

О КОРРЕЛЯЦИИ МЕХАНИЧЕСКИХ СВОЙСТВ АЛМАЗОПОДОБНЫХ ПОЛУПРОВОДНИКОВЫХ СОЕДИНЕНИЙ С РЕШЕТОЧНОЙ ТЕПЛОПРОВОДНОСТЬЮ

Михальченко В.П. (Институт термоэлектричества, ул. Науки, 1, Черновцы, 58029, Украина)

Михальченко В.П.

• Проведен анализ и сопоставление механических (упругих) свойств полупроводниковых соединений типа $A^n B^{8-n}$ (n = 1, 2, 3), обладающих различной степенью ионности химической связи f_M с их решеточной теплопроводностью χ_P при T = 300 К. Показано, что с ростом f_M и степени упругой анизотропии $A = 2C_{44}/(C_{11} - C_{22})$ (C_{ij} – упругие постоянные в обозначениях Фойгта), величины χ_P монотонно убывают от фосфидов к сульфидам и до галогенидов. Таким образом, установлена впервые функциональная зависимость $\chi_P(A)$. Предложена оценка технологических параметров, необходимых при конструировании и изготовлении термоэлектрических устройств.

Введение

Название этой работы может вызвать определённое недоумение среди специалистов в области термоэлектричества: имеет ли смысл анализировать, сопоставлять и обсуждать механические свойства и теплопроводность χ твердых тел, используемую в расчетах термоэлектрической добротности $Z = \alpha^2 \sigma / \chi$ (α , σ – коэффициенты Зеебека и электропроводности)? Действительно, рассматривая ряды Зеебека, Юсти и Мейсснера, легко усмотреть, что металлы, обладающие высокими значениями σ , χ и механических свойств (упругие постоянные C_{ijkl} , модули Юнга, сдвига, сжатия и др.), характеризуются существенно меньшими значениями Z в сравнении с полуметаллами и полупроводниками (см., напр., [1]).

Однако при выборе конкретного термоэлектрического материала (для любой области его применения) вопрос о взаимно-однозначном соответствии механических, тепловых и термоэлектрических свойств должен решаться путем учета всех реальных факторов, обеспечивающих как механическую стабильность, так и высокие значения Z в широких интервалах температур и давлений. Ниже изложены анализ и процедура соответствующих расчетов применительно к бинарным полупроводниковым соединениям типа $A^n B^{g_{-n}}$ (n = 1, 2, 3). Выбор этих материалов обусловлен тем, что они характеризуются различной степенью ионности химической связи f_m , существенно влияющей как на равновесные (механические, термические, калорические), так и неравновесные (решеточная теплопроводность, внутреннее трение, вязкость) свойства и, в особенности, на электрофизические свойства. Как подчеркнуто в [2], механические характеристики, такие как твердость, хрупкость и пластичность не менее важны, чем собственно термоэлектрические свойства данного материала, для обеспечения высокой надежности соответствующих изделий, приборов и устройств.

С ретроспективной точки зрения следует обратить внимание на те обстоятельства, которые сыграли важную роль в понимании и осмыслении научных и прикладных аспектов термоэлектрического приборостроения.

По мере расширения области исследований физических свойств от элементарных

полупроводников *Ge*, *Si*, β -*Sn* к их бинарным аналогам – соединениям $A^n B^{8-n}$ (n = 1, 2, 3) изменилась не только кристаллическая структура (напр., исчез центр инверсии), но и образовался качественно новый тип химической связи – смешанная ионно-ковалентная – вследствие взаимодействий между двумя сортами атомов, находящихся в соответствующих узлах кристаллической решетки типа алмаза. Кроме того, различие в их зонной структуре, т.е. энергетических спектрах $\varepsilon(\vec{p})$ (ε – энергия, \vec{p} – квазиимпульс) привели к существенным изменениям электрических, магнитных, оптических, термоэлектрических и термомагнитных свойств. Уместно подчеркнуть, что в отличие от электрофизических, механические и тепловые свойства упомянутых соединений не подвергались количественному анализу в должной мере, вплоть до настоящего времени, и лишь в недавней работе [3] количественно оценивалось влияние степени ионности f_M соединений $A^n B^{8-n}$ (n = 1, 2, 3) на их упругие свойства. Таким образом, цель настоящей работы сводится к следующему:

I. Установить количественную корреляцию механических свойств соединений $A^n B^{\delta-n}$ (n = 1, 2, 3) с их решеточной теплопроводностью χ_P .

