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Abstract. Hyperspectral imaging spectroscopy offers a broad range of spatial applications that are primarily based on the foregoing
identification of surface cover materials. In this context, the future hyperspectral sensor EnMAP will provide a new standard of
highly qualitative imaging spectroscopy data from space that enables spatiotemporal monitoring of surface materials. The high
SNR of EnMAP offers the possibility to differentiate and to identify minerals that are showing characteristic absorp-tion features as
a 30 m x 30 m spatial mixture in the visible, the near infrared and the short wave infrared range (0.4-2.5 pum). For this purpose,
spectral mixture analysis (SMA) approaches are traditionally used. However, these approaches lack in transferability, repeatability
and inclusion of sensor characteristics. Additionally, they rely on image-based and randomly detected endmembers as well as on
insitu or laboratory spectra that are not spatially stable in case of an imagebased extraction and are assumed to be spectrally pure.
In this work, a new framework is proposed that addresses these limitations considering the EnMAP sensor characteristics. It is
named EnMAP. Geological Mapper — EnGeoMARP. It consists of several new and adapted approaches to identify spectrally
homogeneous regions. In parallel, minerals are identified and semi-quantified by a sen-sor-related and knowledge-based fitting
approach. Supplementary outputs are abundance, classification, homogeneity and uncertainty maps. First results show that the
proposed approach offers 100% repeatability and gains an identification error for minerals of about 2% on average for differ-ent
studies. In this work, an approach is proposed that aims on spectroscopic mineral modelling by image synthesis that might be
applied for geological mapping.
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Introduction

Remote sensing of soils and geology often relies on
approaches that directly identify minerals within
hyperspectral images. To achieve this, unknown image
spectra are statistically compared with known library
orin situ spectra. Field samples are often additionally
analysed by X-Ray diffractometry (XRD) and by fluo-
rescence spectroscopy (XRF) for identification and
quantification. Based on geochemical and spectro-
scopic analyses the absorptions of different minerals
are identified or modelled and defined as diagnostic
spectral features. These features are to some extent
unique for each mineral. Additionally, analysed
minerals are assumed to be pure or spectral impacts
of insignificant fractions of elements on mineral
compounds are neglected. However, minerals often
form partial solid solutions, e.g. pyroxenes. Rocks that
are built by rock forming minerals might be unique in
texture and spatial distribution according to their
geological and petrologic evolution. Hence, in situ,
airborne and spaceborne acquired spectra show
rather unique regionrelated min-eral mixtures than
pure minerals. This makes it more difficult to identify
observed minerals and their fractions within one pixel.
Since mineral identifications are frequently conducted
in mountain-ous regions shadows aggravate any kind
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of identification due to the decrease of reflected
incident radiation. Contemporary hyperspectral
sensors may considerably differ in their sensing
principle, spectral and spatial resolution. This leads to
sensor-specific scaling phenomena between the sen-
sors and in situ or laboratory spectroscopy.

Within the framework of the EnMAP project [1] an
approach was developed — named EnMAP Geological
Mapper (EnGeoMAP) — that aims on the reduction of
the previously described signal impacts. The core
algorithm of the EnGeoMAP is similar to the broadly
accepted Tetracorder [2] that represents a broadly
accepted, knowledge-based expert system for the
spectroscopic differentiation of minerals. However, it
dynamically and iteratively utilises properties of the
inspected acquisition and its sensor. Characteristics such
as sensing geometry, spatial and spectral resolution and
terrain are considered. It consists of a multistep
algorithm and enables soil and geological ap-plications
such as mineral mapping, alteration zone detection,
mine waste characterisation and many more. Addi-
tionally, quality flags for each inspected pixel are given.
These can be incorporated in further analyses, e.g.
classifications, or in succeeding iterations. The approach
was tested in the Makhtesh Ramon of the Negev Desert
in Israel. Here, geology has been studied for dec-ades.
One artificial EnMAP scene was synthesised on the basis
of one real hyperspectral airborne scene to objectively
evaluate the EnGeoMAP identification results of a
spaceborne hyperspectral acquisition.
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Materials and methods

The Makhtesh Ramon of the Negev desert in Israel
(Fig. 1) was selected as case study region. The Makhtesh
consists of different mineral compounds that are known
and useful for testing geologically related remote sensing
algorithms [3]. In preparation for the EnMAP mission an
atmospherically corrected hyperspectral AISA DUAL [4]
scene was used as a basis to simulate an EnMAP scene
with the EnMAP-End-to-End-Simulator — EETES [5].
This scene was acquired on the 15.03.2004 at 30.4°N/
34.5°E incorporating a sun azimuth of 2100 and a sun
elevation of 54°.

