УКРАЇНСЬКИЙ АНТАРКТИЧНИЙ ЖУРНАЛ

УАЖ, №14, 43—57 (2015)

528.481

ПРО ВЗАЄМОЗВЯЗОК НЕРІВНОМІРНОСТІ ОБЕРТОВОГО РУХУ ЗЕМЛІ ТА АНТАРКТИЧНОЇ ТЕКТОНІЧНОЇ ПЛИТИ

К. Р. Третяк, Ф. К. Ф. Аль-Алусі

Національний університет «Львівська політехніка»; kornel@lp.edu.ua, forat1601@mail.ru

Реферат. Розроблено модифікований алгоритм визначення параметрів полюсу Ейлера і кутової швидкості обертання тектонічної плити із урахуванням безперервності і нерівномірності часових серій щоденних розв'язків перманентних ГНСС станцій. За даними 27 перманентних ГНСС станцій Антарктиди за період 1996—2014 рр. визначено положення середнього полюсу Ейлера і кутової швидкості обертання плити та їх щорічні зміни. Встановлено взаємозв'язок зміни кутових швидкостей обертання Землі і Антарктичної тектонічної плити ю.

О взаимосвязи неравномерности вращательного движения Земли и Антарктической тектонической плиты. К. Р. Третяк, Ф. К. Ф. Аль-Алуси

Реферат. Разработан модифицированный алгоритм определения параметров полюса Эйлера и угловой скорости вращения тектонической плиты с учетом непрерывности и неравномерности временных серий ежедневных решений перманентных ГНСС станций. По данным 27 перманентных ГНСС станций Антарктиды за период 1996–2014 гг., определено положение среднего полюса Эйлера и угловой скорости вращения плиты и их ежегодные изменения. Установлена взаимосвязь изменения угловых скоростей вращения Земли и Антарктической тектонической плиты ю.

About relationship of uneven of the Earth rotational movement and Antarctic tectonic plate.

K. R. Tretyak, F. K. F. Al-Alusi

Abstrakt. The modified algorithm for determining the parameters of Euler pole and angular velocity of tectonic plate rotation is developed with regard to continuity and uneven of time series of permanent GNSS stations daily solutions. Using the data from 27 permanent GNSS stations on Antarctic area for the period 1996–2014 years we defined position of middle Euler pole and angular velocity of plate rotation, and their annual changes. The interrelation of angular velocities change of the Earth rotation and Antarctic tectonic plate ω is established.

Вступ

Відомо, що нерегулярності обертання Землі впливають на рівномірність шкали Всесвітнього часу UT. Нерівномірність обертання Землі визначається зміною кутової швидкості обертання і зміщенням положення осі обертання відносно твердої Землі (рухом полюса).

Варіації кутової швидкості обертання є трьох типів: 1) періодичні або квазіперіодичні; 2) вікові; 3) нерегулярні

Причиною періодичної зміни швидкості обертання Землі є земні припливи, викликані гравітацією Сонця і Місяця. Сила притягання Землі Сонцем і Місяцем утворює припливи в корі й океанах і змінює момент інерції Землі. Оскільки момент імпульсу Землі, який є добутком моменту інерції і кутової швидкості обертання, є сталим, то зміна моменту інерції Землі призводить до зміни кутової швидкості обертання Землі. Зміна моменту інерції Землі залежить від взаємного розташування Землі, Сонця і Місяця, яке періодично змінюються. Тому найбільш значні коливання швидкості

обертання Землі мають річний, піврічний, місячний і півмісячний період [Сидоренков Н.С., 2004] Крім цього, сезонні коливання виникають внаслідок сезонного перерозподілу атмосферних мас і змін моменту імпульсу атмосфери та твердої Землі.

Вікове уповільнення швидкості обертання Землі пов'язане з існуванням припливного тертя в тілі Землі і океанах, що приводить до повільного зменшення кутової швидкості обертання Землі.

Приливні хвилі постійно рухаються по земній поверхні за Місяцем і Сонцем — зі сходу на захід в зворотному напрямку обертання Землі. При цьому в океанах і в тілі планети виникають сили тертя, які гальмують обертання Землі, завдяки чому і відбувається її монотонне вікове уповільнення.

Нерегулярні зміни швидкості Землі відбуваються стрибкоподібно через нерівномірні проміжки часу. Причинами їх прояву можуть бути зміни всередині планети (сильні землетруси, виверження вулканів) та дія позапланетних явищ [Пандул И.С., 2010] (викиди плазми Сонця).

