Одержання, структура, властивості

УДК 661.883:536.45

Т. О. Пріхна^{1, 4, *}, А. С. Локаткіна¹, П. П. Барвіцький¹,

М. В. Карпець^{1, 2, 4}, С. С. Пономарьов³, А. А. Бондар⁴,

Б. Бюхнер⁵, Й. Вернер⁵, Р. Клюге⁵, В. Є. Мощіль¹,

О. І. Боримський¹, Л. М. Девін¹, С. В. Ричев¹, Р. Хабер⁶, Зейнеп Айгузер Ясар⁶, Б. Матовіч⁷, М. Руцький⁸,

О. В. Присяжна¹

¹Інститут надтвердих матеріалів ім. В. М. Бакуля НАН України, м. Київ, Україна ²Національний технічний університет України "Київський політехнічний інститут ім. Ігоря Сікорського", м. Київ, Україна ³Інститут фізики напівпровідників ім. В. Є. Лашкарьова НАН України, м. Київ, Україна ⁴Інститут проблем матеріалознавства ім. І. М. Францевича НАН України, м. Київ, Україна ⁵Leibniz-Institut für Festkörper- und Werkstoffforschung, Dresden, Germany ⁶Department of Materials Science and Engineering, Rutgers, The State University of New Jersey, Piscataway, USA ⁷Institute of Nuclear Sciences Vinča, Materials Science Laboratory, Belgrade University, Belgrade, Serbia ⁸Faculty of Mechanical Engineering, Kazimierz Pulaski University of Technology and Humanities in Radom, Radom, Poland *prikhna@ukr.net

Структура, механічні властивості та високотемпературна стійкість матеріалів на основі ZrB₂ та HfB₂

Досліджено структуру, механічні характеристики й високотемпературну стійкість у вакуумі та на повітрі спечених за високого квазігідростатичного тиску (4,1 ГПа) та за допомогою гарячого пресування (за тиску 30 МПа) матеріалів на основі ZrB₂ і HfB₂ без добавок та з добавками SiC і Si₃N₄. Показано,

© Т. О. ПРІХНА, А. С. ЛОКАТКІНА, П. П. БАРВІЦЬКИЙ, М. В. КАРПЕЦЬ, С. С. ПОНОМАРЬОВ, А. А. БОНДАР, Б. БЮХНЕР, Й. ВЕРНЕР, Р. КЛЮГЕ, В. Є. МОЩІЛЬ, О. І. БОРИМСЬКИЙ, Л. М. ДЕВІН, С. В. РИЧЕВ, Р. ХАБЕР, ЗЕЙНЕП АЙГУЗЕР ЯСАР, Б. МАТОВІЧ, М. РУЦЬКИЙ, О. В. ПРИСЯЖНА, 2023 що нетривале (4 хв) спікання в умовах високого тиску за порівняно невисокої (1800 °С) температури дозволяє значно покращити механічні властивості матеріалів у порівнянні з аналогічними, одержаними іншими методами (гарячим пресуванням та іскро-плазмовим спіканням). У разі спікання за високого (4,1 ГПа) тиску добавка 20 % (за масою) SiC до ZrB₂ i 30 % (за масою) SiC до HfB₂ приводить до зниження питомої ваги ZrB_2 і HfB_2 та підвищення твердості (на 17 і 46 % відповідно) і тріщиностійкості (на 40 і 21 % відповідно). У разі додавання SiC відбувається формування твердих розчинів через взаємну дифузію С і Si в матричні фази ZrB_2 або HfB_2 та незначну дифузію Zr і Hf в області, збагачені SiC. Під час спікання ZrB₂ і HfB₂ без добавок за високого тиску покращення механічних властивостей пояснюється утворенням у спеченому матеріалі міцніших зв'язків між зернами. Додавання SiC до ZrB_2 дещо знижує модуль Юнга, але підвищує демпфувальну здатність отриманих матеріалів. Одночасне додавання SiC і Si₃ N_4 до ZrB₂ приводить меншою мірою до зростання твердості, але веде до подальшого підвищення трішиностійкості. Температура плавлення у вакуумі спечених ZrB₂ і HfB₂ виявилася істотно вищою, ніж у матеріалів з добавками SiC. Композитний матеріал, виготовлений з суміші HfB₇-30 % (за масою) SiC мав густину $\rho = 6,21$ г/см³, мікротвердість $H_{V}(9,8 H) = 38,1\pm1,4 \Gamma\Pi a, H_{V}(49 H) = 27,7\pm0,24 \Gamma\Pi a, H_{V}(98 H) = 26,3\pm2,03 \Gamma\Pi a, mpi$ щиностійкість $K_{lc}(9,8 H) = 8,2\pm0,2 M\Pi a M^{0.5}, K_{lc}(49 H) = 6,8\pm0,6 M\Pi a M^{0.5}, K_{lc}(98 H) =$ 6,4±0,11 МПа м^{0,5}, що істотно вище за аналогічні характеристики HfB₂, спеченого в тих же умовах, але без добавок.

Ключові слова: тугоплавкі бориди, SiC, Si₃N₄, композити, ультрависокотемпературні матеріали, спікання в умовах високих тисків і температур, гаряче пресування, електронна мікроскопія, механічні властивості, температура плавлення у вакуумі, високотемпературна стійкість до окислення.

вступ

Для втілення в життя різноманітних аерокосмічних і ядерних програм, для створення наступного покоління гіперзвукових космічних апаратів, що повертаються, апаратів, які мають бути оснащені аеродинамічними поверхнями з гострими кутами між ними, наприклад, передні кромки крил чи носові наконечники теплового захисту, а також деякі компоненти двигунів, високопродуктивні різальні інструменти потребують розробки нових вогнетривких матеріалів, що працюють у нейтральних та в окислювальних середовищах за температур до 1600–2000 °C [1].

До надвисокотемпературних матеріалів можна віднести сполуки, що містять перехідний метал, такий як Zr, Hf, Ta, Mo, W, Nb, поєднаний з B, C, N. Дибориди і карбіди IV–V груп перехідних металів мають дуже високу (> 2500 °C) температуру плавлення, високі механічні характеристики (твердість, тріщиностійкість) та високу термічну стійкість, і тому їх можна рекомендувати для застосування у ультрависокотемпературній конструкційній кераміці [1–7]. Виняткове поєднання у ZrB₂ і HfB₂ високої температури плавлення (3245 °C для ZrB₂ і 3380 °C для HfB₂ [5]) з високою теплопровідністю, високими механічними характеристиками, стійкістю до високотемпературної абляції в окислювальному середовищі через здатність утворювати захисні, стійкі до окислення окалини за підвищених температурр [1], робить ці матеріали особливо перспективними для ультрависокотемпературних застосувань. Вважається, що чим вище міцність матеріалу за кімнатної температури, тим вищою буде його міцність під час дії високих температур [5].