II. Исходя из п. I, предложить процедуру оценок механических свойств термоэлектрических материалов при их термомеханической обработке, необходимых как при конструировании, так и при изготовлении высокодобротных приборов, обладающих надлежащей механической стабильностью.

Физическая интерпретация связи между механическими (упругими) свойствами и решеточной теплопроводностью χ_P

В исторически первой теории теплопроводности диэлектрических твердых тел, предложенной П.Дебаем [4], получено фундаментальное соотношение:

$$\chi_P = \frac{1}{3} C_V \overline{\upsilon} \overline{l} \,, \tag{1}$$

где C_V – теплоемкость единицы объема вещества, $\overline{\upsilon}$ – средняя скорость распространения звуковых волн, \overline{l} – средняя длина их свободного пробега.

В дебаевском приближении кристаллическая решетка рассматривается, как непрерывная упругая среда (так называемый упругий континуум), в которой могут распространяться продольные и поперечные акустические колебания с различными частотами ω , зависящими линейно от волнового вектора $\vec{q} = \frac{2\pi}{\lambda} \vec{n}_0$ (λ – длина волны). Это означает, что дисперсия колебаний $\omega(\vec{q})$ не учитывается, вследствие чего групповая и фазовая скорости упругих волн совпадают.

Тем не менее, атомная структура по П. Дебаю учитывается, вводя ограничивающую (максимальную) частоту $\omega_{\text{max}} = \omega_D$ (т. наз. дебаевская частота). Последняя определяется из условия сохранения числа степеней свободы 3N(N -число Авогадро) – условия нормировки:

$$3N = A \int_{0}^{\omega_{D}} f_{D}(\omega) d\omega, \qquad (2)$$

где A – постоянная, фигурирующая в выражении дебаевской функции спектрального распределения частот $f_D = A \cdot \omega^2$, т.е. числа колебаний, попадающих в интервал частот

 $[\omega, \omega + d\omega] (0 \le \omega \le \omega_{\text{max}} \equiv \omega_D)$. Таким образом, *A* определяется однозначно:

$$3N = A \int_{0}^{\omega_{D}} \omega^{2} d\omega = \frac{A \omega_{D}^{3}}{3},$$

откуда

$$A = \frac{9N}{\omega_D^3} \equiv \frac{9N}{\omega_{\text{max}}^3}.$$
 (3)

Обычно максимальная частота $\omega_{max} \equiv \omega_D$ представляется путем введения дебаевской характеристической температуры θ_D , определяемой как

$$\theta_D = \frac{\hbar}{k} \omega_{\max} \equiv \frac{\hbar}{k} \omega_D, \qquad (4)$$

где *ћ* и *k* – постоянные Планка и Больцмана.

Из (4) следует, что θ_D обладает размерностью температуры (К), вследствие чего её физический смысл становится достаточно прозрачным: θ_D представляет собой границу раздела между классической областью температур $T > \theta_D$, в которой квантование колебаний решетки несущественно и квантовой областью температур $T < \theta_D$, где квантование колебаний решетки является принципиальным и существенным в расчетах тепловых равновесных и неравновесных свойств твердых тел – диэлектриков, полупроводников, полуметаллов и металлов *).

Возвращаясь к ур. (1), можно усмотреть корреляцию между χ_P и упругими свойствами вещества. Действительно, согласно классической теории упругости величины упругих модулей Юнга *E*, сдвига *G*, всестороннего сжатия *B* твердого тела пропорциональны квадрату скорости распространения звуковых волн различной поляризации (продольной, поперечной, смешанной): $E \sim \rho v_{npod}^2$, $G \sim \rho v_{nonp}^2$ и т.д. Следовательно, чем выше абсолютные значения *E*, *G*, *B* среды, тем больше величины χ_P . Кроме того, на основании соотношения (1) можно объяснить даже температурную зависимость $\chi(T) \sim 1/T$ в классической области $T > \theta_D$.

Дальнейшее развитие теории теплопроводности П. Дебая связано с именами известных физиков – Р. Пайерлсом, Г. Лейбфридом, Дж. Займаном и др. [4].