Серед вікових змін обертання Землі виділяють періодичні зміни з довжиною періодів у десятки років. Десятирічні зміни швидкості обертання Землі занадто великі, щоб їх можна було пояснити, як і сезонні коливання, перерозподілом моменту імпульсу між атмосферою і Землею. Відомо, уповільнення швидкості обертання з 1870 по 1903 року було таким, що момент імпульсу Землі зменшився на (48 · 1025 кг · м² · c⁻¹). Якби уповільнення відбулося через перерозподіл моменту імпульсу між Землею і атмосферою, то момент імпульсу вітрів в 1870 р був би на (48 · 1025 кг · м² · c⁻¹) менший, ніж в 1903 р. При цьому швидкість вітрів у атмосфері повинна була б збільшитися більш ніж у три рази (за 33 роки західні вітри повинні були поступово підсилитися, а східні – ослабнути приблизно на 20 м / с). Однак настільки великих десятирічних коливань атмосферної циркуляції не помічено. Тому вважають, що довгоперіодична нерівномірність обертання Землі не може спричинятися геофізичними процесами, що протікають у атмосфері. Зазвичай її пов'язують з внутрішніми процесами взаємодії ядра, мантії та земної кори. Крім цього, на довгоперіодичні зміни обертового руху Землі можуть мати вплив переноси водних мас з океану на льодовиковий покрив Антарктиди та Гренландії, а також дрейф літосферних плит. Для цього в даній роботі зроблена спроба дослідити можливу наявність взаємозв'язку між нерівномірністю обертового руху Землі і Антарктичної тектонічної плити.

Мета роботи:

1) дослідити кінематичні параметри Антарктичної плити та щорічні зміни її кутової швидкості обертання та положення полюсу Ейлера за даними перманентних ГНСС-станцій;

 порівняти зміни кутової швидкості обертання Землі із нерівномірностями обертового руху Антарктичної плити.

Результати досліджень

Для дослідження обертового руху Антарктичної тектонічної плити були використані результати вимірів 27-ми ГНСС-станцій Антарктиди за період 1996–2014 рр (рис. 1).

Рис. 1. Схема розміщення перманентних ГНСС-станцій Антарктиди

В табл. 1 приведено геодезичні координати станцій. Всі результати вимірів були відібрані з бази даних ГНСС-вимірів Геодезичної лабораторії NGL (The Nevada Geodetic Laboratory) [http:// geodesy.unr.edu/index.php].

		-			-		
Назва стан- ції	B,°	L,°	Н, м	Назва стан- ції	B,°	L,°	Н, м
BRIP	-75.80	-201.53	2110.910	IGGY	-83.31	-203.75	1898.167
BURI	-79.15	-204.11	2006.304	LWN0	-81.35	-207.27	1528.537
CAS1	-66.28	-249.48	22.443	MAW1	-67.60	-297.13	59.141
CLRK	-77.34	-141.87	999.827	MIN0	-78.65	-192.84	676.908
COTE	-77.81	-198.00	1878.395	PALV	-64.78	-64.05	31.135
CRAR	-77.85	-193.33	-19.811	RAMG	-84.34	-181.95	1062.348
DEVI	-81.48	-198.02	67.011	ROB4	-77.03	-196.81	-41.611
DUM1	-66.67	-220.00	-1.326	SCTB	-77.85	-193.24	-18.926
DUPT	-64.80	-62.82	43.466	SDLY	-77.14	-125.97	2097.301
FALL	-85.31	-143.63	260.186	SYOG	-69.01	-320.42	50.011
FLM5	-77.53	-199.73	1869.726	VESL	-71.67	-2.84	862.380
FTP4	-78.93	-197.44	243.223	VNAD	-65.25	-64.25	20.990
HOOZ	-77.53	-193.07	2070.409	WHN0	-79.85	-205.78	2192.643
HUGO	-64.96	-65.67	20.638				

Координати ГНСС-станцій Антарктиди

Таблиця 1

Рис. 1 демонструє, що розташування ГНСС-станцій є нерівномірним, що обумовлено труднощами у освоєнні Антарктиди. Крім цього, зібрані результати вимірів так само мають нерівномірну цілісність і розподіл у часі. В табл. 2 наведено для кожної станції наявність кількості щоденних розв'язків по роках спостережень.

Проаналізувавши табл. 2, можна побачити, що п'ять ГНСС-станцій – CAS1, DUM1, MAW1, SYOG, VESL – мають найдовші ряди спостережень тривалістю до 20 років. Починаючи з 2010 року, накопичення даних є практично рівномірним і суцільним.

