diamond. *Acta Cryst. A.* 2014. Vol. 70. P. 39–48.
- 36. Krishnan R.S. Raman spectrum of diamond. Nature. 1945. Vol. 155. art. 171.
- 37. Solozhenko V.L., Le Godec Y. A hunt for ultrahard materials. J. Appl. Phys. 2019. Vol. 126. art. 230401.

Надійшла до редакції 17.02.23

Після доопрацювання 20.02.23

Прийнята до опублікування 22.02.23