Используя атомистические модели кристаллических решеток, учитывая различные типы взаимодействий между атомами (молекулами), получены зависимости $\chi_P(T)$, в широких интервалах температур $T \geq \theta_D$. Упомянутые зависимости приведены в известных монографиях [4, 6]. Наиболее приемлемым для прикладных расчетов в кристаллах кубической сингонии по мнению [7], является соотношение Лейбфрида-Шлёмана в области $T > \theta_D$:

$$\chi_P(T) = \frac{12}{5} \sqrt[3]{4} \left(\frac{k}{\hbar}\right)^3 M \delta \theta_D^3 / \gamma_\Gamma^2 T, \qquad (5)$$

где M – масса атома; δ^3 – объем, приходящийся на один атом; γ_{Γ} – параметр Грюнайзена, учитывающий изменения частот колебаний решетки вследствие объемного термического расширения ^{**)}

^{*)} О гносеологической значимости θ_D (определяемой разнообразными физическими методами), как атрибута современной физики твердого тела, см., напр., недавнюю работу [5].

^{**)} В общем случае для кристаллов любой симметрии величины θ_D и γ_Γ образуют симметричный тензор второго ранга, а именно: тензор дебаевских частот [8] и тензор Грюнайзена [9].

$$\gamma_{\Gamma} = \frac{-d\ln\theta_{D}}{d\ln V} > 0.$$
(6)

Существенно подчеркнуть, что термодинамический параметр γ_{Γ} может быть рассчитан, используя данные, измеряемые экспериментально:

$$\gamma_{\Gamma} = \frac{\beta}{\kappa} \frac{V}{C_{V}},\tag{7}$$

где β – коэффициент объемного расширения, к – объемная сжимаемость, C_V – решеточная теплоемкость грамм-атома вещества^{*)}. Для оценок многих решеточных свойств кристаллов принимают среднее значение $\langle \gamma_I \rangle \simeq 2$ (хотя для ковалентных кристаллов $\gamma_{\Gamma} = (0.50 \div 0.75)$), а для квантовых и криокристаллов $\gamma_{\Gamma} = 3$ [11]). В соответствии с выражением (5) связь между $\chi_P(T)$ и упругими свойствами кристаллов проявляется в том, что θ_D можно рассчитать из экспериментальных данных компонентов тензора упругих постоянных C_{ijkl} (четвертого ранга), фигурирующего в обобщенном законе Гука, устанавливающего линейную зависимость между тензором напряжений σ_{ij} и тензором деформаций ε_{kl} . Рассчитанная таким путем $\theta_D^{(ynp)}$ совпадает с величиной $\theta_D^{(c)}$, определенной из данных температурной зависимости решеточной теплоемкости $C_V(T)$ в криогенной области температур порядка $\theta_D/100$, в которой выполняется истинный закон $C_V \sim T^3$ П. Дебая.

Таким образом, из рассматриваемой выше физической аргументации связи между механическими и тепловыми свойствами неметаллических кристаллов можно прийти к однозначному заключению, а именно: чем выше абсолютное значение компонент тензора упругих постоянных, тензора дебаевских частот и чем меньше абсолютные значения компонент тензора Грюнайзена^{**}, тем выше теплопроводность данного кристалла, независимо от кристаллической сингонии.

Например, алмаз, обладающий "рекордным" значением $\theta_D \approx 2000$ К среди непроводящих кристаллов, характеризуется наивысшей величиной χ_P , которая в 2 ÷ 5 раз превышает теплопроводность *Cu* и *Ag* – лучших проводников тепла.

Подчеркнем, что при физическом обосновании корреляции между механическими свойствами и χ_P полупроводниковых сплавов типа *Ge-Si*, алмазоподобных соединений типа $A^n B^{\delta-n}$ (n = 1, 2, 3), интерметаллических соединений (легированных и нелегированных), а также других термоэлектрических материалов, сведения о характере химической связи, т.е. распределения электронной плотности $\rho(x)$ в этих элементарных ячейках, являются необходимыми и существенными.

Теоретические расчеты $\rho(x)$ (зонной структуры) достаточно подробно изложены в литературе (см. напр., [12]). Экспериментальное определение $\rho(x)$ обычно осуществляется из данных анализа интенсивностей рентгеновских дифракций и определения Фурье-компонент структурного фактора (т. наз. F^2 тела [13]).