Попередні дослідження авторів дозволили суттєво підвищити механічні характеристики кераміки з карбіду бору через додавання 20 % (за масою) SiC до вихідного порошку B₄C перед гарячим пресуванням, що було пояснено розчиненням під час спікання деякої кількості кремнію у матричній фазі карбіду бору [8]. Відомо, що додавання SiC до ZrB₂ і HfB₂ [1, 5–12] підвищує міцність під час згинання і тріщиностійкість, тому SiC було обрано, як одну з добавок у цьому дослідженні. Також, деякими дослідниками [5] встановлено, що міцність під час згинання для чистого ZrB2 змінюється від 275 до 629 МПа, а додавання 10-30 % (за масою) SiC (зернистістю 1-6 мкм) може привести до максимального (1089 МПа) значення міцності під час згинання. Додавати більшу кількість SiC до ZrB2 недоцільно через нижчий коефіцієнт теплового розширення SiC, який дорівнює 4,7·10⁻⁶ К⁻¹ від кімнатної температури до 300 °С, у порівнянні з $ZrB_2 - 5,9 \cdot 10^{-6} \text{ K}^{-1}$ від кімнатної температури до 600 °C, що може призводити до виникнення додаткових напруг у композиті ZrB₂–SiC під час термоциклування. Таку ж тенденцію, стосовно значень міцності під час згинання, спостерігали і для кераміки на основі HfB₂, яка хоча і має більшу питому вагу та вартість, у порівнянні з ZrB₂, але має також і важливі переваги. Фундаментальною відмінністю її властивостей є переріз захоплення теплових нейтронів, який у сполуках гафнію на три порядки вищий, ніж у сполуках цирконію. Відносно висока питома вага HfB₂ (11,20 проти 6,12 г/см³ у ZrB₂) може бути корисною, наприклад, для зміщення центру тяжіння у деяких схемах аеродинамічних систем високої підйомної сили (High-Lift System Aerodynamics) [7]. У табл. 1 наведено механічні характеристики матеріалів на основі ZrB₂ і HfB₂ (без добавок та з добавками SiC), отриманих методами гарячого пресування (ГП) та іскро-плазмового спікання (ППС), взяті з літературних джерел. Для матеріалу, виготовленого з ZrB₂-15SiC¹ за температури 1820 °C за допомогою ГП під 35 МПа протягом 7 хв, було визначено модуль Юнга $E = 480 \pm 4$ ГПа і коефіцієнт Пуассона и = 0.13 [12]. Для матеріалів, отриманих з HfB2-30SiC-2TaSi2 методом IIIC за температури 2100 °C і тиску 30 МПа протягом 3 хв. $E = 488 \pm 4$ ГПа, $\mu = 0.088$, а для матеріалу, одержаного методом ГП за температури 1900 °С і тиску 30 МПа протягом 35 xb, $E = 506 \pm 4 \Gamma \Pi a$, $\mu = 0.121 [1]$.

Відомо про позитивний вплив додавання Si₃N₄ на процес спікання та подальше збільшення стійкості до окислення керамічних інструментів на основі ZrB₂/SiC [13, 14]. Додавання Si₃N₄ привело до збільшення густини та зменшення пористості композиційного матеріалу на основі ZrB₂/SiC, спеченого у процесі IIIC [14]. Товщина оксидного шару та приріст маси через формування окисної плівки на керамічному інструменті з ZrB₂/SiC/Si₃N₄ за температури окислення 1300 °C виявилися меншими на 8,2 і 11,8 % відповідно, порівняно з керамічним інструментом з ZrB₂/SiC [14]. Міцність під час згинання матеріалу ZrB₂/SiC/Si₃N₄ після окислення була вищою на 116,1 %, порівняно з матеріалом ZrB₂/SiC (товщина оксидного шару, приріст маси в результаті окиснення та міцність під час згинання ZrB₂/SiC/Si₃N₄ після окиснення становили: 8,476 мкм, 1,436 мг·см⁻² і 891 МПа, відповідно) [14]. Автори [14] повідомляють, що щільна оксидна плівка, яка утворюється на поверхні кераміки ZrB₂/SiC/Si₃N₄ під час окислення, покращує її окислювальну стійкість.

Під час виготовлення матеріалів під високим тиском (4,1 ГПа) і за високої температури (метод HP–HT) очікували подальшого покращення механічних характеристик кераміки на основі ZrB_2 та HfB₂ за рахунок можливого утворення твердих розчинів, а також сподівались знизити температуру та час спікання, порівняно з ГП. Паралельно ті ж самі матеріали виготовляли і методом ГП, щоб оцінити можливий ефект від використання більш високого

¹ Тут і далі склад матеріалу приведено в % (за масою).

тиску при спіканні. Розроблені нами апарати високого тиску (ABT) великого об'єму (до 6300 см³) роблять перспективним використання техніки НР–НТ для промислового виробництва даних матеріалів.

Таблиця 1. Спосіб виготовлення і механічні характеристики матеріалів на основі ZrB₂ і HfB₂: мікротвердість за Віккерсом *H*_ν, тріщиностійкість *K*_{Ic}, густина ρ, міцність під час згинання σ_{зг} за кімнатної температури

Матеріал, посилання	Спосіб і умови отримання (температура, тиск, час витримки)	<i>Н</i> _V , ГПа	<i>К_{Iс},</i> МПа∙м ^{0,5} за наван- таження 9,8 Н	р, г/см ³	σ _{зг,} МПа
$ZrB_2[5]$	IПС (2000 °С, 50 МПа, 6 хв)	16,5±0,9	3,6±0,3	5,83	450±40
$ZrB_{2}[11]$	ГП (1900 °С, 30 МПа)	8,2±0,4	2,35±0,15	5,28	350±30
ZrB ₂ +20SiC [5]	IПС (1950 °С, 50 МПа, 4 хв)	21,1±0.6	6,4±0,6	5,46	700±90
ZrB ₂ +30SiC [9]	ГП (1950 °С, 30 МПа)	_	_	безпористий	705±120
ZrB ₂ +15SiC [12]	ГП (1820 °С, 35 МПа, 7 хв)	17,7±0,4	4,07±0,03	5,67	887±125
$ZrB_2+20SiC+2La_2O_3[5]$	IПС (1950 °С, 50 МПа, 3 хв	19,3±0,6	5,2±0,5	5,51	600 ± 70
$HfB_2[5]$	IПС, 2100 °С, 50 МПа, 5 хв)	19,8±0,7	3,5±0,4	10,42	510±50
HfB ₂ +20SiC [5]	IПС (2000 °С, 50 МПа, 4 хв)	27,0±0,6	5,0±0,4	9,03	620±50
HfB ₂ +30SiC [12]	IПС, 2100 °С, 30 МПа, 2 хв)	26±1,0	3,9±0,3	8,72	590±50
$HfB_2\!\!+\!\!30SiC\!\!+\!2TaSi_2\left[1\right]$	IПС (2100 °С, 30 МПа, 3 хв)	_	4,65±0,05	8,66	465±225
$HfB_2\!\!+\!\!30SiC\!\!+\!\!2TaSi_2[1]$	ГП (1900 °С, 30 МПа, 35 хв)	_	3,6±0,5	8,62	665±75
HfB2+20SiC+2La2O3 [5]	IПС (2000 °С, 50 МПа, 3 хв)	24,2±0,8	4,4±0,4	8,96	690±40

