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METHODS AND ALGORITHMS OF SWARM INTELLIGENCE FOR THE
PROBLEMS OF NONLINEAR REGRESSION ANALYSIS AND
OPTIMIZATION OF COMPLEX PROCESSES, OBJECTS, AND SYSTEMS:
REVIEW AND MODIFICATION OF METHODS AND ALGORITHMS

Abstract. The development of high-speed methods and algorithms for global multidimensional optimization
and their modifications in various fields of science, technology, and economics is an urgent problem that
involves reducing computing costs, accelerating, and effectively searching for solutions to such problems.
Since most serious problems involve the search for tens, hundreds, or thousands of optimal parameters of
mathematical models, the search space for these parameters grows non-linearly. Currently, there are many
modern methods and algorithms of swarm intelligence that solve today's scientific and applied problems, but
they require modifications due to the large spaces of searching for optimal model parameters. Modern swarm
intelligence has significant potential for application in the energy industry due to its ability to optimize and
solve complex problems. It can be used to solve scientific and applied problems of optimizing energy
consumption in buildings, industrial complexes, and urban systems, reducing energy losses, and increasing
the efficiency of resource use, as well as for the construction of various elements of energy systems in general.
Well-known methods and algorithms of swarm intelligence are also actively applied to forecast energy
production from renewable sources, such as solar and wind energy. This allows better management of energy
sources and planning of their use. The relevance of modifications of methods and algorithms is due to the
issues of speeding up their work when solving machine learning problems, in particular, in nonlinear
regression models, classification, and clustering problems, where the number of observed data can reach
tens and hundreds of thousands or more. The work considers and modifies well-known effective methods and
algorithms of swarm intelligence (particle swarm optimization algorithm, bee optimization algorithm,
differential evolution method) for finding solutions to multidimensional extremal problems with and without
restrictions, as well as problems of nonlinear regression analysis. The obtained modifications of the well-
known classic effective methods and algorithms of swarm intelligence, which are present in the work,
effectively solve complex scientific and applied tasks of designing complex objects and systems. A
comparative analysis of methods and algorithms will be conducted in the next study on this topic.
Keywords: optimization, swarm intelligence, mathematical modelling, nonlinear regression, complex
objects and systems.
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1. Introduction

With the development of modern computing systems, its application for solving optimization problems,
there is a need for the design of complex systems in thermal power engineering [1-3], mathematical modeling.
The modern theory of optimization methods, taking into account its new applications, has undergone significant
changes, which consist in the development of new and modification of existing methods and algorithms for
finding  solutions to  optimization, inverse  problems and  problems in incorrect
formulation [4-6].

Considerable interest is now focused on algorithms and methods of swarm intelligence, which are finding
more and more applied applications in modern science and technology [7, 8]. Swarm intelligence is a concept
that is inspired by observations of the behavior of animal colonies in nature, such as ants, bees, and swarms of
birds [9, 10]. This approach to artificial intelligence and optimization is based on modeling the behavior of
individual agents that interact with each other and with the environment. The collective behavior of these agents
is actively used to solve complex problems and find optimal solutions without centralized management.

The applications of swarm intelligence in science and technology include various fields such as
optimization, robotics, data networks, and even machine learning [11-13]. For example, optimization algorithms
based on swarm intelligence can be used to solve routing problems, find optimal solutions in complex parameter
spaces, or manage distributed systems [14-16].

In the field of robotics and the management of groups of robots, swarm intelligence allows for the creation
of efficient algorithms to coordinate the actions of many robots without centralized control. This is especially
useful in scenarios where adaptability to changing environmental conditions is required. In data networks, swarm
algorithms can be used to optimize routing and traffic management, taking into account dynamic network
conditions and changes in load. In the field of machine learning, swarm methods and algorithms can be applied
to create effective deep learning methods, in particular, in the problems of optimizing loss functions and finding
hyperparameters [17].

2. Methods and materials

2.1. Problem statement

Most of the applied optimization problems are reduced to finding the global extrema of functions in the
classical formulation, which is presented as follows [18, 19]:

y = F(X) - min(max) X € G,G c R",

where X:(Xl, ) SETEN Xn), G is the search space for the values of the arguments X, n is the dimension of the

search space of the global extremum of the function. X;, j =1;n — factor (independent) variables that establish

a causal relationship with the dependent (resultant) variable y. The function F(X) is often subject to functional
constraints, which are presented in the form of the following functional dependencies:

The complexity of the objective function F(X) and the corresponding constraints gi(X) is determined by
a specific technical problems [20; 21]. The appearance of F(X) and gi(X) determines the choice of the

optimization method that will be used to search for X" =(Xl*, X5y X:), F(XM.

It should be noted that the dependence of the species:

y = F(X)— min,
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In machine learning problems, it is often presented as a summary (or average) error, which consists of a deviation
between real data and model data, which is skipped due to functional dependence. Such functional dependencies
arise in regression (linear and nonlinear) analysis, in the problems of classification, data clustering, in the
construction of effective mathematical models of process control, forecasting of time series, modernization of
objects and systems, as well as in the development of complex energy complexes in today's conditions.

In this paper, we will consider the problems of searching for a global minimum of problems without
functional constraints on the objective function / functional, problems with constraints in the form of functions,
as well as problems of searching for nonlinear regression parameters, as well as methods for their
search.