^{*)} Величины γ_Γ могут быть определены также из данных температурного ослабления интенсивностей рентгеновских дифракций, из данных зависимостей сжимаемости от давления, ударных адиабат Гюгонио, из данных поглощенной кристаллом энергии мощного лазерного излучения в импульсном режиме при постоянном объеме [10].
**) В некоторых кристаллах с различным характером химической связи, т. наз. модальные компоненты

^{**)} В некоторых кристаллах с различным характером химической связи, т. наз. модальные компоненты тензора Грюнайзена γ_i могут быть отрицательными. Последнее обстоятельство, однако, не влияет на знак χ_P , как это видно из уравнения (5).

Тем не менее, степень ионности смешанной ионно-ковалентной связи алмазоподобных полупроводниковых соединений $A^n B^{8-n}$ (n = 1, 2, 3) с достаточной степенью точности может быть определена по отклонению от соотношения М. Борна для упругих постоянных C_{ij} этих соединений, как показано в [14, 15]:

$$f_{_{\mathcal{M}}} = 1 - \Lambda, \tag{8}$$

где

$$\Lambda = \frac{4C_{11}(C_{11} - C_{12})}{\left(C_{11} + C_{12}\right)^2}$$
(9)

(С_{іі} – в обозначениях В. Фойгта).

Отметим, что из C_{ij} могут быть рассчитаны весьма важные в прикладном смысле упругие характеристики, такие как модуль Юнга E, модуль кручения G (зависящие от направления в кристалле). Кроме того, не менее важны в физическом смысле упругие параметры (не зависящие от направления в кристалле), определяемые из данных C_{ij} , а именно: модуль всестороннего сжатия

$$B = \frac{\left(C_{11} + 2C_{12}\right)}{3} \tag{10}$$

и фактор упругой анизотропии

$$A = \frac{2C_{44}}{C_{11}} - C_{12} \tag{11}$$

(так называемый *A*-фактор), физический смысл которых достаточно прозрачен. Величина *B* в известной мере отражает энергию межатомного (межмолекулярного, межионного) отталкивания и *A*-фактор является мерой относительного сопротивления кристаллической решетки двум типам деформации сдвига: C_{44} – характеризует сопротивление сдвигу по плоскости (010) в направлении [001], а $(C_{11} - C_{12})/2$ – сопротивление сдвигу по плоскости (110) в направлении [$\overline{1}$ 10]. Именно по этой же причине для интерпретации жесткости химических связей и межатомных взаимодействий используется *A*-фактор. В частности, для бинарных алмазоподобных соединений типа $A^n B^{8-n}$ (n = 1, 2, 3) была установлена четкая количественная корреляция между *A*-фактором и степенью ионности связи f_M в недавней работе [3], а именно: *A*-фактор является монотонно-возрастающей функцией f_M , а в предельном случае чисто ковалентной связи (алмаз, $f_M = 0$) показана принципиальная невозможность реализации соединений $A^n B^{8-n}$ (n = 1, 2, 3), обладающих $A \leq 0.12$.

Влияние степени ионности химической связи *f*_м и *A*-фактора на решеточную теплопроводность χ_P

С точки зрения современной физики твердого тела, теплопроводность χ_P обусловлена ангармоничностью тепловых колебаний решетки. Наиболее общее проявление ангармоничности заключается в нарушении динамической зависимости колебательных мод, т.е. (на языке квантовой механики) фонон-фононным взаимодействием (так называемые *N*- и *U*-процессы [4]). Именно благодаря *U*-процессам (процессам переброса от немецкого "Umklapp"), решеточная теплопроводность является конечной, (а не бесконечной, как в "гармоническом" кристалле) величиной. Отметим попутно, что "гармонический" кристалл принципиально не может быть термоэлектриком (Z = 0!). Поскольку теплопроводность любого кристаллического твердого тела зависит как от типа (характера) химической связи (зонной структуры), так и от температуры, то для анализа зависимостей $\chi_P(T)$ рассматриваются три характерные области температур:

а) область высоких температур $T > \theta_D$, в которой $\chi_P(T) \sim 1/T_0$;

б) область низких температур $T < \theta_D$, в которой $\chi_P(T) \sim \exp(\theta_D / \xi T)$, где $1.5 \le \xi \le 2$ в зависимости от типа химической связи;

в) область криогенных температур $T \ll \theta_D$, $\chi_P(T) \sim C_V(T)$, а длина свободного пробега фононов $l_{\phi} \simeq L$, где L – макроскопический размер образца (т. наз. эффект Казимира [4]).