лиця 2		2014	361	361	343	360	361	335	362	77	363	257	70	363	124	143	362	341	359	362	275	361	361	358	361	354	39	365	362
Ta6	тиди.	2013	365	365	360	365	365	337	365	354	365	365	110	365	255	365	365	44	355	365	357	365	316	365	365	356	58	357	365
	нтарк	2012	364	365	358	365	364	346	365	253	363	226	354	365	347	309	365	365	343	365	365	365	364	365	365	365	348	365	365
	нцій А	2011	365	365	347	365	365	343	217	361	363	280	364	365	350	290	264	363	345	182	361	365	365	364	365	337	360	365	365
	CC-cra	2010	360	365	315	361	365	351	365	315	365	327	365	365	354	263	219	365	319	365	364	365	365	172	229	364	312	365	365
	IX LHC	2009	365	365	339	0	365	352	365	240	272	10	365	365	35	75	190	360	330	364	249	365	364	365	0	359	267	274	365
	нентни	2008	364	365	330	0	337	353	27	352	0	0	365	365	5	0	49	123	294	0	0	326	365	365	0	364	308	0	226
	пермаі	2007	17	25	359	0	0	359	0	358	0	0	365	365	66	0	0	0	359	0	0	0	365	365	0	361	283	0	16
	вцд а	2006	0	0	362	0	0	362	0	348	0	0	364	311	344	0	0	0	332	0	0	0	365	365	0	363	161	0	0
	ыжэд	2005	0	0	365	0	0	359	0	360	0	0	37	0	313	0	0	0	362	0	0	0	33	330	0	365	262	0	0
	CII OCT(2004	0	0	358	0	0	359	0	213	0	0	0	0	274	0	0	0	333	0	0	0	0	0	0	365	275	0	0
	роках	2003	0	0	365	0	0	340	0	301	0	0	0	0	160	0	0	0	351	0	0	0	0	0	0	365	327	0	0
	ків по	2002	0	0	364	0	0	197	0	308	0	0	0	0	0	0	0	0	349	0	0	0	0	0	0	358	212	0	0
	03B ⁷ A3	2001	0	0	362	0	0	0	0	360	0	0	0	0	0	0	0	0	357	0	0	0	0	0	0	334	162	0	0
	d хинн	2000	0	0	365	0	0	0	0	354	0	0	0	0	0	0	0	0	361	0	0	0	0	0	0	352	281	0	0
	і щоде	1999	0	0	190	0	0	0	0	201	0	0	0	0	0	0	0	0	340	0	0	0	0	0	0	314	346	0	0
	T bK0CT	1998	0	0	297	0	0	0	0	250	0	0	0	0	0	0	0	0	344	0	0	0	0	0	0	334	139	0	0
	atin kib	1997	0	0	277	0	0	0	0	0	0	0	0	0	0	0	0	0	313	0	0	0	0	0	0	306	0	0	0
	Розпо	1996	0	0	306	0	0	0	0	0	0	0	0	0	0	0	0	0	231	0	0	0	0	0	0	320	0	0	0
		Назва\Роки	BRIP	BURI	CAS1	CLRK	COTE	CRAR	DEVI	DUM1	DUPT	FALL	FLM5	FTP4	ZOOH	HUGO	IGGY	LWN0	MAW1	MIN0	PALV	RAMG	ROB4	SCTB	SDLY	SYOG	VESL	VNAD	0NHM

Рис. 2. Зображення полюсу Ейлера

Зв'язок швидкості зміщення перманентної ГНСС-станції з координатами полюса Ейлера та її кутовою швидкістю обертання в геодезичних координатах можна представити наступними виразами:

$$V_{R} = \Omega \cdot \cos(\Phi) \cdot \sin(L - \Lambda) \tag{1}$$

$$V_{L} = \Omega \cdot \left(sin(\Phi) \cdot \cos(B) - \cos(\Phi) \cdot \sin(B) \cdot \cos(L - \Lambda) \right)$$
(2)

де Ω — кутова швидкість обертання тектонічної плити; Φ , Λ — координати полюса Ейлера; B, L — координати перманентної ГНСС-станції з визначеними швидкостями зміщень у широтному та довготному напрямках $V_{B'}$ $V_{L'}$

Для кожного пункту з сукупності перманентних станцій можна скласти нелінійні рівняння 1 і 2. В цих рівняннях є три невідомі: координати полюса Ейлера (Φ , Λ) та кутова швидкість обертання плити (Ω). Залежно від кількості пунктів ми будемо мати подвоєну кількість рівнянь, отже, кількість рівнянь є завжди більшою за кількість невідомих (при $n \ge 2$, де n — кількість пунктів). У зв'язку з цим визначення невідомих параметрів (Ω , Φ , Λ) виконується за способом найменших квадратів [Третяк К. Р., Вовк А. І.].