To begin with, let's consider a one-factor (factor (independent) variable — X, dependent variable — y)
regression model. Let us assume that we know the general form of a mathematical model that describes a certain

process. It looks like y = F(ﬂj,x), j =1N. Inthe problem of regression analysis, it is assumed that there are
statistical data that are presented in the form of observations: (xi,yi), i=LM, M >N. Knowing the
appearance y = F(ﬁj,x), j=1;_N of the model and observational data(xi,yi), izl;_M, M >N, itis necessary
to find the parameters /3] j=1LN, under which the mathematical model is formed y = F(ﬂ;,x) It most

accurately describes a certain process that takes place in a particular system.
That is, for such a problem, we can write a system of equations in the form:

Y= F(ﬂliﬁzf"’ﬁwxl)’yz = F(ﬂlvﬂza'”:ﬂwxz),

@
Y; = F(ﬂl’ﬁzv""ﬂwxa)v “aYw = F(:Bl’ﬂza"'vﬂNvXM )

But, obviously, the statistics are obtained with some error. This means that in reality we do not have a
system of form (1), but a system of the form:

Y, = F(ﬂl’ﬁzv""ﬂwxi)"'gl’ Y, = F(/Bl’ﬁzv""ﬂwxz)"'gzv @)
Y3 = F(ﬁl'ﬂzi'“'ﬂN'X3)+‘93’”" Yu = F(ﬂl'ﬂZ’“"ﬁN’XM )+5M '
where ¢, i =1 M is the measurement error on the i-th observation. In this case, for (2) it is necessary to find
such values of the parameters in order to minimize the total error that was obtained as a result of measurements.
To do this, the well-known least-squares method is used: 8], j=LN,

M
E =|51|+|52|+|g3|+m+|5M|=Z‘gj‘—>min,
j=1

@)
1 13 i
LE:M(|€1|+|gz|+|‘93|+"'+|gM|):V;‘gi‘_)mmj
or
M
E=gl+el+&l++e, =Y & —>min,
1 ’1 ) @
[E:V(gf+522+8§+---+8,\2,|)=V§gjz—>minj,
or
E:m?x|gj|—>min. ()
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For gradient methods, the first expression (3) is used for E. For swarm intelligence methods, it does not
matter which of the formulas (3), (4) or (5) is used as a criterion for the minimum error. It should be noted that
option (3) for E (through the sum of the modules) is less commonly used in gradient methods, since the

derivative of y(t) = |t| the function at the point of the extremum does not exist. In this case, we have a value E
based on formula (3):

e (- FlB B B +

2 2 (6)
+(y2—F(ﬂ1,ﬂ2,~-~,ﬂN,X2)) +---+(y|v| _F(ﬂlvﬂz!"'vﬂN-xM )) :

Let's take the classic approach. Let us find the gradient vector for (6) and equate it to zero (a necessary
condition for the extremum of the function / functional):

E, ==2(Yi=F (B0 By Bus X)) s (B Boveo B %) —
_2(y2 —F(ﬁlaﬁz:””ﬁwxz))% (B Bors BusXo ) ==
=2(Yu =F (B0 Bor=2 B X)) P (B By By X ) =0,

(7

Ej =—2(Yi=F (8o B B %)) Fy (B B B X)) -

—2()/2 —F(ﬂpﬂzv”"ﬂwxz))':ﬁ'N (B Boves Bus Xy ) =+ =

~2(Yu =F (BB By X)) Fi (B By By X ) = 0.

From dependencies (7) we obtain a system of nonlinear (in the general case) equations of the form:

M=

(Fi (oo X)) (F (B By Bux) ~ %) | =0,

Il
[N

M=

[R5 (BB Bux) (F (BB, Bk )= v1) | =0,

(8)

[
EN

M

Z[Fﬂ’N (ﬂl’ﬂz""aﬂNaxi)'(F(ﬂv/Hz"”aﬂN1Xi)_yi)]zo'

Obviously, system (8) has N equations and N unknowns. Iterative methods and algorithms are often
applied to this kind of system, for example, the Newtonian method, the Levenberg-Marquardt method, quasi-
Newtonian methods, etc.

For example, Newton's method for a system of the form:

fl(ﬂl’ﬂZ'“"ﬂN)zoi
fZ(ﬂl’IBZ’“.’ﬂN):O’ ©)

fN (ﬁliﬂzi"'vﬁN)zo

will look like this:
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ﬂl(k+l) ﬂl(k) fl(ﬂl(k)vﬂz(k)i"'aﬂl(\lk))
(k+1) (x) f(p® gk ... gk
ﬂz _ ﬂz _J—l(ﬂl(k)’ﬁz(k),“.’ﬁ,gk)) Z(ﬂl ’ﬁz ) uﬁN ) , (10)
(k+1) (k)
A7) B fu (BY, 89, 8Y)
where J is the Jacobian at the point (ﬂfk),ﬂgk),---,ﬂgk)),which is of the form:
B p0)=
Ay (50 ) . gk Ay (g0 g . g0
(Y. B BBy B
aﬂl( 1 2 N ) aﬁN( 1 2 N ) (11)
of of
g ANA ) e S (BB )

where k is the iteration number. To start such an iterative process, (9)—(11) specify an initial approximation

(ﬁ;°>,ﬂ§°>,...,ﬁ$>). The stopping criterion can be considered the fulfillment of one of the following conditions:

‘ﬁT \/i( ) _ g )2<g,g>0, (12)
\/%i( (ﬂl(k),ﬁz(k),...,ﬂ,(qk)))z <eg,e>0, (13)
\/%Zl‘, (131 1162 ,",,3 )<5 £>0, (14)

ax| (A, B ) <&, 0. (15)

Several conditions for stopping an iterative process can be applied, and not only (12), (13), (14), and (15).
Taking into account the above, it is possible to rewrite the iterative formula of Newton's classical method
(10), (11) for a system (8) of nonlinear (in the general case) equations:

A (A

(k+1) (k)
b5 _ 5 —J_l(ﬂl(k),ﬂék)!"'fﬂlsk))x

act) By

S [ (8080 ) (R (A A 1) -, as)
) i_Fﬁ’.z(ﬁfk),ﬂék)"”:ﬂ&k),xi)'(F(ﬂfk),ﬂék):”"ﬁ,ﬂk)'Xi)—yi)_

AN

I
uN

Fr, (A8 e B ) (F (B8 B % ) = i)
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where J is the Jacobian at the point ( 3 ( B ). ) which is of the form:

azkaﬁ. (ﬂl B B )¢ (F (B B %)=y, )+

(A0 )= . oan

i—1 %(ﬂl(k)’ﬂgk)"“’ﬁ’(\‘k)’ |) ﬂl ’:82 ’” ﬂlglk)’xi)

8,8,(

where k is the iteration number. To start such an iterative process, (16)—(17) specify an initial approximation

(,Bfo),ﬁé(’),-n,ﬂ,go)). The stopping criterion can be considered the fulfillment of one of the following conditions:

‘ B0 _ g

N 2
- \/Z(ﬂi(k”) —,Bi(k)) <g,e>0, (18)

i=1

M Fﬂ’ ﬂ1 1ﬂ2 " ﬂ's‘k)’xi)x WZ
N,_l L ( ﬁlk)’ﬂz(k),...’ﬁ’(\lk),xi)_yi)J

<&,&>0, (19)

Fﬁ, ﬂl 1ﬂ2 )’ aﬂ,(\,k),Xi)x

1 N [ M
—ZZ <e&,e>0, (20)
N 5=]is X ﬁl 152 ’” ﬁ,ﬁk),xi)—yi)

& B (BY B e B0 )
=1 X( ﬂlk)'ﬂgk)v"'iﬂ&k)1xi)_yi)

<g,e>0. (21)

Here, too, any of the conditions (18), (19), (20) and (21) can be used to stop the iterative process of finding
the optimal parameters of the nonlinear regression model.

To simplify the calculations of the first derivatives in (16), (17), numerical approximations are used, which
are derived on the basis of Taylor series, for example:

g |F(BYAY B+ 8B B X ) -

(k)
ﬁ] ﬂl y 5 |ﬂN 1Xi r— y (22)
4 | A =R (BB B Y %)
or
1| F(BY A B Y ) -
gk k) opk) )~
Fﬂ,— ﬂl vﬁz ) ’ﬂN 1 X NA,B ®) k) ) ) ) (23)
j _F(ﬁl vﬂz ’”"ﬁj _Aﬂja""ﬁN ’Xi)
or
1 F( fk)!ﬂz(k)a"'yﬂj(k)+Aﬂj7"'aﬂl£lk)axi)_
ﬂj(ﬂl ’ﬂz a N ! ') ) (24)

2Aﬂj _F(ﬁl(k)nﬂz(k)v"'!ﬂ}k) —A,Bj,"',ﬁ,(\,k),xi)
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or

F(ﬂw g g0 BB s X‘J_
1 P2 et Py 5 PN
: ﬂl uBz "'ﬂN X | R —— : (25)
ﬂ( ) Ap; _F[ﬁ(k) B IB(k)_A_ﬂj." B X‘j
1 P2 P o PN

It should be noted that each of the formulas (22), (23), (24) and (25) has its own error, which is obtained
from the decomposition of the function/functional into the Taylor series according to the corresponding
parameters.

To simplify the calculations of the second derivatives in (16) and (17), numerical approximations are also
used, which are derived from the Taylor series:

FAY B e )+ 0, B
I K) k)
i 2F (B, B, B B ,x.) , (26)
R (BB B = 0B, B X )

§ﬁ (ﬂl vﬁz " ﬂ&k),xi)z

FAO B B + A Y + 8B B X )+

1 [FF(BYBY e B B B 0 B )
WAAS F (B e B A B <A B )= @D
F(BO B B DB B+ B B )

k=LN,I=1N, k=l

0*F
BB

(8 A=

It is also known here that (26) and (27) have their own error (also obtained on the basis of the Taylor series).
Similarly, it is possible to build a multivariate nonlinear regression model, that is, when statistical data are
presented in the form of:

Xil X12 1s

_ X X oo X

X = 21 22 ) ‘25 , (28)
XM 1 XM 2 XMs

where S is the number of factors that affect the observed quantity.
Obviously, the problems in solving a regression-type problem for a generalized nonlinear case with respect
to the sought unknown parameter values are as follows:

— calculation of the first derivatives for the functional dependence of a species F (,Bl(k), () ..., B x

) on

unknown parameters (although this can be done not only analytically, but also numerically);
— calculation of the second derivatives for the functional dependence of the species F ( BY,AY . Y x )
on unknown parameters (although this can be done not only analytically, but also numerically);

— Choosing an initial approximation (ﬁfo),ﬁéo),m,ﬁ,ﬂ“)) is difficult;

— Ateach iteration, k you need to find J‘l(ﬂfk),ﬂg"),m,ﬁ,ﬁk)).
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In this case, further research will focus on methods and algorithms that have a stochastic component. The
stochastic component makes it possible to find solutions to various applied problems quite accurately and
quickly. Three well-known methods and algorithms were taken as a basis: the particle swarm optimization
algorithm, the bee optimization algorithm, and the differential evolution method. The criteria for selecting basic
methods and algorithms are based on the following well-known facts:

— The chosen methods and algorithms are relatively easy to understand, making them accessible to a wide
range of software developers and engineers;

— The chosen methods and algorithms are able to adapt to changes in the environment or optimization
problems by making changes to the parameters or search strategy.

— the selected methods and algorithms are easily parallelized to perform simultaneous data processing;

— the chosen methods and algorithms do not use any information about the derivatives of the objective
function and the corresponding constraints on it;

— there are comparatively few parameters in the selected methods and algorithms;

— The chosen methods and algorithms are very effective for finding the global extremum of a function.