В области температур (б) и (в) существенное влияние на χ_P помимо степени ионности и ангармоничности оказывают дефекты реального кристаллического строения твердого тела – точечные, линейные и плоскостные [16].

В настоящей работе мы ограничимся анализом χ_P в зависимости от f_M и A-фактора области (а), в которой влияние дефектов на χ_P не является доминирующим. Кроме того, область (а) $T > \theta_D$, как правило, соответствует температурам, которые являются рабочими для большинства термоэлектрических изделий и устройств [1]. Для обнаружения ожидаемой корреляции между f_M , A-фактором и решеточной теплопроводностью χ_P , использованы экспериментальные данные C_{ij} и A-факторы, приведеные в табл. 1 недавней работы автора [3], а значения χ_P при $T \ge \theta_D$ заимствованы из справочников [17, 18].

Соединения $A^n B^{8-n}$ выбирались попарно с минимальной разницей по степени ионности f_{M} , для того, чтобы усмотреть "разрешающую способность" в оценках χ_P .

В таблице 1, помимо упомянутых, показаны и приведены также средние значения массы $\langle m \rangle = (m_1 + m_2)/2$, удельные объемы *V* и плотности ρ , которые потребуются для дальнейшего обсуждения результатов.

<u>Таблица 1</u>

Тип	<т>, г	ρ, г/см ³	<i>V</i> ,	$f_{\scriptscriptstyle \mathcal{M}}$	A	χр,	Примечания
соединения			см ³ /г·ат			Вт/см•К	
$A^{3}B^{5}$ AlP	46.4	2.85	10.2	0.033	1.78	0.900	
GaP	80.8	4.40	11.5	0.046	1.81	0.770	T = 300 K
A^2B^6 ZnS	77.9	4.10	12.0	0.171	2.34	0.026	
CdS	115.2	4.82	14.0	0.181	2.70	0.020	J
A^1B^7 Cul	152.0	5.63	16.9	0.207	3.16	0.0161*	Интерполяции
CuBr	115.6	4.72	15.2	0.440	6.00	0.013	T = 300 K

Анализируя данные таблицы 1 по возрастающей степени ионности f_{M} (сверху вниз), можно убедиться в том, что имеет место четкая корреляция не только между f_{M} и A-фактором, но и между f_{M} и χ_{P} : по мере убывания жесткости связи (т.е., увеличения степени ионности f_{M} и A-фактора), наблюдается систематическое уменьшение решеточной теплопроводности χ_{P} от фосфидов (минимальные значения χ_{P} и A), сульфидов (промежуточные значения χ_{P} и A) и до галогенидов, обладающих наибольшей степенью ионности f_{M} и A-фактором. Однако для *CuI* экспериментальная величина χ_{P} нам неизвестна и по этой причине её оценка проведена путем интерполяции на шкале χ_{P} (обозначена звездочкой). Можно полагать, что при такой интерполяции мы не слишком ошибаемся, поскольку установленная закономерность $f_{M}(\chi_{P})$ вполне достоверна, что независимо подтверждается уменьшением χ_{P} с ростом удельного объема V (т.е., уменьшения жесткости связи).

Отметим, что для большинства полупроводниковых кристаллов вклад в общую теплопроводность носителей (электронов или дырок), как правило, незначителен [4], хотя для некоторых соединений с высокой термоэлектрической добротностью (напр., Bi_2Te_3) такой вклад является существенным.

С общефизической точки зрения установленная закономерность $f_M(\chi_P)$ вполне естественна: из соотношения (1) следует, что чем выше обусловленная жесткостью связи скорость распространения звуковых волн в данном кристалле, тем выше его решеточная теплопроводность (что было хорошо известно и ранее). Новизной настоящей работы является заключение: решеточная теплопроводность полупроводниковых соединений типа $A^n B^{8-n}$ (*n*=1, 2, 3) является монотонно-убывающей функцией фактора упругой анизотропии (*A*-фактора) кристаллических твердых тел.