Для цього диференціюємо рівняння 1 і 2 приводимо їх до лінійного виду.

$$\delta_{\dot{\mathcal{Q}}}\left(\frac{dV_B}{d\Omega}\right) - \delta_{\Phi} \cdot \left(\frac{dV_B}{d\Phi}\right) - \delta_{\Lambda} \cdot \left(\frac{dV_B}{d\Lambda}\right) + \left(V_{B_0} - V_B\right) = v_B \tag{3}$$

$$\delta_{\Omega} \cdot \left(\frac{dV_L}{d\Omega}\right) - \delta_{\Phi} \cdot \left(\frac{dV_L}{d\Phi}\right) - \delta_{\Lambda} \cdot \left(\frac{dV_L}{d\Lambda}\right) + \left(V_{B_0} - V_L\right) = v_L \tag{4}$$

47

де δ_{Ω} , δ_{ϕ} , δ_{Λ} — поправки в наближені значення параметрів полюса Ейлера (Ω_0 , Φ_0 , Λ_0); $(\Omega_0, \Phi_0, \Lambda_0)$; $\frac{dV_B}{d\Omega}, \frac{dV_B}{d\Phi}, \frac{dV_L}{d\Lambda}, \frac{dV_L}{d\Phi}, \frac{dV_B}{d\Lambda},$ — часткові похідні V_{B_0} ; V_{L_0} та — наближене зна-

чення проекції вектора швидкості абсолютного горизонтального зміщення ГНСС-станції у широтному та довготному напрямках, обчислені за наближеними значеннями параметрів полюса Ейлера; *V*_B та *V*_L — виміряні значення вектора швидкості абсолютного горизонтального зміщення ГНССстанції у широтному та довготному напрямках.

$$\frac{dV_B}{d\Omega} = \sin(L - \Lambda) \cdot \cos(\Phi) \tag{5}$$

$$\frac{dV_B}{d\Phi} = -\Omega \cdot \sin(L - \Lambda) \cdot \sin(\Phi) \tag{6}$$

$$\frac{dV_B}{d\Lambda} = -\Omega \cdot \cos(L - \Lambda) \cdot \cos(\Phi) \tag{7}$$

$$\frac{dV}{dt} = \cos(B) \cdot \sin(\Phi) - \cos(L - \Lambda) \cdot \sin(B) \cdot \cos(\Phi)$$

(8)

$$\frac{dV_L}{d\Phi} = \Omega(\cos(B) \cdot \cos(\Phi) + \cos(L - \Lambda) \cdot \sin(B) \cdot \sin(\Phi))$$
(9)

$$\frac{dV_L}{d\Lambda} = -\Omega \cdot \sin(L - \Lambda) \cdot \sin(B) \cdot \cos(\Phi)$$
(10)

Підставивши похідні (5) — (10) у рівняння (3), (4) отримаємо рівняння поправок виду (11) та (12).

$$\delta_{\dot{\omega}} \Big(\sin \left(L - \Lambda_0 \right) \cdot \cos \left(\Phi_0 \right) \Big) - \delta_{\Phi} \cdot \Big(\Omega_0 \cdot \sin \left(L - \Lambda_0 \right) \cdot \sin (\Phi_0) \Big) - \\ - \delta_{\Lambda} \cdot \Big(\Omega_0 \cdot \cos \left(L - \Lambda_0 \right) \cdot \cos (\Phi_0) \Big) + \\ + \Omega_0 \cdot \cos \left(\Phi_0 \right) \cdot \sin \left(L - \Lambda_0 \right) - \Big(V_{B_0} - V_B \Big) = v_B$$
(11)

$$\delta_{\Omega} \cdot \left(\cos\left(B\right) \cdot \sin\left(\Phi_{0}\right) - \cos\left(L - \Lambda_{0}\right) \cdot \sin\left(B\right) \cdot \cos\left(\Phi_{0}\right) \right) + \\ + \delta_{\Phi} \cdot \left(\Omega_{0} \cdot \left(\cos\left(B\right) \cdot \cos\left(\Phi_{0}\right) + \cos\left(L - \Lambda_{0}\right) \cdot \sin\left(B\right) \cdot \sin\left(\Phi_{0}\right)\right) \right) - \\ - \delta_{\Lambda} \cdot \left(\Omega_{0} \cdot \sin\left(L - \Lambda_{0}\right) \cdot \sin\left(B\right) \cdot \cos\left(\Phi\right) \right) + \\ + \Omega_{0} \cdot \left(\sin\left(\Phi_{0}\right) \cdot \cos\left(B\right) - \cos\left(\Phi_{0}\right) \cdot \sin\left(B\right) \cdot \cos\left(L - \Lambda_{0}\right) \right) - \left(V_{L_{0}} - V_{L}\right) = v_{L}$$
(12)

Для визначення складових векторів швидкостей горизонтальних зміщень та ми використовуємо часові серії, тобто щоденні розв'язки перманентної ГНСС станції (рис. 3).

Рис. 3. Приклад часової серії щоденних розв'язків перманентної ГНСС станції.

Для кожного розв'язку за координатами складаємо лінійні рівняння:

$$x_i = V_B \cdot t_i + c_B \tag{13}$$

$$y_i = V_L \cdot t_i + c_L \tag{14}$$

де t_i — епоха спостереження, c_B і c_L — постійні.