2.2. Problem solving methods

2.2.1. PSO algorithm

PSO uses a swarm of particles, where each particle represents a potential solution to a problem. Initially,
all the particles of the swarm occupy a random position in the space of the search for the solution of the problem
and have small random velocities. In the final iterations, the set of particles converges to one or more optimums
that are global (if there are several rather than one). The behavior of a particle in the solution-seeking hyperspace
is constantly adjusting to its experience and that of its neighbors. In addition, each particle remembers its best
position with the achieved local best value of the objective (fitness) function and knows the best position of the
particles of its neighbors, where the global optimum of the function was reached at the moment. In the search
process, the swarm particles exchange information about the best results achieved and change their positions
and speeds according to certain rules based on the currently available information about local and global
achievements. In this case, the global best result is known to all particles and it is corrected in the case when
some particle of the swarm finds a better position with a result that exceeds the current global optimum. Each
particle of the swarm is subject to fairly simple rules of behavior that take into account the local success of each
individual and the global optimum of all individuals (or some set of neighbors) of the swarm.

Each i-th particle is characterized by an iteration n of its position X, (n) in hyperspace and its velocity of

motion V; (n). The velocity of the i-th particle is calculated as

Vi (n+1) =, (n)+, (X™ () =% ()1, + &, (X" () =% (n))r,, (29)
The position of the i-th particle is calculated as
X (n+1)=x(n)+v,(n+1), (30)

where: xi(n)=(xi1(n);xi2(n);...;xi,\,I (n)) — the position of the i-th particle in the iteration n;
xibe“(n)z(xibf“(n);xibze“(n);...;xibhj“(n)) — the best position of the i-th particle (personal best position);
x*(n):(xf(n);x;(n);...;x; (n)) — the best position for the entire population (global best position);
Vi (n)=(Viy (n);viz (n),...;viy () is the velocity vector of the i-th particle in the iteration n; o,c, — positive

acceleration coefficients that regulate the contribution of the cognitive and social components;
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n =(r11; PR AV ) n =(r21; [PPSR PO ) are random number vectors that introduce an element of randomness

into the search process.
Let us consider the influence of various constituents in calculating the velocity of a particle according to

(29). The first term in (29) v, (n) preserves the previous direction of the velocity of the i-th parts and can be
considered as the moment that prevents a sharp change in the direction of the velocity and acts as an inertia

best
i

velocity. Cognitive velocity o (x (n) —X; (n)) r, determines the characteristics of a particle with respect to its

prehistory, which maintains a better position for a given particle. The effect of this term is that it tries to bring
the particle back to a better achieved position. The third term «, (x*(n)—xi (n))r2 defines the social velocity,
which characterizes the particle in relation to its neighbors. The effect of the social component is that it tries to

direct each particle towards the global optimum achieved by the swarm (or some of its immediate environment).
The displacement of the particle's position is carried out on the basis of (30).

Algorithm for Optimizing Numerical Functions
1. Initializing
1.1. Specifying Parameters &, a,, and o, a, €(0;4).
1.2. Set the maximum number of iterations N, population size K, the length of the particle position

min ,max

vector M minimum and maximum values of the position vector x;™,x;", j €1,M, minimum and

maximum values for the velocity vector v;“‘“ V¥, jeLM, And vi® >0,

1.3. Defining the Cost Function (Goal Function)
F(X)—>min, X=(X,....Xy ),

where X is the position vector of the particle.
1.4. Creating the Original Population P

1.4.1. Particle Number k=1LP =0

1.4.2. Randomly create a vector position x,

X = (XX ) Xg = X[+ (X[ = x" Jrand (),

where rand() is a function that returns a uniformly distributed random number in the range [0; 1]

best . best __

1.4.3. Creating a Better Position Vector X~ : X~ =X,

1.4.4. Randomly Generate a Velocity Vector v,
Vie =(Vir- - Vi ) Vig =V +(v;nax -V )rand ()
or
v, =0

1.4.5. If (xk,erS‘,vk)eP, then P:Pu{(xk,xfjes‘,vk)},k:k+1

1.4.6. If k<K, thengo tostep 1.4.2
1.4.7. Define a particle of the current population with the best position

k™ =argminF(x ), X = X,
k

2. Iteration Number n=1
3. Particle Number k =1
4. Velocity vector modification
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4.1.
4.2.
4.3.

r=rand(), r,=rand()

best

Vi =V + a4 (X =X )G+, (X=X ),

Speed limits v, present, i.e.

min

o J—
vkamax{vj ,vkj}, vkamln{vj ,vkj}, jelM

or absent

5. Position Modification

5.1
5.3.

54.
5.5.

X, =X, +V, 52. j=1

min
j

min

If x; <x™, then X, =X +‘xkj —X

Vig = Vg

max max max
If x4 >X", then x; =X] —‘xkj —X] ‘,vkj =V,

If j<M, then j=j+1, Gotostep5.3

6. Definition personal (local) best Position: if F(x, )< F(xﬁe“), then x™ =x,

7. If k<K,

then k =k +1

8. Determine the particle of the current population that is best in terms of the function of the target

k™ =argmin F(x,)
k

9. Determining the Global Best Position: if F(xk*)< F(x*), then X" =Xx,.

10. Stop condition: If n< N , then n=n+1, go to step 3
The result is x”.

2.2.2.

Bees algorithm

The bee algorithm is based on the behavior of honey bees. It is based on the behavior of foraging bees and
is an extension of the bee system. There is a phase of the worker bee (busy foraging) and the scout bee. The
purpose of the algorithm is to determine the location of good areas in the search space. Scout bees perform a
random search. The found good (in terms of the value of the objective function / functionality) areas are
investigated with the help of local search. The solution corresponds to the position of the bee located in a certain

area.