During the EETES simulation many sensor parameters
from the manufacturer were considered, such as the
orbit parameters, Point Spread Function (PSF) for each
detector, spectral and radioetric responses. In con-
sequence, the simulated EnMAP scene consisted of 244
bands ranging from 400 to 2500 nm and incorporating
a ground sampling distance (GSD) of 30 m. In this work,
we focused on the spectral range from 2 to 2.5 pm of
the Shmost significant diagnostic spectral features of
minerals.

13

In addition, missing illumination caused by shadow
casting objects such as mountains can be nearly linearly
continuum normalised (compare Figure 2 that shows
an average deviation from linearity of about 0.8%) only
in the SWIR range.

Due to inadequate research on the impact of
shadow and its removal approaches on mineral
identification techniques, the scene was not correc-
ted for shadows. However, the analysis of shadowed
regions implies a reduction of the identification
accuracy, since the Signal-to-Noise-Ratio (SNR) is
significantly lower than in directly illuminated
regions. Although this effect is broadly accepted,
most geological mappers [6] do not fully consider the
relationship between SNR and identification ac-
curacy. Most of them directly compare known library
spectra with unknown spectra directly assessed from
the image as endmembers [7]. In this work, we rely
on the USGS spectral library [8] and the feature
descriptions of the Tetracorder [2]. However, this
algorithm can be considered as a knowledge-based
expert system to directly identify spectra of hyper-
spectral acquisitions. The Tetracorder has proven its

Fig. 1. Case study region Makhtesh Ramon here figured as hill shaded 3D false colour composite that is grey overlayed by the extent of the hyperspectral
AISA DUAL acquisition (RGB = Landsat TM (GSD 30 m) mineral ratios 5/7 (clays), 5/4 (feDEM (is a product of METT and NASA, GSD 15 m))
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Fig. 2. Deviation of the ratio between diffusive and total radiation from linearity
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applicability in the past, but provides only limited
capabilities of analysing mineral compounds by
modelling abundances of exclusive features [2].
However, this algorithm and other widely used
alogorithms [6] only consider the spectral cha-
racteristics of the sensor but not the spatial impact
of the GSD and the PSF on the distribution and the
abundances of spectra.

In this work, we propose a sensor-related approach
that fully incorporates sensor characteristics such as
the Spectral Response Function (SRF) and the PSF.
With increasing sensor GSD the likelihood of having
spectrally pure material in one pixel decreases. To
avoid confusion, the material compound of each pixel
is here considered to be a mixture and spectrally
homogeneous regions are considered to be flat fields
composed of basic mixtures. This definition is
independent of the sensor and the acquisition
geometry. Furthermore, it was assumed that in
spectrally homogeneous regions (flat fields) pixels are
linear mixtures also incorporating adjacent pixels
within the effective range of the PSF for this detector
and wavelength. The relevant range used for this work
was 99 % of the PSF’s volume. Additionally, it was
assumed that the PSF of different detectors are similar
shaped and per scene constant. In this case, each pixel
of a flat field is an isotropic mixture of itself and its
neighbourhood. Nonlinear effects in flat fields only
exist, if BRDF effects occur and, hence, the spatial
extent of inspected neighbourhood should be rather
narrow.

The EnGeoMAP consists of three modules — the
FeatureLUT, the Basic Mixture identification and the
Mixture analysis that are sketched in Fig. 3 and
described in more detail in the following.

Module 1 — FeatureLUT

The Look-Up-Table (LUT) of the EnGeoMAP named
FeatureLUT consists of more than 100 mineral spectra
and their feature and fitting descriptions from USGS. It
is similar to the Tetracorder [2] but extended with
additional entries for chemical formulas, mineralisation
type, alteration type etc.

To use the library and the feature descriptions with
different sensors, all criteria and spectra were resampled
to 1 nm resolution. In case spectra and criteria had a
lower spectral resolution than 1 nm, Hermite Splines
were used for interpolation. After resampling to 1 nm, a
re-usable FeatureLUT was created that is still sensor-
independent. This sensor-independent FeatureLUT is

then resampled to the sensor. The spectral resampling
is performed by spectral deconvolution [9]. Knowledge-
based fitting thresholds are also adapted in the process
of resampling. This is necessary because predefined
thresholds (as in Tetracorder) depend on incorporated
sensors leading to misidentifications of spectra acquired
by sensors with a higher spectral and spatial resolution
and a better SNR. After resampling, the FeatureLUT is
sensor-dependent, re-usable for this sensor unless its
characteristics have changed, and it serves as a basis for
next processing steps of the EnGeoMAP.