За способом найменших квадратів розв'язуємо окремо системи рівнянь (13) і (14) та визначаємо складові векторів швидкостей горизонтальних зміщень V_B та V_L і виконуємо оцінку точності визначених параметрів m_{V_B} та m_{V_L} . Вага кожного рівняння (13–14) залежить від безперервності та рівномірності розподілу даних

Вага кожного рівняни (13^{2–}14) залежить від безперервності та рівномірності розподілу даних протягом часу спостережень. На рис. 4 представлена безперервна часова серія щоденних розв'язків. Вага безперервності та рівномірності розподілу даних такої часової серії рівна 1. На рис. 5 представлена часова серія із розривами у результатах спостережень, а на (рис. 6) представлена часова серія зі розривами даних та нерівномірним їх розподілом на інтервалі спостережень. Відповідно вага цих часових серій буде відмінною від 1. Для обчислення їх ваг необхідно знайти довжину інтервалу спостережень

$$\Delta t = t_2 - t_i, \tag{15}$$

де *t*_{*p*}, *t*₂ — відповідно епоха початку та кінця спостережень.

Рис. 4. Безперервна часова серія щоденних розв'язків перманентної ГНСС-станції за період 2010—2011 рр. 49

Рис. 5. Розриви в часовій серії щоденних розв'язків перманентної ГНСС- станції за період 2010 — 2011 рр.

Рис. 6. Часова серія з розривами та нерівномірністю розподілу щоденних розв'язків перманентної ГНСС-станції

Визначаємо середню довжину усього інтервалу спостережень незалежно від кількості розв'язків:

$$s_r = \frac{t_1 + t_2}{2}.$$
 (16)

Визначаємо середню епоху усіх наявних розв'язків:

$$s_r = \frac{\sum_{i=1}^n t_i}{n},\tag{17}$$

де t_i — епоха *i*-го розв'язку, n — кількість розв'язків, яка може не збігатися з середньою довжиною інтервалу спостережень s_r (рис. 6).

50

Вагу за нерівномірність даних обчислюють як

$$P_{1} = 1 - \frac{2|s_{r} - s_{t}|}{\Delta t},$$
(18)

Чим більше відхилення, тобто різниця $s_r - s_i$, тим менша вага, але якщо $s_r = s_i$, то вага буде рівна одиниці. Для знаходження ваги за безперервність даних використаємо наступний вираз:

$$P_2 = 1 - \frac{4\left|\frac{\Delta t}{4} - \delta t\right|}{\Delta t} , \qquad (19)$$

де $\delta t = \frac{\sum |t_i - s_t|}{n}$ — сума середнього відхилення епох усіх наявних розв'язків від s_t .

Кінцеву вагу кожного складової вектора V_B та V_I, обчислюємо за виразом

$$P = \frac{P_1 P_2}{m^2} \,, \tag{20}$$

де P_1 — вага за нерівномірність даних, P_2 — вага за безперервність даних, m^2 — відповідно с.к.п. відхилення m_{ν_p} та m_{ν_r} .

Для кожної визначеної складової вектора та, з відповідними вагами, використовуючи наближені значення параметрів полюса Ейлера ($\Omega_0, \Phi_0, \Lambda_0$) складаємо рівняння поправок (11—12). Розв'язуючи складену систему рівнянь за способом найменших квадратів визначаємо поправки ($\delta_0, \delta_0, \delta_\Lambda$), та обчислюємо остаточні значення координат полюса Ейлера та кутової швидкості обертання плити (Ω, Φ, Λ)

$$\Omega = \Omega_0 + \delta_0 \tag{21}$$

$$\Phi = \Phi 0 + \delta_{\phi} \tag{22}$$

$$\Lambda = \Lambda_0 + \delta_{\Lambda}, \tag{23}$$

За остаточними параметрами знаходимо модельні швидкості зміщення ГНСС — станцій. За урівноваженими значення параметрів полюса Ейлера (Ω, Φ, Λ) визначаємо їх оцінку точності

$$m_{\mathcal{Q}} = \mu \cdot \sqrt{Q_{\Omega\Omega}} \tag{25}$$

$$m_{\Phi} = \mu \cdot \sqrt{Q_{\Phi\Phi}} \tag{26}$$

$$m_{\Lambda} = \mu \cdot \sqrt{Q_{\Lambda\Lambda}} , \qquad (27)$$

де: $Q_{\Omega\Omega}, Q_{\Phi\Phi}, Q_{\Lambda\Lambda}$ — діагональні елементи кореляційної матриці, $\mu = \sqrt{v^T \cdot \frac{v}{2n-1}}$ — похибка оди-

ниці ваги виміряних векторів, *v* — відхилення модельних значень швидкостей зміщення перманентних ГНСС-станцій у широтному та довготному напрямках від виміряних.