Algorithm for Optimizing Numerical Functions

1. Initializing

1.1.
1.2.

1.3.

1.4.

1.5.

Specifying Parameters &,7,,,,« to create a circle, and & €(0;1), 7, €(0;1) o e(0;1).
Set the maximum number of iterations N, population size K, the number of plots (and the bees of
these plots) L., number of elite plots L., The number of bee departures in an elite area Z,, The
number of departures of the worker bee in a regular area Z_, Length of Bee Position Vector M
(dimension of the search space), minimum and maximum values for the position vector
T, X", j €1 M.
Defining the Cost Function (Goal Function)
F(X)>min, X=(X,....% ),

where X is the vector of the bee's position.

Randomly create a vector of a better position
X" :(x1 X5, X ) Xg = X" +(x;“ax - x;‘““)rand(),

where rand() is a function that returns a uniformly distributed random number in the range [0;1]

Creating the Original Population
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1.5.1. Bee Number k=1LP =0
1.5.2. Randomly create a vector position x,

X = (X Xn s X =X + (X = X" ) rand ()

J

15.3.If x, ¢ P, then P=PU{x | k=k+1
1.5.4. If k<K, then go to step 1.5.2

2. lteration Number n=1
3. ldentify the bee with the best position
k™ =argmin F(x,)
k
3. Particle Number k =1

>

If F(xk,)g F(x*), then X" =x,.

5. Arrange P by the value of the objective function, i.e. F(X,)<F(X.)
6. Worker Bee Phase (Local Search)

6.1. Plot number 1 =1
6.2. Determine the size of the circle

Z,1<I<L
z{zo,Les <l<L,
6.3. Create a Circle for a Position I-(a) To the extent permitted
6.3.1. 7(N)=1,a"
6.3.2. X} =% +7(n)3(X™ —x{" )(~1+2rand (),

J ]
jel;_M,Zel'_Z

6.3.3. x; =max X" b, X =min{x{™;x; |,

jelM,z efL'_Z
6.4. 2 =argminF(x;)
6.5. Siwo f(x.)< f(x)then x =x..

6.6. If 1 <L, then I=1+1, Go tostep 6.2
7. Scout Bee Phase (Random Search):

8. Stop Condition
If n<N, then n=n+1, gotostep 3

9. Identify the bee with the best position
k™ =argminF(x,), X = X
k

The result is x".

2.2.3. Differential evolution method

The main idea of the method of differential evolution is the combination of mutation and crossing to
efficiently find optimal solutions in multidimensional parameter spaces. The method uses some ideas of genetic

algorithms, but, unlike the latter, does not involve working with binary code.
Problem formulation: F(X)—min, X =(X;, X,,.... Xy ).
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The main stages of the method are as follows:

1) For each chromosome in a population X, Zz(x_il,...,xw,),i —LN (N is the dimension of the
population), three other random members of that population are selected x, x,, X,,
;i;éxl,;i;fxz,;i;txs, X, # Xy # Xy

2) A mutant vector is generated: V=X +F (X, —X,), F €(0;2).

3) The vector difference x, —x, is scaled by a user-defined hyperparameter F, F € (0; 2).
A visual illustration of the method is shown in Figure 1.

/ \Xr‘z =X3

X
y X1 + X(X/2 - X,3)
-xr'l >
i A(XV'Z = ‘YI-ISJ
IYrI
Xpr=Xr3
X1+ X(Xf2 - X.3) Xrl:' X(Xi2 — Xr3)

®
/ /\(-le == fYrIi )
/ \

/,

Fig. 1. Hlustrative illustration of the method of differential evolution

4) We form a test vector based on crossing ;, with a mutant vectorV : for each coordinate of the
chromosome, a number is generated r (0;1) according to the normal distribution.

» If r<P, P is a given constant (another parameter of the algorithm
Pe (0;1)), then the corresponding coordinate of the chromosome is replaced by

vjzxij,jel;M,

M — the dimension of the search space (the number of independent variables of the fitness
function).
B) If f(x)>f(v),x=v.
All of the above steps are performed up to the method stop criterion (classical, as in other algorithms and
swarm intelligence methods).

2.3. Combination of deterministic and stochastic methods
In complex scientific and technical applied problems, the objective function or functional can be computed
for a relatively long time, even on modern computing systems. Stochastic methods and algorithms of global
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optimization can find global extremes of objective functions without requiring additional information about
them, in particular, the differentiability of objective functions. Of course, the number of calls to the procedure
for finding the value of the target function in this case increases. In this case, the total number of calculations
increases. This means that the processor time of searching for the global extremum of the objective function also
increases. In this case, methods and algorithms are developed that provide for a deterministic component, as well
as a stochastic component. The deterministic component works quickly and efficiently refines the solution found,
and the stochastic component prevents the method/algorithm from getting stuck in local extremums.

3. Practical results. Modification of the described methods and algorithms of swarm intelligence

In computational mathematics, each modification of an optimization method/algorithm involves a robot
in several ways:

a) reducing the total number of iterations to achieve a certain error. The positive effect of reducing the
total number of iterations leads to a decrease in the total processor time for solving a specific problem or solving
a specific problem. This, in turn, reduces the overall load on the system;

b) improving the accuracy of calculations. The positive effect of this is to accelerate the convergence of
the optimization method/algorithm. This, in turn, again leads to a decrease in the number of iterations, which
means a decrease in the processor time required to solve a problem or a specific task.

This paper proposes several modifications of the algorithms described above.