О влиянии температуры Дебая на решеточную теплопроводность в области высоких температур

Физическая интерпретация зависимостей типа $\theta_D(\chi_P)$ должна исходить из того, что температура Дебая θ_D , помимо её общефизической значимости, может рассматриваться как мера жесткости связи в колеблющейся кристаллической решетке. Этот вопрос широко дискутировался в свое время на Всесоюзных совещаниях по применению дифракции рентгеновских лучей и в периодических физических изданиях (см., напр., библиографию в [19]). Автором настоящей работы в свое время было показано, что θ_D , определяемая из рентгенографических данных, может рассматриваться как мера жесткости связи $f \sim m \cdot \theta_D^2$ колеблющейся решетки при центральных и нецентральных взаимодействиях ближайших и вторых по близости соседей [20].

Таким образом, концепция "жесткость связи – решеточная теплопроводность" может быть проанализирована для соединений $A^n B^{8-n}$ (n = 1, 2, 3), величины θ_D которых известны, либо могут быть вычислены по экспериментальным данным компонент тензора упругих постоянных C_{ijkl} .

Исходя из соображений, изложенных в предыдущих параграфах настоящей работы, можно ожидать, что закономерности, установленные для соединений $A^n B^{\delta-n}$, а именно $f_{\mathcal{M}}(\chi_P)$ и $A(\chi_P)$, будут адекватно отражены и в зависимостях $\theta_D(\chi_P)$ упомянутых соединений. Вместе с тем следует отметить, что ранее было хорошо известно, что в области высоких температур $\chi_P \sim \theta^3_D/T$ (см. ф-лу 5). Однако ни в одной из публикаций, относящихся к оценкам χ_P , величина θ_D не интерпретировалась как мера жесткости химической связи. Поэтому установление закономерностей $\theta_D(\chi_P)$ на основе экспериментальных данных может служить в качестве независимой дополнительной аргументации того, что характеристическая температура Дебая θ_D действительно является мерой жесткости химической связи в твердых телах.

Напомним, что при расчетах θ_D по упругим постоянным C_{ij} , необходимо вычислить среднюю скорость звука, которая зависит как от типа кристаллографической сингонии, так и от степени упругой анизотропии. Как показано автором в [5] для кристаллов кубической симметрии при $A \leq 2.36$, величины θ_D рассчитываются по сравнительно простой формуле:

$$\theta_D^{-3} = \frac{k_B m}{18\pi^2 h^3} \rho^{3/2} \left[\left(\frac{1}{C_{11}} \right)^{3/2} + \left(\frac{2}{C_{11} - C_{12}} \right)^{3/2} + \left(\frac{1}{C_{44}} \right)^{3/2} \right],$$
(12)

где C_{ij} – в обозначениях В. Фойгта, остальные обозначения общеприняты. Тем не менее, для кристаллов, обладающих $A \ge 2.36$, более точными являются формулы Беттса и др. [21], где учитываются шесть направлений усреднения скоростей звука:

$$\theta_D = \frac{h}{k_B} \left(\frac{9N}{4\pi V}\right)^{\frac{1}{3}} \rho^{-\frac{1}{2}} J_i^{-\frac{1}{3}},$$
(13)

где N – число Авогадро, а величины J_i представляют собой комбинации C_{ij} , которые не приводятся здесь вследствие их громоздкости^{*)}.

В таблице 2 приведены значения θ_D , рассчитанные при T = 300 К по (12) из данных C_{ij} , табл. 1 работы [3], и соответствующих χ_P , жесткости связи $\langle m \rangle \theta_D^2$ и среднего значения массы $\langle m \rangle$. Величины θ_D оказались практически совпадающими с таковыми, определенными из данных теплоемкости, согласно справочнику [18].

<u>Таблица 2</u>

Соед	инение, гип	<т>, г	$\theta_D(\mathbf{K})$	$< m > \theta_D^2 \times 10$ дин/см	χ _Р , Вт/см∙К	Примечания
$A^3 R^5$	AlP	46.4	588	2.71	0.90	
AD	GaP	80.8	446	1.62	0.77	для всех
$\Lambda^2 R^6$	ZnS	77.9	310	0.76	0.026	принято
AD	CdS	115.2	260	0.73	0.020	$<\gamma_{\Gamma}> = 1$ при T = 300 K
A^1B^7	CuI	152.0	178	0.49	0.016	
	CuBr	115.6	154	0.28	0.013	

Из таблицы следует, что для всех типов соединений $A^n B^{\delta-n}$ (n = 1, 2, 3) с уменьшением жесткости связи $f \sim m \cdot \theta_D^2$ закономерно убывает решеточная теплопроводность, и в соответствии с формулой (5) сохраняется закономерность увеличения χ_P с ростом θ_D . Некоторое влияние на зависимость $\chi_P(\theta_D)$ может оказать небольшое различие в параметрах Грюнайзена γ_{Γ} , которые для чисто-ковалентных кристаллов составляют величину $\gamma_{\Gamma} = 0.75$ [11].