Module 2 — Basic Mixture identification

This module consists of three steps — the flat field
detection, the mineral identification (core of the
EnGeoMAP) and a Bounded Value Least Squares (BVLS)
unmixing.

The flatfield detection is based on the assumption that
in spectrally homogeneous regions mixtures are related
to the PSE In this process a moving window of an
adapted size that relates to the 99 % volume threshold
of the mean sensor PSF is used to locally compute the
uncentred Pearson correlation coefficient between the
spectrum of the centre pixel of the window and the
spectra of all the neighbours within this window. To
suppress albedo effects, the continuum of each spectrum
is removed by normalising with its Delaunay ap-
proximated convex hull. In the process of continuum
removal, concave curve shapes are preserved that
correspond to absorptions. If all fits pass a predefined
fitting threshold (by default 0.99), the pixel is binary
marked as flat field pixel. This is performed for all pixels
in the scene and results are stored in a binary map where
all flat field pixels are marked.

After detecting flat field locations the mineral
identification is carried out. For this, each spectrum of
the flat field is fitted towards all library spectra of the
FeatureLUT within their specific diagnostic features
described by Tetracorder. All fits that pass the sensor-
adapted thresholds, similar to Tetracorder, are stored in
a local pixel-related list. After this, a BVLS unmixing is
performed for this pixel that excludes all identified
spectra that do not pass an unmixing threshold (by
default 5 %, but SNR dependent) to remove outliers that
are too noisy and not significantly abundant. All
remaining, identified spectra are stored in a global list
and all identification results for this pixel are rejected.

Then, the next pixel of the flat field is considered and
the global listis updated. This is performed until all pixels
of the flat field have been inspected. Consequently, a

Basic Mixture
identification

[ FeatureLUT ] [

] [ Mixture analysis ]

Applications ]

Fig. 3. Workflow and relation of the modules of EnGeoMAP
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global list of matching spectra is created that is directly
used in the next step.

Module 3 — Mixture analysis

In this step, all pixels are linearly unmixed on the basis
of the global list by the BVLS. Again, outliers are removed
by applying an abundance-related threshold (also 5 %
minimum abundance by default, but SNR dependent).
After this, the image is synthesised by using previously
estimated abundances of identified mineral spectra.

This enables a model image to be generated that is
directly comparable with the continuum removed real
image. Consequently, each pixel gets an individual model
error that helps to distinguish regions where spectra
were accurately identified from problematic regions
such as shadow regions. Additionally, a nextiteration can
be applied starting with module 2 to exclude these areas
inadvance.

Asaresult, each individual pixel provides wavelength-
dependent information of mineral abundances, error
budget and flat field potential. This is then directly
applicable to hydrothermal alteration mapping in a next
step such as spatial pattern analyses.

Results

The potential of the EnGeoMAP is here exemplarily
demonstrated for the analysis of one hyperspectral,
synthesised EnMAP scene. The evaluation of the results
is based on the assumption that only a correct iden-
tification of diagnostic features and a correct estimation
of abundances of minerals provide low deviations
between modelled and real image spectra. The bands
thatencompass dominating mineral absorption features
should be spatially and spectrally equivalent. This
condition was mostly fulfilled for given examples
(Figure 3).

For the 2.2 pm band shown in Fig. 4 a deviation
between the model and the real image of about 0.5% was
achieved that is close to the overall accuracy of 0.8% on
average for all bands. However, the accuracy of
EnGeoMAP is decreased up to 20 times for the whole
spectral range in low SNR regions. Comparing the mean
ratio of the diffusive to total radiation within the spectral
range between 2 and 2.5 pm (about 10%) with the
accuracy decreasing rate (about 20 times) for low SNR
regions as in shadows clearly shows a strong relationship
between the accuracy and the SNR. This is also shown
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Fig. 5. Sample plots of continua removed modelled (fully analysed) spectra vs. real spectra —Plot 1: 60% Carbonate, 10% Epidote, 30% Clay and a
model error of 4% — Plot 2: 30% Carbonate, 70% Clay and a model error of 15% — Plot 3: 75% Carbonate, 25% Clay and a model error of 0%
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in Fig. 5 for three plots representing three different
extreme SNR scenarios (Plot 1 — average SNR, Plot 2 —
low SNR, Plot 3 — high SNR).