ТЕХНІКА ПРОВЕДЕННЯ ЕКСПЕРИМЕНТУ

Порошки ZrB₂ та HfB₂ без добавок і суміші ZrB₂-20SiC, ZrB₂-30SiC, ZrB2-20SiC-4Si3N4, HfB2-30SiC і HfB2-40SiC спікали під високим квазіізостатичним тиском 4.1 ГПа за температури 1800 °С (методом НР-НТ) протягом 8 хв (4 хв нагрівання та 4 хв витримування за максимальної температури, потім нагрів відключали). В дослідженнях було використано комерційно доступні порошки. Фазовий склад та параметри кристалічної гратки порошків були досліджені авторами (табл. 2). Зразки, що виготовляли методом НР-НТ у АВТ типу "тороїд", мали діаметр ~ 15 мм і висоту 7 мм. Бічна поверхня зразка контактувала з графітовим нагрівником, а торцеві поверхні – з таблетками з гексагонального нітриду бору. Температуру (1800 °C) та тиск (4.1 ГПа) визначали за попередньо одержаними за допомогою реперів та термопар градуювальними кривими. Також зразки виготовляли методом ГП за тиску 30 МПа в діапазоні температур 1850-2000 °С. Після нагріву до максимальної температури (протягом 1-2 год) витримка становила 0,08-1 год, після чого нагрів відключали. Методом ГП спікали зразки діаметром 30 мм висотою 10 мм. Наявне у ІНМ НАН України обладнання для ГП дозволяє виготовляти зразки діаметром до 300 мм. Температуру спікання у процесі ГП визначали за допомогою пірометра. Максимальна температура, за якої проводили процес спікання, визначалась досягненням максимальної усадки композиційного матеріалу і не допущенням витікання розплаву з прес-форми. Гаряче пресування проводили у графітових прес-формах, на стінки яких наносили тонкий шар нітриду бору.

У табл. 2 наведено результати виконаного авторами рентгеноструктурного дослідження із застосуванням уточнення методом Рітвельда фазового складу вихідних ZrB₂ (TV 6-09-03-46–75) та HfB₂ (TV 6-09-03-418–75) порошків з розміром зерна < 10 мкм, які містили 0,1 та 0,2 % домішкового вуглецю відповідно, SiC (5–10 мкм, CAS 409-21-2 LTD "KM-Labc") та Si₃N₄.

Вихідний порошок	Фазовий склад,	Параметр кристалічної ґратки,				
	% (за масою)		HM			
		а	D	С		
ZrB_2	$ZrB_2 - 97$	0,3168		0,3530		
	t-ZrO ₂ – 1	0,3604		0,5208		
	m-ZrO ₂ – 2	0,5153	0,5210	0,5310		
HfB_2	~ 100	0,3143		0,3476		
Si_3N_4	α -Si ₃ N ₄ – 4	0,7747		0,5620		
	β -Si ₃ N ₄ – 96	0,7599		0,2907		
SiC	β -SiC – ~ 100	0,4359				
	C, SiO ₂ – невелика кількість					

Таблиця 2. Фазовий скла	ц та параметри	і кристалічної ґратки	a, b, c
вихідних комерційних по	оошків		

Добавки SiC і Si_3N_4 змішували всуху з порошками диборидів за допомогою планетарного активатора (1–3 хв).

Структуру зразків досліджували методом рентгенівської дифракції на дифрактометрі Ultima IV (Rigaku) на монохроматичному випромінюванні Си $K\alpha$ ($\lambda = 1,541841$ Å) в діапазоні кутів $2\theta = 8^{\circ} - 88^{\circ}$ з кроком сканування 0,05 град і часом експозиції в точці 2 с. В якості монохроматора використовували монокристал графіту, встановлений на дифрагованому пучку. Аналіз експериментальних даних проводили за допомогою програм PowderCell 2.4, що дозволяють реалізувати повне уточнення профілю за методом Рітвельда [15].

Мікротвердість за Віккерсом і тріщиностійкість визначали за допомогою твердоміра FALCON 500 (Нідерланди), обладнаного оптичним мікроскопом, цифровою 5-мегапіксельною камерою та комп'ютером. Твердість і тріщиностійкість визначали за навантажень 9,8, 49 і 98 Н, для кожного навантаження робили не менше п'яти відбитків.

Модуль пружності розраховували за методикою, описаною в [16, 17], з використанням нижньої моди коливань дисків, оскільки вона мала найбільший практичний інтерес і забезпечувала високу надійність реєстрації резонансу.

Температури початкового плавлення матеріалів у вакуумі визначали за методикою Пірані–Альтертума [18] з використанням пірометра ЕОР-68. Інструментальні похибки приладу становлять ± 4 °C за температури 1400–2000 °C та ± 12 °C за 2000–3000 °C. Техніку Пірані–Альтертума та оцінку похибок вимірювання детально описано в [19, 20].

Стабільність фаз під час окислення досліджували до температури 1600 °С з використанням диференціального термичного (ДТА) та термогравіметричного (ТГА) аналізів, одержаних за допомогою приладу TAG16 фірми "Setaram" у потоці штучного повітря (20 стандартних см³/хв або 20 sccm). Зразки розміщували в тиглі з Al₂O₃ об'ємом 100 мл і нагрівали з постійною швидкістю (зазвичай 10 К/хв). Різницю температур між зразком і контрольним тиглем, яка пропорційна тепловому потоку від зразка, вимірювали за допомогою термопар Pt/PtRh10. Зміни маси реєстрували за допомогою дуже чутливих симетричних терезів (межа визначення – < 1 мкг). Система TAG є однією з найточніших у світі ізотермічних систем. Крім того, прилад містить пару узгоджених печей, що усуває ефект дрейфу. Він є високоефективним у разі вивчення корозії та/або окислення.

РЕЗУЛЬТАТИ ТА ОБГОВОРЕННЯ

Склад вихідних сумішей, параметри спікання, фазовий склад спечених матеріалів та параметри елементарної комірки присутніх у матеріалах фаз після спікання, визначені методом рентгеноструктурного аналізу з використанням уточнення методом Рітвельда, наведено в табл. З. Результати дослідження твердості й тріщиностійкості матеріалів, спечених в умовах НР-НТ, до та після нагрівання у вакуумі до температур початку плавлення або їхньої механічної руйнації наведено в табл. 4 та на рис. 1, а, б. Для встановлення температури початку плавлення у вакуумі було використано спеціальні зразки у формі прямокутних брусків 4×6×12 мм (див. рис. 1, в), з просвердленими невеликими (діаметром 1 мм) глухими отворами, перпендикулярними до однієї зі сторін, що мала розміри 4×12 мм, на глибину 2/3 товщини бруска, тобто 4 мм. Отже, товщина стінок між краєм отвору і краєм бруска становила всього 1,5 мм (якщо стінка була товстішою, то енергії лазера було недостатньо, щоб нагріти матеріали до температури плавлення). Зразок знаходився у вакуумній камері з прозорою перелньою стінкою, через яку на зразок у зроблений глухий отвір спрямовували лазерний промінь та спостерігали за утворенням краплі розплаву. Матеріали нагрівали лазером до температури, коли в отворі з'явилася перша крапля розплаву. Результати пірометричних вимірювань температур плавлення у вакуумі та результати дослідження механічних властивостей до і після нагрівання до температур плавлення також наведено в табл. 4 і на рис. 1, *a*, *б*.