51

На підставі описаного алгоритму було визначено складові векторів горизонтальних швидкостей перманентних ГНСС-станцій Антарктичної тектонічної плити, їх точність та вагу на весь період спостережень (табл. 3).

Таблиця 3

№	Назва станції	B,°	L,°	$V_{\scriptscriptstyle B}$, мм	<i>V_L</i> , мм	<i>т_{V_B}</i> , мм	<i>т_{VL}</i> , мм	P_{B}	P_{L}
1	BRIP	-75.796	158.469	-12	8	2.5	2.5	0.336	0.336
2	BURI	-79.147	155.894	-12	6	2.2	2.4	0.337	0.337
3	CAS1	-66.283	110.52	-10	2	0.7	0.8	0.968	0.966
4	CLRK	-77.34	218.126	-3	17	4.9	4.4	0.222	0.222
5	COTE	-77.806	161.998	-12	8	2.5	2.3	0.329	0.329
6	CRAR	-77.848	166.668	-11	9	0.9	1.1	0.637	0.647
7	DEVI	-81.477	161.977	-12	7	3.0	3.2	0.301	0.284
8	DUM1	-66.665	140.002	-12	8	1.1	1.0	0.867	0.868
9	DUPT	-64.805	297.183	10	12	3.8	3.4	0.264	0.264
10	FALL	-85.306	216.368	-6	12	4.7	4.5	0.238	0.227
11	FLM5	-77.533	160.271	-12	8	1.6	1.7	0.412	0.489
12	FTP4	-78.928	162.565	-12	8	1.4	1.5	0.439	0.437
13	HOOZ	-77.532	166.933	-11	11	1.3	1.7	0.712	0.575
14	HUGO	-64.963	294.332	10	15	4.7	4.3	0.244	0.225
15	IGGY	-83.307	156.25	-13	4	3.7	5.0	0.297	0.257
16	LWN0	-81.346	152.732	-12	5	3.2	3.3	0.255	0.349
17	MAW1	-67.605	62.871	-2	-4	0.6	0.6	0.979	0.985
18	MIN0	-78.65	167.164	-11	9	4.2	4.6	0.302	0.281
19	PALV	-64.775	295.949	10	13	4.8	3.6	0.260	0.261
20	RAMG	-84.338	178.047	-11	9	2.4	2.3	0.327	0.327
21	ROB4	-77.034	163.19	-12	9	1.4	1.6	0.442	0.457
22	SCTB	-77.849	166.758	-12	9	1.4	1.3	0.511	0.502
23	SDLY	-77.135	234.025	1	19	7.4	5.1	0.214	0.208
24	SYOG	-69.007	39.584	3	-4	0.7	0.6	0.981	0.979
25	VESL	-71.674	357.158	10	0	0.7	0.7	0.858	0.871
26	VNAD	-65.246	295.746	10	13	3.9	3.7	0.263	0.265
27	WHN0	-79.846	154.22	-12	5	2.6	2.6	0.321	0.318

Складові векторів швидкостей горизонтальних зміщень перманентних ГНСС станцій за період 1996 — 2014 рр.

З табл. З видно, що точність визначення складових векторів складає середньому 10% від довжини вектора. На рис. 7 зображено рух векторів швидкостей горизонтальних зміщень перманентних ГНСС станцій Антарктичної тектонічної плити за період з 1996 р. по 2014 р. Розташування векторів зміщень має ротаційний характер за напрямом руху годинникової стрілки.

Рис. 7. Рух векторів швидкостей горизонтальних зміщень перманентних ГНСС станцій Антарктичної тектонічної плити за період з 1996 р. по 2014 р.

На весь період спостережень обчислено середню кутову швидкість обертання плити та координати середнього полюса Ейлера, визначено їх оцінку точності та ср. кв. похибку визначення модельних векторів горизонтальних швидкостей $m_{V_{\rm Tov}}$ (табл. 4).

Таблиця 4

Середня кутова швидкість обертання Антарктичної тектонічної плити та координати середнього полюса Ейлера визначені за даними ГНСС вимірів на перманентних станціях за перід 1996—2014 рр.

ω, "/рік (кутових секундах за рік)	0.00075
Ф, °полюсу Ейлера	58.4211
Λ, °полюсу Ейлера	53.2085
$m_{_{\rm o}}$, "/рік (кутових секундах за рік)	0.000009
m_{Φ} ,°	0.289
m _A ,°	0.386
<i>т_{V_{точ}}</i> , мм	0.8

Точність визначення кутової швидкості обертання плити на два порядки менша за саме значення швидкості, а точність визначення векторів горизонтальних швидкостей перебуває у межах 1 мм. Положення середнього полюсу Ейлера за період (1996–2014) показано на рис. 8.