Таким образом, из данных таблиц 1 и 2 можно прийти к однозначному утверждению, что характеристическая температура Дебая θ_D действительно является мерой жесткости химической связи независимо от кристаллографической сингонии и типа решеток Браве.

Некоторые практические рекомендации

Анализ упругих свойств соединений $A^n B^{8-n}$ (n = 1, 2, 3) и их корреляции с теплопроводностью позволяет рекомендовать и некоторые технологические параметры этих материалов, такие, как твердость, хрупкость, пластичность. Действительно, выбирая материал с минимальными значениями χ_P для обеспечения высоких значений термоэлектрической добротности $Z \sim 1 / \chi_P$, при конструировании и изготовлении приборов или устройств требуется также минимальная твердость, минимальная хрупкость и максимальная пластичность выбранных материалов. Из данных таблиц 1 и 2 следует, что минимальные значения χ_P относятся к соединениям A^1B^7 . Что касается их прочностных свойств, то необходимо принять во внимание соотношение недавней работы [3], связывающей упругие и пластические свойства:

1) сопротивление пластической деформации τ_{Π} пропорционально модулю сдвига G и

^{*)} Различие в величинах θ_D , рассчитанных по (12) и (13), составляет ~ 10% при $A \ge 2.36$ [5].

вектору Бюргерса \vec{b} , $\tau_{\Pi} = G \cdot \vec{b}$;

2) прочность на разрыв τ_P пропорциональна модулю сжатия *B* и периоду решетки (удельному объему *V*): $\tau_D = B \cdot V$;

3) отношение B/G – как индикатор пластичности и хрупкости: высокие значения B/G характеризуют пластичность материала, а низкие – его хрупкость, а именно: если B/G < 1.75, то материал заведомо хрупкий.

Из данных таблиц 1 и 2 следует, что максимальное значения $\tau_{\Pi} \sim G \cdot \vec{b}$ соответствует соединению *AlP* и минимальное τ_{Π} – соответствует *CuBr*. Для этих же соединений наблюдаются и экстремальные значения прочности на разрыв τ_P – max (*B*·*V*) для *InP* и min (*B*·*V*) для *CuBr*. Что касается отношения *B*/*G*, то согласно табл. 1 и 2, max (*B*/*G*) = 5.32 для *CuBr* и min (*B*/*G*) = 1.57 для *AlP*, т.е., наиболее хрупкие соединения с малой степенью ионности связи f_{M} и наиболее пластичные – с высоким значением f_{M} , что вполне естественно.

Процедура точной оценки твердости *H* соединений $A^n B^{8-n}$ обсуждена в недавней работе [3]. В нулевом приближении допускается оценка *H* относительно (алмаза $f_M = 0$) по отношению модулей всестороннего сжатия $B_{aлM}/B_{coed}$. Используя экспериментальные данные $B_{aлM} = 630$ ГПа [22] и соответствующих соединений табл. 1 и 2, получено $H_{GaP} = 19.6$ ГПа и $H_{Cul} = 7.4$ ГПа, т.е., закономерность $H(f_M)$ вполне естественна: величина твердости всегда выше в кристаллах с жесткими связями (см. также $f = \langle m \rangle \cdot \theta_D^2$ для *GaP* и *Cul*). Применительно к технологическим процессам горячего прессования и экструзии наряду с малыми значениями χ_P требуются также высокая пластичность и низкие значения хрупкости и твердости.

Выводы

- 1. При анализе связи механических свойств полупроводниковых соединений типа $A^n B^{\delta-n}$ (*n* = 1, 2, 3) с их теплопроводностью χ_P , показано впервые, что величина χ_P зависит однозначно от степени упругой анизотропии (*A*-фактора).
- 2. Установлено, что с ростом *A*-фактора зависимость $\chi_P(A)$ является монотонно убывающей функцией при T = 300 К.
- Показано, что с ростом θ_D зависимость χ_P(θ_D) является монотонно-возрастающей функцией θ_D, тем самым подтверждая, что f = <m>·θ_D² является мерой жесткости химической связи в колеблющейся решетке кристаллических твердых тел, независимо от типа кристаллографической сингонии.