Дослідження температури плавлення у вакуумі показали, що матеріали, спечені в умовах НР-НТ з порошків ZrB2 або HfB2 без добавок, не розплавилися після нагрівання до 2970 °C, але розтріскувались за цієї температури (через великий перепад температур і досить тонку стінку між краєм отвору і краєм прямокутного зразка). У разі матеріалів з додаванням SiC або SiC та Si₃N₄, спечених в умовах HP–HT, початок плавлення спостерігали вже за 2150-2160 °С і розтріскування зразків не мало місця. Твердість матеріалів і тріщиностійкість (див. табл. 4, рис. 1, а, б) істотно знизилися після нагріву до температур початку плавлення чи розтріскування. Так, твердість (за навантаження на індентор 9,8 Н) матеріалу, виготовленого з ZrB₂, зменшилася на 19 %, а тріщиностійкість – на 28 %, а виготовленого з ZrB₂-20SiC – на 47 і 32 % відповідно. Спечений з ZrB2-20SiC матеріал (зразок 2) мав густину 5,04 Γ/cM^3 , $H_V(9,8 \text{ H}) = 24,2\pm1,0 \Gamma\Pi a$, $H_V(49 \text{ H}) = 16,7\pm1,1 \Gamma\Pi a$, $K_{IC}(49 \text{ H}) =$ 7,1±1,55 МПа·м^{0,5}. Спечений в умовах НР-НТ НfB₂ (зразок 4, густина якого 10,42 г/см³) перед нагріванням мав твердість $H_{V}(9,8 \text{ H}) = 21,3\pm0,84 \text{ ГПа},$ $H_{\nu}(49 \text{ H}) = 19.3 \pm 1.34$ ГПа та $H_{\nu}(98 \text{ H}) = 19.2 \pm 0.5$ ГПа, а тріщиностійкість $K_{\rm L}(49 \text{ H}) = 7.2 \text{ MПа} \cdot \text{M}^{0.5}$; ZrB₂ (зразок 1 з густиною 6.2 г/см³) мав такі характеристики: $H_V(9,8 \text{ H}) = 17,7\pm0,6 \Gamma\Pi a$, $H_V(49 \text{ H}) = 15,4\pm1,2 \Gamma\Pi a$ та $H_V(98 \text{ H}) =$ 15,3±0,4 ГПа, $K_{\rm Lc}(9,8 \text{ H}) = 4,3 \text{ МПа·м}^{0,5}$. Спечений в умовах НР–НТ матеріал з HfB₂-30SiC (зразок 5 з густиною 6,21 г/см³) мав $H_V(9,8 \text{ H}) = 38,1\pm1,4$ ГПа, $H_{I}(49 \text{ H}) = 27,7\pm2,8 \text{ }\Gamma\Pi\text{a}, H_{V}(98 \text{ H}) = 26,3\pm2,03 \text{ }\Gamma\Pi\text{a} \text{ i } K_{Ic}(9,8 \text{ H}) = 8,2\pm0,2 \text{ }M\Pi\text{a}\cdot\text{m}^{0.5}, K_{Ic}(49 \text{ H}) = 6,8\pm0,6 \text{ }M\Pi\text{a}\cdot\text{m}^{0.5}, K_{Ic}(96 \text{ H}) = 6,4\pm0,11 \text{ }M\Pi\text{a}\cdot\text{m}^{0.5}.$ Тобто, для HfB_2 твердість зменшилася на 46 % і тріщиностійкість – на 70 %, а для HfB_2 –30SiC – на 41 і 5 % відповідно.

Таблиця 3. Склад вихідної суміші, параметри спікання (тиск *p*, температура *T*, час витримки τ), фазовий склад спечених матеріалів на основі ZrB₂ та HfB₂, параметри елементарної комірки (*a*, *c*) фаз, присутніх у матеріалах, густина ρ, пористість П

	Склад	2		~	_т Фазовий Параметр елемен-		0		
Зразок	вихідної	ρ ,	^{р,} Т, °С		склад,	тарної комі	рки, нм	р, г/см ³	П, %
	шихти	1 I Ia		тод	% (за масою)	а	с		
Спікання методом НР-НТ									
1	ZrB_2	4,1	1800	0,13	ZrB_2-100	0,3168	0,3528	6,2	~ 0
2	ZrB ₂ -20SiC	4,1	1800	0,13	$ZrB_2 - 80$	0,3169	0,3508	5,04	~ 2,0
					β -SiC – 20	0,4359			
3	ZrB2-20SiC-	4,1	1800	0,13	$ZrB_2 - 78$	0,3168	0,3529	4,98	~ 1,8
	$4Si_3N_4$				β -SiC – 20	0,4357			
					$\beta\text{-}Si_3N_4-2$	0,7609	0,2906		
4	HfB_2	4,1	1800	0,13	HfB_2-100	0,3141	0,3473	10,42	~ 1,0
5	HfB ₂ -30SiC	4,1	1800	0,13	HfB_2-72	0,3143	0,3475	6,21	~ 3,9
					β -SiC – 28	0,4358			
6	HfB2-40SiC	4,1	1800	0,13	HfB_2-64	0,3141	0,3474	7,27	0
					β -SiC – 36	0,4358			
				Спіка	ння методом І	П			
7	ZrB_2	0,025	2000		ZrB_2-100	0,3168	0,3531	5,97	1,8
8	ZrB ₂ -20SiC	0,03	1900	0,08	$ZrB_2 - 82$	0,3166	0,3528		
					β -SiC – 18	0,4356		4,02	~ 23,0
9	ZrB ₂ -20SiC	0,03	1900	1,00	$ZrB_2 - 85$	0,3163,	0,3523		
					β -SiC – 15	0,4353		25	~ 0
10	ZrB ₂ -30SiC	0,03	1900	1,00	$ZrB_2 - 72$	0,3165	0,3524		
					β -SiC – 28	0,4356		5,25	~ 0
11	HfB_2	0,03	1850	1,00	HfB_2-100	0,3142	0,3473	10,79	~ 0
12	HfB ₂ -30SiC	0,02	1900	0,08	HfB_2-70	0,3141	0,3473	5,84	~ 7,0
					β -SiC – 30	0,4356			

Механічні характеристики (мікротвердість і тріщиностійкість) матеріалів, отриманих авторами методами НР–НТ та ГП, було порівняно з літературними даними (рис. 2), отриманими методами ІПС та ГП (числові дані наведено в табл. 1, 4 і 5). Для деяких керамічних матеріалів у табл. 6 наведено механічні характеристики, оцінені методом ультразвукового резонансу.

Виготовлення ультрависокотемпературної кераміки на основі ZrB_2 та HfB_2 в умовах високого тиску і високої температури (HP–HT) дозволило зменшити час спікання, температуру спікання та отримати матеріали з покращеними механічними характеристиками. Порівняння характеристик матеріалів, отриманих методами HP–HT, ГП та IПС (даних авторів та літературних) показало перевагу використання методу HP–HT для виготовлення кераміки на основі ZrB₂ і HfB₂. Порівняння механічних характеристик кераміки на основі ZrB₂– SiC, виготовленої методом ГП за різних витримок за максимальних температур для зразків 8, 9 і 10 (див. табл. 3 і 5), показало, що більший час витримки, незважаючи на тривалий час (1–2 год) нагріву до максимальної температури, є доцільнішим для виготовлення більш щільних матеріалів (зі щільністю близькою до теоретичної) з високими механічними показниками.