1) Modification of the position of the worst element of the population in the algorithms and methods

of swarm intelligence described above. Replace the worst element of x;”* the population with the average

position of the element throughout the population xjAverage Vj=1M according to the following formula:

]

N N
yAverage _ %Z X; Vi=LM, (31)
i=1

where N is the total number of items in the population, and M is the dimension of the search space. This approach
can be performed on a per-iteration or periodically every K iterations.

2) Modification of the position of the elements of the population to the best in increments h. The
renewal of each element of the population is carried out according to the formula:

x..=x..+h-w,x #%,i=LN, j=LM (32)
] ij "XBest 'Xi ” Best i

where xg,, is the best vector of the population in terms of the value of the objective function. It should be noted

that the step of motion h can be determined proportionally (according to the linear law) to the circumference of
the population, which will coincide to the global optimum over time.

3) Changing the hyperparameters of optimization methods/algorithms. This approach involves
changing one or more hyperparameters during the operation of the program. For example, in a differential
evolution algorithm, the parameter F can be replaced by a random real number in the range from 0 to 2 through
K iterations.

In the bee algorithm, there is a dependence of the parameter change 7(n) on the number of iterations n.

In this case, in order to optimize functions of large dimensions, a problem arises, which is to reduce this
parameter in advance. In order to prevent this from happening before finding the global extremum of the function
or functional, such a case is assumed to be

7(n) = ma™™, (33)
where [-] is the integer part of the number, K is the period that determines how many iterations the value of the
n parameter will be updated.

In the method of differential evolution, it is proposed to take the hyperparameter F as a random number
from 0 to 2 every K iterations. This is due to the fact that at each iteration, the method finds values closer to the
global optimum of the function or functional.
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4. Discussion

The main advantage of modern methods and algorithms of swarm intelligence is the intuitive structure of
the natural origin of the swarm, which means that it is a relatively simple software implementation. Therefore,
it makes swarm intelligence tools popular in various fields of research.

Most processes are structurally nonlinear. Swarm intelligence demonstrates high efficiency in finding
global optima for a wide range of functions, including nonlinear and non-convex functions, and works effectively
with nonlinear functions through the appropriate mechanism of evolution, which allows you to move in the
parameter space to find the global optimum. Another of the main advantages of the methods and algorithms
under consideration is the small number of hyperparameters that need to be configured. This simplifies the use
of methods and algorithms and customization compared to other algorithms.

5. Conclusions

The development of computing technologies makes it possible to simulate the behavior of complex objects
and systems. The development of new and modification of existing systems involves the construction of
mathematical models in the form of optimization in order to study various parameters of such systems. Such
models make it possible to have an idea of the modes of operation of various objects and systems, their optimal
parameters (settings), geometric properties of such systems. The use of swarm intelligence contributes to the
study and development of such objects and systems, since the usual approximate methods of global multivariate
optimization do not have such an opportunity due to the complexity and nonlinearity of functional dependencies
that describe systems and their operation.

In this work, three relevant methods and algorithms of swarm intelligence are studied: the algorithm of
global optimization by a swarm of particles, the bee algorithm for finding global solutions to problems that are
presented in extreme statements, and the method of differential evolution. These methods have been tested on
various scientific and applied problems, including problems that boil down to the search for global extremes of
multivariate functions with and without constraints, as well as on problems that reduce to the use of nonlinear
multivariate regression models and forecasting time series that arise during the study of the work of various
system complexes.

Three modifications of the considered methods and algorithms have been obtained. The first modification
consists in replacing the worst element of the population with the average position of the element throughout the
population. This approach works effectively when applied at each iteration or periodically at every K iteration.
The second modification of these methods and algorithms is to apply the principle of deterministic movement
towards the best element of the population. Movement step h It is determined in proportion (according to the
linear law) to the circumference of the population, which will coincide to the global optimum over time. The
third modification consists in changing the hyperparameters of optimization methods/algorithms. This involves
changing one or more hyperparameters in the course of the program'’s operation.

The practical results of the article are that the complex application of three modifications for each
method/algorithm gives advantages in increasing the dimension of search in an extreme problem. For
multivariate problems, modifications affect the elements of the population and allow for a more accurate
definition of the solution. This reduces the total number of iterations of the method/algorithm, which means that
it reduces the time to find the optimum of the problem with a given accuracy.

References

1. Yavuz, G., Durmus, B., & Aydn, D. (2022). Artificial bee colony algorithm with distant savants for constrained
optimization. Applied Soft Computing, 116.

2. Ewees, A. A, Gaheen, M. A,, Yaseen, Z. M., & Ghoniem, R. M. (2022). Grasshopper Optimization Algorithm with
Crossover Operators for Feature Selection and Solving Engineering Problems. IEEE Access, 10, 23304-23320.
https://doi.org/10.1109/ACCESS.2022.3153038

3. Yu,Y.P,Liu,J. Ch., & Wei, Ch. (2022). Hawk and pigeon's intelligence for UAV swarm dynamic combat game via
competitive learning pigeon-inspired optimization. Science China Technological Sciences, 65(5), 1072-1086.
https://doi.org/10.1007/s11431-021-1951-9

CuctemHi gocniaskeHHs B eHepreTuui. 2024. 3(79) 59



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21,

Pradhan, C., Senapati, M. K., Ntiakoh, N. K., & Calay, R. K. (2022). Roach Infestation Optimization MPPT Algorithm
for Solar Photovoltaic System. Electronics, 11(6), 927. https://doi.org/10.3390/electronics11060927

Fowler, M., Abbott, A. J., Murray, G. P., & McCall, P. J. (2021). Flying In-formation: A computational method for
the classification of host seeking mosquito flight patterns using path segmentation and unsupervised machine learning.
bioRxiv. https://doi.org/10.1101/2021.11.24.469809