На рис. 8 наведено положення полюсів Ейлера, визначених як середній за період (1996–2014) та іншими моделями кінематики літосферних плит APKIM-2000, SOPAC, NNR-NUVEL-1A, [Третяк К. Р., Голубінка Ю. І., 2006, Марченко О. М., Третяк К. Р. та ін., 2012, Dietrich R., 2001] і SCAR, REVEL 2000, ENS 97 [Jiang Wei-Ping, 2009].

Слід зауважити, що визначений нами полюс Ейлера розташований практично з полюсом визначеним SCAR за період (1997–2004).

Рис. 8. Рух полюса Ейлера Антарктичної тектонічної плити за результатами ГНСС вимірів (1996-2014).

За результатами обчислення річних швидкостей горизонтальних зміщень перманентних станцій (період 1996–2014 р) визначено щорічні параметри полюсу Ейлера Антарктичної плити та її кутової швидкості (табл. 5). Щорічну міграцію положення полюсу Ейлера зображено на рис. 8. На рис. 9 а, б, в представлено графіки щорічних змін широти та довготи полюсу Ейлера та кутової швидкості обертання плити.

Таблиця 5

Роки	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005
ω, "/рік	0.00082	0.00118	0.00104	0.00083	0.00078	0.00083	0.00090	0.00080	0.00073	0.00074
Ф,°	60.7776	62.807	66.3516	64.3746	55.0378	65.4897	62.277	59.9986	60.1678	58.5402
Λ,°	57.0776	61.413	55.819	50.3325	51.84	64.5556	56.6911	57.118	48.1944	50.0889
<i>m</i> _w , "/рік	0.0001	0.0001	0.0002	0.0001	0.0001	0.0001	0.0001	0.00004	0.00004	0.00002
$m_{\Phi},$ °	1.9052	0.9123	2.7606	1.6352	2.5384	1.3573	1.6645	1.4356	1.3695	0.7366
$m_{\Lambda},^{\circ}$	3.1847	1.5563	8.0076	3.6375	3.4286	3.5377	3.0341	2.1659	2.0484	1.0804
$m_{V_{\text{точ}}}$, мм	0.8	0.7	7.6	2.8	1.4	1.3	2.6	1.2	0.9	4.0

Визначення щорічних параметрів полюсу Ейлера, кутової швидкості та їх оцінки точності за результатами ГНСС вимірів з 1996 р. по 2014 р.

Роки	2006	2007	2008	2009	2010	2011	2012	2013	2014
ω, "/рік	0.00075	0.00077	0.00079	0.00072	0.00076	0.00080	0.00070	0.00086	0.00080
Φ,°	57.2516	60.4786	57.1111	53.334	59.3266	57.5323	57.2313	61.6613	61.2197
Λ,°	49.9822	56.8593	59.7934	47.8922	48.5171	52.1939	55.383	53.9952	53.1236
<i>m</i> _w , "/рік	0.00003	0.00002	0.00003	0.00002	0.00003	0.00003	0.00002	0.00002	0.00003
$m_{\Phi}^{,\circ}$	1.5485	0.8679	1.1793	1.3285	1.4084	1.4247	1.3735	1.0962	1.5191
$m_{\Lambda}, °$	1.6932	1.1579	1.0772	0.913	1.4242	1.3101	1.2815	1.1385	1.5995
<i>m</i> _{<i>V</i>_{точ}, мм}	1.0	6.2	12.1	6.7	3.1	2.5	1.3	3.0	4.9

Рис. 9 (а, б, в). Зміна середньорічних параметрів полюсу Ейлера Антарктичної тектонічної плити та кутової швидкості обертання Землі за період 1994 – 2014 рр.: а) широти Φ, б) довготи Λ, в) кутової швидкості Антарктичної тектонічної плити ω,

Необхідно зауважити наявність взаємозв'язку між зміною широти полюсу Ейлера та кутової швидкості обертання тектонічної плити. При зменшенні кутової швидкості зменшується широта полюсу Ейлера і відповідно навпаки. Одночасною зміною цих параметрів корегується момент імпульсу Антарктичної тектонічної плити.

З метою встановлення можливого зв'язку між нерівномірністю обертових рухів Землі і антарктичної тектонічної плити виконано розрахунок зміни середньорічної кутової швидкості Землі. Для цього нами використано дані Міжнародної служби обертання Землі (IERS) про зміну значення LOD (Length of Day), що визначаються в мс (мілісекундах) як різниця величин періодів ($P_z - P_a$), де P_a — період астрономічної доби (86400 с.), а P_z — період земної доби (рис 10). За осередненими річними значеннями LOD обчислено середню щорічну кутову швидкість обертання Землі

$$\omega_{\oplus} = \Omega_N (1 - LOD / T),$$

де $\Omega_N = 72921151.467064 \ 10^{-12}$ рад/с є номінальна швидкість обертання (відповідає швидкості обертання середньої епохи 1820 р.), T – тривалість середньої сонячної доби 86400 с. ТАІ.

Рис 10. Зміна параметра LOD за даними IERS.