Таблиця 4. Твердість за Віккерсом <i>Н</i> _V і тріщиностійкість <i>К</i> _{Ic} матеріалів
на основі ZrB_2 та HfB ₂ , спечених методом HP–HT ($p = 4,1$ ГПа, $T = 1800$ °C,
au = 0,13 год) до та після нагрівання у вакуумі (нумерація зразків
відповідає табл. 3)

Sna-	Склад	Т на-		<i>H</i> _V , ГПа		Kı	_с , МПа∙м	0,5		
вихідної		гріву,	у, за навантаження, Н				за навантаження, Н			
JUK	шихти	°C	9,8	49	98	9,8	49	98		
1	ZrB_2	_	17,7±0,6	15,4±1,2	15,3±0,4	4,3±0,05	4,2±0,2	4,0±0,25		
1*	ZrB_2	тріснув	14,42±0,7	7,85±0,4	8,35±0,5	3,1	3,46	3,83		
		за 2970								
2	ZrB ₂ -20SiC	_	24,2±1,0	17,6±0,7	16,7±1,1	-	7,1±1,55	6,2±1,24		
2*	ZrB ₂ -20SiC	2160	12,9±1,1	11,3±0,4	10,6±0,8	2,7±0,6	$4,8\pm0,1$	3,95±2,68		
3	ZrB2-20SiC-	_	20,5±6,49	18,3±0,39	15,8±0,43	_	_	9,2±0,44		
	$4Si_3N_4$									
3*	ZrB2-20SiC-	2160	16,87±1,36	11,76±0,88	11,32±0,51	4,65±1,42	5,53±0,11	5,07±1,04		
	$4Si_3N_4$									
4	HfB_2	-	21,3±0,84	19,3±1,34	19,2±0,5	-	7,2±0,9	5,7±0,3		
4*	HfB_2	тріснув	11,95±0,9	5,05±0,55	6,57±0,2	1,68±0,15	2,14±0,1	2,57±0,25		
		за 2970								
5	HfB ₂ -30SiC	_	38,1±1,4	27,7±0,24	26,3±2,03	8,2±0,2	6,8±0,6	6,4±0,11		
5*	HfB ₂ -30SiC	2150	22,59±1,1	21,5±1,4	21,3±2,7	_	7,56±2	7,46±0,5		
6	HfB ₂ -40SiC	_	25,3±4,4	19,3±0,5	19,2±0,2	8,8±0,6	7,2±0,5	5,7±0,6		

*Зразок після нагрівання у вакуумі.

Рис. 1. Механічні характеристики (H_V та K_{Ic}) HP-HT спечених композитів ZrB₂ (\Box , \blacksquare), ZrB₂-20SiC (\circ , \bullet), ZrB₂-20SiC-4Si₃N₄ (Δ , \blacktriangle) до (\blacksquare , \bullet , \bigstar) та після (\Box , \circ , Δ) нагрівання лазером у вакуумі до початку плавлення або до розтріскування (у разі з ZrB₂ та TiB₂) (a, δ) (див. табл. 4); зразок для пірометричних вимірювань (e).

Рис. 2. Порівняння твердості H_V (за навантаження на індентор 9,8 Н) (**•**) і тріщиностійкості K_{lc} (**•**) для матеріалів ZrB₂, HfB₂, ZrB₂+20SiC і HfB₂+30SiC, отриманих авторами та даних з літературних джерел (L); матеріали отримано методами ІПС (SPS), ГП (HotP) та в умовах високих тисків та температур (HP–HT).

Таблиця 5. Твердість за Віккерсом *H*_V і тріщиностійкість *K*_{lc} матеріалів на основі ZrB₂ і HfB₂, спечених методом ГП, оцінені за різного навантаження на індентор (нумерація зразків відповідає табл. 3)

3pa-	Склад вихідної	Режим гарячого пресування		и го ння	за на	<i>Н_V, ГПа, вантажені</i>	ня, Н	<i>К_{іс}</i> за нав	, МПа∙м антаже	^{0,5} , ння, Н
30K	шихти	<i>р</i> , МПа	<i>T</i> , °C	τ, год	9,8	49	98	9,8	49	98
7	ZrB_2	25	2000	0,18	12,45±0,8	10,98±1,1	11,38±0,5	4,37±0,2	3,12±0,8	2,95±0,7
8	ZrB2-20SiC	30	1900	0,08	16,4±1,5	$4,34{\pm}0,15$	3,77±0,4	4,7±0,2	_	-
9	ZrB2-20SiC	30	1900	1,0	18,67±3,5	-	-	3,08±0,3	-	-
10	ZrB2-30SiC	30	1900	1,0	22,95±5,5	-	-	3,44±0,22	_	-
11	HfB_{2}	30	1850	1,0	18,86±0,1	18,82±0,65	17,9±0,2	7,65±0,55	5,88±0,4	5,29±2,2
12	HfB2-30SiC	20	1900	0,08	19,47±0,35	17,93±1,4	15,33±0,5	_	_	7,03±2,05

Дослідження авторів, пов'язані з нагріванням зразків у вакуумі, показали, що кераміка на основі HfB_2 є більш стійкою за високих температур (див. табл. 6). Дослідження зразків методами диференціально-термічного аналізу (ДТА) та термогравіметрії (ТГА) в окислювальному середовищі (середовищі штучного повітря), яке передбачене стандартними умовами досліджень на даному приладі, показало, що кераміка на основі HfB_2 –SiC є більш стабільною, ніж на основі ZrB_2 –SiC. На рис. 3 показано результати дослідження ДТА і ТГА на повітрі матеріалів, спечених в умовах HP–HT із суміші HfB_2 –30SiC (див. табл. 3, зразок 6) та спечених в умовах ГП із суміші ZrB_2 –30SiC (див. табл. 3, зразок 10). Ці зразки було обрано для дослідження методами ДТА і ТГА, оскільки вони демонстрували високу твердість і були практично безпористими.

Як видно з даних, представлених на рис. 3, б, ZrB_2 –30SiC під час першого нагрівання у штучному повітрі зразок 10 був стабільним до 800 °C, а за подальшого нагрівання до 1400 °C, його маса почала дуже повільно зростати на 1,7·10⁻³ мг/К, а після нагріву від 1400 до 1600 °C маса зростала інтенсивніше – зі швидкістю приблизно 22,5·10⁻³ мг/К. У разі повторного нагріву зразок 10 був більш стабільним – його маса була незмінною до ~ 1400 °C, а в інтервалі

температур 1400–1600 °С, маса зростала зі швидкістю ~ 7,5·10⁻³ мг/К (в діапазоні температур 1500–1600 °С не можна виключити взаємодію між зразком і матеріалом тигля). Зразок 6, виготовлений методом HP–HT (спечений з HfB₂–40SiC), виявився більш стабільним в окислювальній атмосфері. Помітне збільшення маси під час першого нагрівання почалося після 1000 °С і було практично постійним (4,2·10⁻³ мг/К) до 1600 °С. У разі повторного нагрівання маса матеріалу не змінювалася до 1400 °С, а потім починала лінійно зростати зі швидкістю 2,5·10⁻³ мг/К.