Nayak, M., Das, S., Bhanja, U., & Senapati, M. R. (2023). Predictive Analysis for Cancer and Diabetes Using Simplex
Method Based Social Spider Optimization Algorithm. IETE Journal of Research, 69(10), 7342-7356.
https://doi.org/10.1080/03772063.2022.2027276

Nadimi-Shahraki, M. H., Taghian, S., Mirjalili, S., Zamani, H., & Bahreinineja, A. (2022). Gaze cues learning-based
grey wolf optimizer and its applications for solving engineering problems. Journal of Computational Science, 61.
https://doi.org/10.1016/j.jocs.2022.101636

Yazdani, R., Mirmozaffari, M., Shadkam, E., & Taleghani, M. (2022). Minimizing total absolute deviation of job
completion times on a single machine with maintenance activities using a Lion Optimization Algorithm. Sustainable
Operations and Computers, 3(3), 10-16. https://doi.org/10.1016/j.susoc.2021.08.003

Niu, G., Li, X., Wan, X., He, X., Zhao, Y., Yi, X., Chen, C., Xujun, L., Ying, G., & Huang, M. (2022). Dynamic
optimization of wastewater treatment process based on novel multi-objective ant lion optimization and deep learning
algorithm. Journal of Cleaner Production, 345. https://doi.org/10.1016/j.jclepro.2022.131140

Wang, S. H., Zhou, J., & Zhang, Y. D. (2022). Community-acquired pneumonia recognition by wavelet entropy and
cat swarm optimization. Mobile Networks and Applications, 1-8. https://doi.org/10.1007/s11036-021-01897-0
Al-Dyani, W. Z., Ahmad, F. K., & Kamaruddin, S. S. (2022). Improvements of bat algorithm for optimal feature
selection: A systematic literature review. Intelligent Data Analysis, 26(1), 5-31. https://doi.org/10.3233/IDA-205455
Sun, B., Li, Y., Zeng, Y., Li, C., Shi, J., & Ma, X. (2021). Distribution transformer cluster flexible dispatching method
based on discrete monkey algorithm. Energy Reports, 7, 1930-1942. https://doi.org/10.1016/j.egyr.2021.03.041
Rahkar Farshi, T., & Orujpour, M. (2021). A multi-modal bacterial foraging optimization algorithm. Journal of
Ambient Intelligence and Humanized Computing, 12(11), 10035-10049. https://doi.org/10.1007/s12652-020-02755-
9

Altay, O. (2022). Chaotic slime mould optimization algorithm for global optimization. Artificial Intelligence Review,
55(5), 3979-4040. https://doi.org/10.1007/s10462-021-10100-5

Chakraborty, S., Saha, A.K., Sharma, S., Mirjalili, S., & Chakraborty, R. (2021). A novel enhanced whale
optimization algorithm  for  global optimization. Computers & Industrial  Engineering, 153.
https://doi.org/10.1016/j.cie.2020.107086

Hassanien, A. E., & Emary, E. (2016). Swarm intelligence: principles, advances, and applications. CRC Press is an
imprint of Taylor & Francis Group, an Informa business. ISBN: 978-1-4987-4107-1.

Manjarres, A. V., Sandoval, L .G. M., & Suarez, M. J. S. (2018). Data Mining Techniques Applied in Educational
Environments: Literature Review. Digital Education Review, 33, 235-266. https://doi.org/10.1344/der.2018.33.235-
266

Prabha, S. L., & Dr. Shanavas, A. R. M. (2015). Application of Educational Data mining techniques in e-Learning A
Case Study. International Journal of Computer Science and Information Technologies, 6(5), 4440-4443.

Castro, F., Vellido, A., Nebot, A., & Mugica, F. (2007) Applying Data Mining Techniques to e-Learning Problems.
In L. C. Jain, R. A. Tedman & D. K. Tedman (Eds.), Evolution of Teaching and Learning Paradigms in Intelligent
Environment. Studies in Computational Intelligence. Heidelberg: Springer, 62, 183-221. https://doi.org/10.1007/978-
3-540-71974-8_8

Rahman, A., Sultan, K., Aldhafferi, N., & Algahtani, A. (2018). Educational Data Mining for Enhanced teaching and
learning. Journal of Theoretical and Applied Information Technology, 96(14), 4417-4427.

Aldowah, H., Al-Samarraie, H., & Fauzy, W. M. (2019). Educational data mining and learning analytics for 21st
century higher education: A review and synthesis. Telematics and Informatics, 37, 13-49.
https://doi.org/10.1016/j.tele.2019.01.007

CuctemHi gocniaskeHHs B eHepreTuui. 2024. 3(79) 60


https://doi.org/10.1080/03772063.2022.2027276
http://dx.doi.org/10.1016/j.susoc.2021.08.003
https://doi.org/10.1016/j.jclepro.2022.131140

METO/IU ¥ AJITOPUTMHU POMOBOI'O IHTEJIEKTY JJIS1 3AJIAY
HEJITHIMHOT O PET'PECIMHOI'O AHAJII3Y TA OIITUMI3AILIII
CKJIAJTHUX ITPOLECIB, OB’EKTIB TA CUCTEM: OI'JISI] 1
MOJIUPIKALIIS METOJIB 1 AJITOPUTMIB

Baaaucaas Xaiigyposl?*, kann. TexH. HayK, CT. JoclL., https://orcid.org/0000-0002-4805-8880

Baaum Tarenxo?, https://orcid.org/0009-0008-4869-9689

Muxkura JIntoBuenko?!, https://orcid.org/0009-0001-6671-7763

Tamapa Lroniii®, kann. ¢is.-mar. nayk, gouenr, https://orcid.org/0000-0003-2206-2897