Автор признателен акад. НАН Украины Л.И. Анатычуку за предложенную тему и полезные обсуждения.

Литература

- 1. Анатычук Л.И. Термоэлементы и термоэлектрические устройства / Л.И. Анатычкук. К.: Наук. думка, 1976. 765 с.
- 2. Материалы, используемые в полупроводниковых приборах / [ред. К. Хогарт]. М.: Мир., 1968. 407 с.
- Михальченко В.П. Механические свойства термоэлектрических материалов на основе бинарных полупроводниковых соединений / В.П. Михальченко, М.В. Рынжук // Термоэлектричество. – 2011. – №2. – С. 17 – 26.
- Могилевский Б.М. Теплопроводность полупроводников / Б.М. Могилевский, А.Ф. Чудновский. – М.: Наука, 1972. – 516 с.

- 5. Михальченко В.П. Об эффективных температурах Дебая фуллерита C₆₀ / В.П. Михальченко // Физика твердого тела. 2010. Т. 52, Вып. 7. С. 1444 1452.
- 6. P.G. Klemens, Solid State Phys. (F. Seitz, D. Turnball ed.) V.7, p. 1-98, Acad. Press. Publ. N.-Y. (1958).
- Миснар А. Теплопроводность твердых тел, жидкостей, газов и их композиций / А. Миснар. – М.: Мир, 1968.
- 8. Ya.A. Josilevski, On Debye frequency tensors. Phys. stat. sol. (b), v. 53, p. 405, (1972),
- Михальченко В.П. Энциклопедический словарь "Физика твердого тела" / В.П. Михальченко. К.: Наук. думка – 1996. – 204 с.
- Михальченко В.П. О величинах параметра Грюнайзена фуллерита C₆₀ в широких интервалах температур и давлений / В.П. Михальченко, В.В. Моцкин // Актуальные проблемы ФТТ, Минск: изд. центр БГУ. – 2005. – Т. 2. – С. 281 – 283.
- 11. M. Sangaja, On Grüneisen gamma of solids. Ind. J. Pare and Appl. Phys., v.8, p. 232 (1970),
- 12. Цидильковский И.М. Зонная структура полупроводников / И.М. Цидильковский. М. Наука, 1978. 377 с.
- 13. Жданов Г.С. Физика твердого тела / Г.С. Жданов. М.: изд. МГУ, 1961. 478 с.
- Михальченко В.П. Об отклонение для соотношения Борна для кристаллов со структурой алмаза и сфалерита / В.П. Михальченко // Физика твердого тела – 2003. – Т. 45, Вып. 3. – С. 429 – 433.
- Михальченко В.П. Новая шкала ионности для полупроводниковых соединений *A*^{III}*B*^V, *A*^{II}*B*^{VI}, *A*^{II}*B*^{VII} / В.П. Михальченко // Термоэлектричество. 2004. №2. С. 51 59.
- Оскотский В.С. Дефекты в кристаллах и теплопроводность / В.С. Оскотский, И.А. Смирнов. – Л.: изд. Наука, 1972. – 160 с.
- 17. Баранский П.И. Полупроводниковая электроника [Справочник]/ П.И. Баранский, В.П. Клочков, И.В. Потыкевич. К.: Наук. думка, 1975. 703 с.
- Таблицы физических величин. Справочник [под ред. К.К. Кикоина]. М.: Атомиздат, 1976. – 1006 с.
- 19. F.R. Herbstein, Methods of measuring Debye temperatures and comparison of results for some cubic crystals. Advances in Physics, v. 10, p. 313-355 (1961)
- 20. Михальченко В.Б. О рентгеновской характеристики температуре ванадия / В.Б. Михальченко, В.Б. Лотоцкий // Физика металлов и металловедение. 1971. Том. 32, С. 1300 1304.
- 21. Дж. Алерс, в кн. Динамика решетки (физическая акустика) под. ред. У. Мезона, М.: Мир, 1968, С. 13 14.
- 22. Физические свойства алмаза, под. ред. Н.В. Новикова. К.:Наук. Думка 1987. 275 с.

Поступила в редакцию 11.10.2012.