Таблиця 6. Механічні характеристики (коефіцієнт Пуассона µ,
модуль Юнга Е) НР-НТ спеченої кераміки, оцінені ультразвуковими
резонансними методами (нумерація зразків відповідає табл. 3)

Зразок	Склад вихідної шихти	лад вихідної Швидкість шихти звуку, м/с		<i>Е</i> , ГПа	Логарифмічний декремент коливань. %
	Спікання	методом НР-	-HT		
1	ZrB_2	9222	0,093	521	1,442
2	ZrB ₂ -20SiC	9142	0,093	386	0,76
3	ZrB_2 -20SiC- 4Si ₃ N ₄	8599	0,146	358	2,258
4	HfB_2	8599	0,146	984	1,06
	Спіканн	ня методом Г	П		
7	ZrB_2	9208	0,093	506	0,5
10	HfB ₂ -30SiC	11831	0,093	817	0,49

Рис. 3. Криві ДТА та ТГ двох циклів (першого (—) та другого (·····)) нагрівання до 1600 °С і охолодження до кімнатної температури матеріалів, спечених в умовах HP–HT із суміші HfB₂–40SiC (див. табл. 3, зразок 6) (*a*) та спечених в умовах ГП з суміші ZrB₂–30SiC (див. табл. 3, зразок 10) (δ).

Мікроструктуру матеріалів до та після нагрівання на повітрі у режимах SEI (зображення, одержане за допомогою вторинних електронів) і СОМРО (зображення, одержане за допомогою зворотно відбитих електронів), показано на рис. 4. Аналіз методом енергодисперсійної рентгенівської спектроскопії (EDX) за допомогою сканувального електронного мікроскопу матеріалу, одержаного методом HP-HT з HfB₂-40SiC до нагрівання (після спікання і до дослідження методами ДТА та ТГА) виявив наявність двох основних фаз із приблизною стехіометрією SiC_{1.3}O_{0.015} (чорна фаза, див. рис. 4, e, точка I) і HfB₃Si_{0.17}O_{0.21} (світло-сіра фаза, див. рис. 4, *г*, точка 3). Крім того, на зображенні зразка спостерігали деякі сірі області (див. рис. 4, г, точка 2) зі складом, близьким до HfB₆Si_{0.3}C_{1.2}O_{0.3}. Суттєве поліпшення механічних характеристик у разі додавання SiC можна пояснити формуванням твердого розчину Si в матриці HfB₂. Дослідження структури матеріалу шляхом вивчення EDX карт розподілу елементів у зразку, який піддавався дослідженню методами ДТА та ТГА та двократному нагріванню на повітрі до 1600 °С (див. рис. 4, г, *d*), не виявило істотної різниці між його поверхневим шаром (див. рис. 4, *г*, *д*, край зразка) та його внутрішньою частиною. Приблизний склад матричної фази всередині матеріалу, що виглядає найсвітлішою, оцінений за допомогою EDX аналізу, був HfB_{2.27}Si_{0.08}C_{0.66}O_{0.86}, а поблизу краю та окисленої поверхні – $HfB_{2.57}Si_{0.23}C_{0.947}O_{0.9.}$

Рис. 4. Мікроструктура зразка 6, спеченого в умовах HP–HT з HfB₂–40SiC до (*a–г*) та після (*d–e*) ДТА та ТГА і двократного нагрівання на повітрі до 1600 °C (SEI (*a–e*, *d*) і СОМРО (*z*, *e*)); місця, в яких знімали спектри EDX, показано на *в* і *г*: *1* – чорна фаза, стехіометрія якої близька до SiC_{1,3}O_{0,015}; 2 – сіра фаза, стехіометрія якої близька до HfB₆Si_{0,3}C_{1,2}O_{0,3}; 3 – світлосіра матриця, стехіометрія якої близька до HfB₃Si_{0,17}O_{0,21}.

Рис. 4. (Продовження).

На рис. 5 показано мікроструктуру матеріалів у режимах SEI і СОМРО: спеченого з ZrB₂ методом HP–HT (зразок 1, *a*, δ), ZrB₂–20SiC (зразок 2, *e*, *c*, ∂), спеченого методом HP–HT і ZrB₂–20SiC, спеченого методом ГП (зразок 9, *e*).

Рис. 5. Мікроструктура матеріалів, спечених в умовах HP–HT з ZrB₂ (зразок 1) в режимах SEI (*a*) і COMPO (*e*) та з ZrB₂–20SiC (зразок 2) в режимі SEI (*б*) і COMPO (*e*); приблизний склад згідно з EDX аналізом: сіра фаза – $Z_{0,9}B_2C_{0,12-0,19}$, чорна фаза – $Si_{0,92-0,94}C$ або $Si_{0,94-0,99}CO_{0,05-0,06}$ (*d*); мікроструктура матеріалу (зразок 9), спеченого з ZrB₂–20SiC методом ГП протягом 1 год (*e*).

Рис. 5. (Продовження).

У матричній фазі зразка 9 (див. рис. 5, e) можна побачити велику кількість мікротріщин, що пояснює його невисокі механічні характеристики. Структуру цього зразка після двох термоциклів до 1600 °С показано на рис. 6. Карти розподілу елементів дозволили встановити, що на поверхні зразка 9 формується досить товста (товщиною ~ 50 мкм) оксидна плівка (переважно з діоксиду цирконію), утворення якої приводило до суттєвого зменшення швидкості окислення під час другого циклу нагрівання до 1600 °С. 3 карт розподілу елементів видно, що частина кремнію дифундувала на поверхню зразка, а під шаром оксиду цирконію утворився шар з великою концентрацією вуглецю (див. рис. 6, карта розподілу вуглецю).

Рис. 6. Мікроструктура (в режимах SEI та COMPO) зразка 9, спеченого з ZrB₂–20SiC методом ГП протягом 1 год, після двох термоциклів до 1600 °C (після ДТА та ТГА дослідження на повітрі) та карти розподілу Si, C, Zr, B і O в його структурі (чим вище концентрація елемента – тим яскравіше (біліше) він виглядає на зображенні).

Мікроструктуру HfB₂, спеченого в умовах HP–HT (зразок 4) у режимах SEI та BEI (СОМРО) показано на рис. 7, а на рис. 8 представлено мікроструктуру цього ж самого зразка HfB₂ у режимах SEI та СОМРО (зразок 4*) після нагрівання у вакуумі до 2970 °C. Аналіз EDX карт розподілу наявних елемен-

тів (Hf, B, C, O) показав, що структура після нагрівання істотно змінюється: бор дифундує до границь зерен (на міжзеренні границі), зерна істотно збільшуються у розмірах. Структура HfB₂ з додаванням 30 % SiC (рис. 9, 10) до і після нагрівання до температури плавлення (2150 °C) змінювалася істотніше. Але необхідно враховувати, що чистий HfB₂ був нагрітий до значно вищої (до 2970 °C) температури, за якої початок плавлення ще не спостерігали.

Рис. 7. Мікроструктура (в режимах SEI та COMPO) HfB₂ (зразок 4), спеченого в умовах HP–HT за тиску 4,1 ГПа і температури 1800 °С протягом 8 хв, та EDX карти розподілу присутніх елементів (Hf, B, C, O).

Рис. 8. Мікроструктура (в режимах SEI та COMPO) HfB_2 (зразок 4*), спеченого в умовах HP–HT, після нагрівання до 2970 °C у вакуумі та EDX карти розподілу присутніх елементів (Hf, B, C, O).