Tersina osnorau®, https://orcid.org/0000-0003-1037-4383

'Hauionanbhuit Texuiunmii yHiBepcuteT Ykpainm «KuiBcbkuil moniTexHiuHMi iHCTHTYT imeHi Irops
Cikopcbekoro», bepecteticekuii mpocrt., 37, m. Kuis, 03056, Ykpaina;

ZIHCTI/ITYT 3aranbHoi eHepretuku HAH Ykpainu, Byn. AutonoBuua, 172, M. Kuis, 03150, Ykpaina;
SHauionanbHuii yHiBepcuTeT Giopecypcis i IpHpoJOKOpPUCTYBaHHA Ykpainu, Byl I'epois O6opoHu, 15,
M. Kuis, 03041, YkpaiHa;

“Yepraceka ¢imis [IBH3 «Epponeiickkuii yHiBepcHTET», Byl CMingHcbKa, 83, M. Uepkacu, 18008, Ykpaina
* ABTop-KopecnionaeHT: allif0111@gmail.com

AHoTauisg. Po3pobka weuoKicHux memoodis il areopummie 2106arvHoi bacamosumipHoi onmumizayii i ix
Moougbikayitl y pisHUX cgpepax HayKu, mexHiku, eKOHOMIKU € AKMYAabHUM 3A80AHHAM, siKe nepedbauae
3MEHWENHA OOUUCTIOBATIHUX 3AMPAMm, NPUCKOPEHHSA | epeKmUsHULl NOWYK po38 A3Ki6 maKozo pooy 3a0au.
V 36’a3xy 3 mum, wo oirvwicme cepiio3nux 3a80anb nepedbaiaioms NOWYK 0ecAmKis, comenv abo Mucay
ONMUMANbLHUX NApAMempie MamemMamuiHux Mmooeneu, npocmip HOWYKY YUux napamempié 3poCmae
Heninitino. Huwi icnye 6acamo cywacHux memooié U aicopummis pouogoco IHMeNeKkmy, sKi eupiuyoms
HAYKOBO-NPUKIAOHI 3A60AHHS CbO20OCHHS, alle GOHU NOmMpedyiombs MOOUQIKayitl y 36 3Ky 3 GeNUKUMU
nPOCMOpamMu NOwyKy OnmuMaibHux napamempis mooeneu. Cyuachuti potiogull iHmenexm Mae 3HAYHUL
nomeHyian Oasi 3ACMOCYBAHHS 8 eHepeemUYHIl 2any3i uepe3 €600 30amHicmb 00 onmumizayii ma
PO38 A3aHHA CKIAOHUX Npobnem. 3a 0ONOMO2010 Hb020 MOJ’CHA GUPIULY8AMU HAYKOBO-NPUKIAOHI 3404yl
OnmuMizayii cnojicusanus enepeii 8 Oy0igax, NPOMUCTIOBUX KOMNLEKCAX MA MICbKUX CUCIMEMAX, 3MEeHY oYU
empamu eHepaii ma niogUWYIOYU epheKmuHiCy GUKOPUCMAHHA Pecypcie, a makodc 3a0ayi 01 nobyoosu
DI3HUX elleMeHMI8 eHep2emUYHUX CUCmeM 3a2aiom. Bioomi memoou u areopummu potiogoeo inmenekmy
MAaKodiC aKMueHO 3acmoco8yloms O/ NPOSHO3YBAHHA GUPOOHUYMEA eHepeii 6i0 GiOHOBNI0GAHUX Odiceper,
MakKux AK COHAYHA ma eimposa enepeis. Lle 0o036o0.1a€ Kpawe ynpasnamu 0dxceperamu enepeii ma nianyeamu
ixne euxopucmauus. AxkmyanvHicme moougpikayii memodie U aneopummis 00YMOGNeHA RUMAHHAMU
NPUCKOPEHHS WUOKOCTI iX pobomu nid Yac po36 a3anus 3a0ay MAuUHHO20 HAGYANHS, 30KPeMAa Y MOOEeIsIX
Heninitinol pecpecii, 3a0auax kracu@ikayii, kiacmepuzayii, 0e KiibKiCmb CNOCMEPENCY8AHUX OAHUX MOICE
cseamu Oecsimu [ comui mucsay abo Oinbue. Y pobomi posensnymi U MOOUQpikoeami eidomi epexmueni
Memoou U aneopummu pouoeozo iHmeneKkmy (aieopumm ORMUMI3AYIL POEM HACMUHOK, OONCONUHULL
aneopumm onmumizayii, memoo ou@epeHyianrbHoi egonoyii) 08 NOWLYKY po36’s3Kie 0a2amoeuMipHUX
EeKCMPEeMAbHUX 300a4 3 00MedHCeHHAMU | Oe3 00MediceHb, a MAKOIC 3a0ad HeNIHIIH020 pecpeciliHo20 aHAi3Y.
Ompumani Moougikayii 6i00Mux K1acUHHUX epekmusHUx Memoois i arcopummis poroeo2o iHmenexkmy, sKi
npucymui 'y pobomi, e@ekmueHo po36’s3yiomb CKIAOHI HAYKOBO-NPUKAAOHI 3a0aui KOHCMPYIOGAHHSA
CKaoHux 06 exkmis i cucmem. IlopieHsanbHUl aHANI3 MemOo0i8 Ul aneopummis 6yoe npo8edeHo Y HACHYNHOMY
00CiONHCEHHT 3a OAHOI0 MEMAMUKOIO.

KuawouoBi cinoBa: onmumizayis, pouosutl inmenekm, mamemamuine MOOen08anHs, HeliHiUHA pespecis,
CKAOHI 06 €Kmu ma cucmemu.
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