Результати обчислення зміни середньорічної швидкості обертання Землі ω_{\oplus} представлені на рис. 9г. Порівнюючи зміну кутових швидкостей обертання Землі ω_{\oplus} і Антарктичної тектонічної плити, можна зауважити, що при збільшенні ω_{\oplus} кутова швидкість ω зменшується і навпаки. Цю закономірність так само можна пояснити законом збереження моменту імпульсу. Момент кількості руху у замкненій системі (літосфера, мантія і ядро Землі) зберігається під час еволюції цієї системи з часом. Зменшення моменту імпульсу системи ядро-мантія компенсується збільшенням моменту імпульсу літосфери (тектонічних плит).

Аналогічні залежності проявляються у системі Земля — атмосфера. Періодичні варіації швидкості обертання Землі з періодом від декількох діб до декількох років викликаються зміною кутового моменту атмосфери. Причиною нерегулярних варіацій можуть бути різні процеси. Найбільш відоме явище Ель-Ніньо (переміщення мас повітря над тропічними частинами Індійського і Тихого океанів в екваторіальній зоні через аномальний розподіл температури верхніх шарів води в океанах). Аномально велика зміна швидкості обертання Землі в 1983 році викликана якраз потужним явищем Ель-Ніньо. [Коновалов Г. В., 2009, Жаров В. Е., 2002, Зотов Л. В., 2005]

Висновки

1. Розроблено модифікований алгоритм визначення параметрів полюсу Ейлера і кутової швидкості обертання тектонічної плити із урахуванням безперервності і нерівномірності часових серій щоденних розв'язків перманентних ГНСС станцій.

2. Із використанням результатів щоденних розв'язків 27 перманентних ГНСС станцій Антарктиди за період 1996–2014 рр. визначено положення середнього полюсу Ейлера, кутової швидкості обертання плити та їх щорічні зміни.

3. Встановлено наявність взаємозв'язку між щорічною зміною широти полюсу Ейлера та кутовою швидкістю обертання тектонічної плити (). Очевидно, зміною цих параметрів корегується момент імпульсу Антарктичної тектонічної плити.

4. Встановлено взаємозв'язок зміни кутових швидкостей обертання Землі ω_⊕ і Антарктичної тектонічної плити ω. При збільшенні ω_⊕, рад/с кутова швидкість ω зменшується і навпаки. Цю закономірність так само можна пояснити законом збереження моменту імпульсу. Момент кількості руху в замкненій системі (літосфера, мантія і ядро Землі) зберігається під час еволюції цієї системи з часом. Зменшення моменту імпульсу системи ядро-мантія компенсується збільшення моменту імпульсу літосфери (тектонічних плит). Аналогічний взаємозв'язок уже встановлено у системі Земля — атмосфера.

Література

1. Жаров В. Е., Сферическая астрономия. М., 2002.

2. Зотов Л. В. Вращение Земли: анализ вариаций и их прогнозирование // Государственный астрономический институт им. П. К. Штернберга, МГУ. — М., 2005. — С. 10.

3. Коновалов Г. В., Меккель А. М. Шкалы времени: история, регламентация в рекомендациях МСЭ и воплощение в моделях // Наукові записки УНДІЗ. — 2009. — № 3 (11). — С. 16.

4. **Марченко О. М.,** Третяк Ќ. Р., Кульчицький А. Я., Голубінка Ю. І., Марченко Д. О., Третяк Н. П. Дослідження гравітаційного поля, топографії океану та рухів земної кори в регіоні Антарктики. Львів, Видавництво Львівської політехніки. — 2012. — С. 306.

5. Пандул И. С. Геодезическая астрономия применительно к решению инженерно-геодезических задач. СПб. : Политехника, 2010.

6. **Сидоренков Н. С.** Природа нестабильностей вращения Земли // Природа. — 2004. —№ 8. — С. 8 — 18.

7. **Третяк К. Р.,** Голубінка Ю. І. Оцінка та диференціація рухів Земної кори Антарктиди // УАЖ. — 2006. — № 4 – 5. — С. 72 — 83.

8. **Третяк К. Р.,** Вовк А. І. Диференціація ротаційних рухів земної кори Європейського континенту. https://www.irsm.cas.cz/index_en.php?page=acta_detail_doi&id=147

9. **Dietrich R.,** Dach R., Engelhardt G. ITRF coordinates and plate velocities from GPS campaigns in Antarctica — an analysis based on different individual solutions // Journal of Geodesy Vol.74, No.11, 2001. — P. 756 – 766.

10. Jiang Wei-Ping. New Model of Antarctic Plate Motion and Its Analysis // Chinese Journal of Geophysics. Vol. 52. No. 1, 2009. — P. 23 – 32.

11. Nevada Geodetic Laboratory. http://geodesy.unr.edu/index.ph