Рис. 9. Мікроструктура (у режимах SEI та COMPO) HfB₂-30SiC (зразок 5), спеченого в умовах HP-HT (перед нагріванням у вакуумі).

Рис. 10. Мікроструктура (в режимах SEI та COMPO) HfB_2 –30SiC (зразок 5*), спеченого в умовах HP–HT після нагрівання до 2150 °C (початок плавлення) у вакуумі та EDX карти розподілу Hf, B, Si, C, O.

На рис. 11 наведено модуль Юнга *E* і логарифмічний декремент коливань, що характеризує здатність матеріалу до демпфування, і коефіцієнт Пуассона µ,

Рис. 11. Модуль Юнга *E* (■), логарифмічний декремент коливань (■) і коефіцієнт Пуассона µ (□) кераміки на основі HfB₂ і ZrB₂, спеченої в умовах HP–HT (див. табл. 6).

одержані за допомогою резонансного методу, для кераміки на основі HfB_2 і ZrB_2 , спеченої в умовах HP–HT (див. табл. 6). Найкращу демпфувальну здатність має матеріал ZrB_2 з добавками SiC та Si_3N_4 , але він же є більш пористим, що і пояснює таке високе значення цього показника. Високі значення модуля Юнга і досить високі значення декременту коливань (демпфувальної здатності), а також коефіцієнта Пуассона має спечений в умовах високих тисків і температур борид гафнію, що не плавився у вакуумі до температури 2970 °C.

Наявність апаратів високого тиску великих об'ємів і рівень розробленості технологій роблять метод НР–НТ спікання в умовах високих тисків і високих температур перспективним для промислового застосування.

ВИСНОВКИ

Синтез під високим тиском (4,1 ГПа, 4 хв нагрівання до 1800 °С і 4 хв витримки за 1800 °С) дозволяє отримати матеріали ZrB_2 і HfB₂ з добавками SiC і без них зі значно вищими механічними характеристиками (такими, як твердість, тріщиностійкість), ніж під час спікання іншими способами (гарячим пресуванням та іскро-плазмовим спіканням:

– додавання SiC у кількості 20 % до ZrB_2 та 30 % до HfB_2 привели до зниження питомої густини та підвищення твердості (на 17 та 46 % у разі ZrB_2 та HfB_2 , відповідно) та тріщиностійкості (для 40 і 21 % у разі ZrB_2 і HfB_2 , відповідно);

– додавання SiC і Si $_3N_4$ збільшує твердість меншою мірою, але додатково підвищує тріщиностійкість;

– додавання SiC до ZrB_2 дещо знижує модуль Юнга, але підвищує демпфувальну здатність;

– додавання SiC до ZrB₂ і HfB₂ значно знижує початок температури плавлення у вакуумі до 2150–2160 °C, тоді як ZrB₂ без добавок не починає плавитися за температури 2970 °C.

Підвищення механічних характеристик досліджуваних композитів ZrB_2 -SiC і HfB₂-SiC порівняно зі спеченими в тих же умовах ZrB_2 і HfB₂ без добавок можна пояснити утворенням твердих розчинів.

Спечений за високого тиску і високої температури HfB₂ зі значенням $\rho = 10,79 \text{ г/см}^3$ не плавився у вакуумі до температур 2970 °C і мав високий модуль Юнга E = 984 ГПа, твердість $H_V(9,8 \text{ H}) = 21,3\pm0,84$ ГПа, $H_V(49 \text{ H}) = 19,3\pm1,34$ ГПа, $H_V(98 \text{ H}) = 19,2\pm0,5$ ГПа та тріщиностійкість $K_{\text{Ic}}(49 \text{ H}) = 7,2\pm0,9$ МПа·м^{0,5}, $K_{\text{Ic}} = 5,7\pm0,3$ МПа·м^{0,5}.

Матеріал, отриманий з порошкової суміші HfB₂–30SiC мав відносно низьку питому густину $\rho = 6,21$ г/см³ і вищі механічні характеристики: мікротвердість $H_V(9,8 \text{ H}) = 38,1\pm1,4$ ГПа, $H_V(49 \text{ H}) = 27,7\pm0,24$ ГПа, $H_V(98 \text{ H}) = 26,3\pm2,03$ ГПа; тріщиностійкість $K_{\text{Ic}}(9,8 \text{ H}) = 8,2\pm0,2$ МПа·м^{0,5}, $K_{\text{Ic}}(49 \text{ H}) = 6,8\pm0,6$ МПа·м^{0,5}, $K_{\text{Ic}} = 6,4\pm0,11$ МПа·м^{0,5}). Матеріал, спечений із суміші ZrB₂–20SiC, в умовах високого тиску мав густину 5,04 г/см³, $H_V(9,8 \text{ H}) = 24,2\pm1,0$ ГПа, $H_V(49 \text{ H}) = 16,7\pm1,1$ ГПа, $K_{\text{Ic}}(49 \text{ H}) = 7,1\pm1,55$ МПа·м^{0,5}.

ФІНАНСУВАННЯ

Дані дослідження виконано в рамках проекту NATO SPS G5773, в також теми III-5-23 (0786), що виконується за Постановою Бюро ВФТПМ НАН України.

T. O. Prikhna^{1, 4}, A. S. Lokatkina¹, P. P. Barvitskyi¹, M. V. Karpets^{1, 2, 4}, S. S. Ponomaryov³, A. A. Bondar⁴, B. Büchner⁵, J. Werner⁵,

R. Kluge⁵, V. E. Moshchil¹, O. I. Borymskyi¹, L. M. Devin¹, S. V. Rychev¹, R. Haber⁶, Zeynep Ayguzer Yasar⁶, B. Matovic⁷, M. Rucki⁸, O. V. Prisyazhna¹ ¹Bakul Institute for Superhard Materials, National Academy of Sciences of Ukraine, Kyiv, Ukraine ²National Technical University of Ukraine "Kyiv Polytechnic Institute Igor Sikorsky", Kyiv, Ukraine ³Institute of Semiconductor Physics, National Academy of Sciences of Ukraine, Kyiv, Ukraine ⁴Frantsevich Institute for Problems of Material Sciences, National Academy of Sciences of Ukraine, Kyiv, Ukraine ⁵Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden, Dresden, Germany ⁶Department of Materials Science and Engineering, Rutgers, The State University of New Jersey, Piscataway, USA ⁷Institute of Nuclear Sciences Vinča, Materials Science Laboratory, Belgrade University, Belgrade, Serbia ⁸Faculty of Mechanical Engineering, Kazimierz Pulaski University of Technology and Humanities in Radom, Radom, Poland Structure, mechanical characteristics and high temperature stability of ZrB₂- and HfB₂-based materials

The structure, mechanical characteristics, and high-temperature stability in vacuum and in air of ZrB_2 and HfB_2 based materials sintered under high quasi-hydrostatic pressure (4.1 GPa) and by means of hot pressing (at a pressure of 30 MPa) without additives and with SiC and Si_3N_4 additives were investigated. It is shown that short-term (4 min) sintering under high pressure conditions at a relatively low (1800 °C) temperature allows significant improvement of mechanical properties of materials in comparison with similar ones obtained by other methods (hot pressing and spark-plasma sintering). In the case of sintering at high (4.1 GPa) pressure, the addition of 20 wt% SiC to ZrB_2 and 30 wt% SiC to HfB₂ leads to a decrease in the specific gravity of ZrB_2 and HfB_2 composite materials and to an increase in hardness (by 17 and 46%, respectively) and fracture toughness (by 40 and 21%, respectively). If SiC is added, solid solutions are formed due to the mutual diffusion of C and Si into the ZrB_2 or HfB_2 matrix phases and a slight diffusion of Zr and Hf in the SiC-enriched regions. The improvement of mechanical properties of the sintered at high pressure ZrB_2 and HfB_2 without additives is attributed to the formation of stronger bonds between grains in the sintered materials. The addition of SiC to ZrB_2 slightly lowers the Young's modulus, but increases the damping capacity of the resulting materials. The simultaneous addition of SiC and Si_3N_4 to ZrB_2 leads to a smaller increase in hardness, but leads to a further increase in fracture toughness. The vacuum melting temperature of sintered ZrB₂ and HfB₂ was significantly higher than that of materials with SiC additives. The composite material made from a mixture of HfB_{2} -30 wt% SiC had a density $\rho =$ 6.21 g/cm³, microhardness $H_V(9.8 N) = 38.1 \pm 1.4 GPa$, $H_V(49 N) = 27.7 \pm 0.24 GPa$, $H_V(98 N) = 26.3 \pm 2.03 GPa$, crack resistance $K_{lc}(9.8 N) = 8.2 \pm 0.2 MPa m^{0.5}$, $K_{lc}(49 H) = 6.8 \pm 0.6 MPa m^{0.5}$, $K_{lc}(98 \text{ N}) = 6.4 \pm 0.11 \text{ MPa m}^{0.5}$, which is significantly higher than the similar characteristics of *HfB*₂ sintered under the same conditions, but without additives.

Keywords: refractory borides, SiC, Si₃N₄, composites, ultrahigh-temperature materials, sintering under high pressure–high temperature conditions, hot pressing, electron microscopy, mechanical properties, melting temperature in vacuum, high temperature oxidation resistance.

- 1. Monteverde F., Ultra-high temperature HfB₂–SiC ceramics consolidated by hot-pressing and spark plasma sintering. *J. Alloys Compd.* 2007. Vol. 428. P. 197–205.
- Upadhya K., Yang J.M. Hoffmann W.P. Materials for ultrahigh temperature structural applications. Am. Ceram. Soc. Bull. 1997. Vol. 76. P. 51–56.

- 3. Sichkar S.M., Antonov V.N., Antropov V.P. Comparative study of the electronic structure. Phonon spectra and electron-phonon interaction of ZrB₂ and TiB₂, *PRB*. 2013. Vol. 87, art. 064305.
- Zhang G.J., Guo W.M., Ni D.W., Kan Y.M. Ultrahigh temperature ceramics (UHTCs) based on ZrB₂ and HfB₂ systems: powder, synthesis, densification and mechanical properties. *J. Phys.: Conf. Ser.* 2009. Vol. 176, art. 01204.
- Zapata-Solvas E., Jayaseelan D.D., Lin H.T., Brown P., Lee W.E. Mechanical properties of ZrB₂- and HfB₂-based ultra-high temperature ceramics fabricated by spark plasma sintering. *J. Eur. Ceram.* Soc. 2013. Vol. 33, no. 7. P. 1373–1386.
- 6. Guo S., Densification of ZrB₂-based composites and their mechanical and physical properties: a review. *J. Eur. Ceram.* Soc. 2009. Vol. 29. 995–1011.
- 7. Squire T., Marschall J. Material property requirements for analysis and design of UHTC components in hypersonic application. J. Eur. Ceram. Soc. 2010. Vol. 30. P. 2239–2251.
- Prikhna T.A., Barvitskyi P.P., Maznaya A.V., Muratov V.B., Devin L.N., Neshpor A.V., Domnich V., Haber R., Karpets M.V., Samus E.V., Dub S.N., Moshchil V.E. Lightweight ceramics based on aluminum dodecaboride, boron carbide and self-bonded silicon carbide. *Ceram. Int.* 2019. Vol. 45, no. 7. P. 9580–9588.
- 9. Hu P., Wang Z. Flexural strength and fracture behavior of ZrB₂–SiC ultra-high temperature ceramic composites at 1800 °C. *J. Eur. Ceram. Soc.* 2010. Vol. 30, no. 4. P. 1021–1026.
- Monteverde F., Melandri C., Guicciardi S. Microstructure and mechanical properties of an HfB₂+ 30vol.% SiC composite consolidated by spark plasma sintering. *Mater. Chem. Phys.* 2006. Vol. 100, no. 2–3. P. 513–519.
- Monteverde F., Guicciardi S., Bellosi A. Advances in microstructure and mechanical properties of zirconium diboride based ceramics. *Mater. Sci. Eng.: A.* 2003. Vol. 346, no. 1–2. P. 310– 319.
- 12. Monteverde F., Bellosi A., Scatteia L. Processing and properties of ultra-high temperature ceramics for space applications. *Mater. Sci. Eng.: A.* 2008. Vol. 485, no. 1–2. P. 415–421.
- Ahmadi Z., Nayebi B., Asl M.S., Kakroudi M.G., Farahbakhsh I. Sintering behavior of ZrB₂– SiC composites doped with Si₃N₄: a fractographical approach. *Ceram. Int.* 2017. Vol. 43, no. 13. P. 9699–9708.
- 14. Zhang J., Chen H., Xiao G., Yi M., Chen Z., Zhang J., Xu C. Effects of Si₃N₄ and WC on the oxidation resistance of ZrB₂/SiC ceramic tool materials. *Ceram. Int.* 2022. Vol. 48, no. 6. P. 8097–8103.
- McCusker L.B., Von Dreele R.B., Cox D.E., Louër D., Scardi P. Rietveld refinement guidelines. J. Appl. Crystallogr. 1999. Vol. 32, no. 1. P. 36–50.
- 16. Глаговский Б.А., Ройтштейн Г.Ш., Яшин В.А. Контрольно-измерительные приборы и основы автоматизации производства абразивных инструментов. Ленинград: Машиностроение. Ленингр. отд-ние, 1980.
- 17. Баранов В.М. Определение констант упругости образцов материалов, имеющих форму диска. Заводская лаборатория. 1972. Vol. 38. P. 1120–1124.
- Pirani M., Alterthum H. On a method for determining the melting point of refractory metals. Z. Elektrochem. 1923. Vol. 29, no. 1–2. P. 5–8.
- 19. Bondar A.A., Maslyuk V.A., Velikanova T.Y., Grytsiv A.V. Phase equilibria in the Cr–Ni–C system and their use for developing physicochemical principles for design of hard alloys based on chromium carbide. *Powder Metall. Met. Ceram.* 1997. Vol. 6, no. 5. P. 242–252.
- Velikanova T.Y., Bondar A.A., Grytsiv A.V. The chromium-nickel-carbon (Cr–Ni–C) phase diagram. J. Phase Equilibria. 1999. Vol. 20, no. 2. P. 125–147.

Надійшла до редакції 06.04.23

Після доопрацювання 06.04.23

Прийнята до опублікування 12.04.23