Considering only the results for these extreme regions
reveals the range of potential uncertainties in assessing
mineral contents, although the assessment is super-
imposed by the evaluation of nonrelevant spectral
regions. This is exemplarily shown in Fig. 6 depicting the
maximum error along the spectral dimension for each
analysed pixel and its likelihood for a low albedo.

In any case, analyses in low SNR regions as in shadows
should be marked spatially and error budget-related to
avoid relying on average error budgets for the whole
scene. A positive side effect is the potential of having
weights for succeeding analyses such as classifications
as given in Fig. 7 that illustrates abundance dominating
minerals.

In all, EnGeoMAP achieves an identification accuracy
of about 99% on average and of about 98% on average for
the maximum error budgets along the spectral dimension.

Uncertainties in the BVLS unmixing and in the

identification of minerals in low SNR regions have
remained so that pixel-based error budgets can be used
to exclude erroneous analyses from further processing
such as classification.

Conclusions

EnGeoMAP achieved high identification accuracy for
this case study region. It is completely unsupervised,
100% repeatable since no random statistics are used,
platform-independent and will be freely available as
soon as it is implemented in the free EnMAP software
named EnMAP box. Addtionally, spectral and spatially
homogeneity maps are provided that might be useful for
other processing such as segmentation. Currently, more
hyperspectral scenes are acquired in Southern Africa,
Mongolia and Spain that will be used to verify and further
improve the proposed EnGeoMAP approach. Ad-
ditionally, XRD and XRF data will be analysed to evaluate
both the reliability of the reference spectral library and
the mapping results.

Fig. 6. Upper two quartiles of shadow and dark material abundances (top) and error budget for this scene (bottom, maximum 16% and minimum 0%)

having a common spatial correlation of 88% on average

Fig. 7. False coloured RGB abundance composite of dominating minerals (Red — Carbonates, Blue — Epidote, Green — Clay minerals)

Referenses

1. Kaufmann H,, K. Segl, L. Guanter, S. Hofer, K. P. Foerster,
T. Stuffler, A. Mueller, R. Richter, H. Bach, P. Hostert &
C. Chlebek, 2008. Environmental Mapping and Analysis
Program (EnMAP) — Recent advances and status. In: Pro-
ceedings International Geoscience and Remote Sensing
Symposium (IGARSS), Boston, MA, 7—11 July,IV-109-1V-112.

2. Clark R. N, G. A. Swayze, K. E. Livo, R. E Kokaly, S. J. Sutley,
J.B. Dalton, R. R. McDougal & C. A. Gent, 2003. Imaging
spectroscopy: Earth and planetary remote sensing with the
USGS Tetracorder and expert systems. Journal of Geo-
physical Research, 108(5131): 1-44.

3. Anker Y., E. Ben Dor, E. Zelikman, A. Karnieli & E. Mazor,
2009. Makhtesh Ramon, a super site for calibration and
validation of is sensors. In: Proc. 6" EARSeL SIG Workshop
on Imaging Spectroscopy (Ramat Aviv, Tel Aviv, Israel, 16—
19 March).

4. Spectral Imaging Ltd. Aisa Dual, 2nd Version. http://
www.specim.fi/media/aisa-datasheets/dual datasheet verl-
2012.pdf (last date accessed: 5 June 2012).

5. Segl K., L. Guanter, C. Rogass, T. Kuester, S. Roessner,
H. Kaufmann, B. Sang, V. Mogulsky & S. Hofer, 2012. EeteS
— The EnMAP End-to-End Simulation Tool. IEEE Journal of
Selected Topics in Applied Earth Observations & Remote
Sensing, 5(2): 522-530.



Christian Rogap et al./ YKpaiHCoKuLl Y pHaL OUCMAaHYitiHO20 30HOY6anHA 3emni 1 (2014) 12—-17 17

6. van der Meer E, 2004. Analysis of spectral absorption 8 ClarkR N, G.A.Swayze, R. Wise, E. Livo, T. Hoefen, R. Kokaly

features in hyperspectral imagery. International Journal & S. J. Sutley, 2007. USGS digital spectral library splibO6a.
of Applied Earth Observation and Geoinformation, 5(1): U.S. Geological Survey, Digital Data Series 231 (last date
55-68. accessed: 23 August 2012).

7. Boardman J. W. (1994). Geometric mixture analysis of 9. Guanter L, K. Segl, B. Sang, L. Alonso, H. Kaufmann &
imaging spectrometery data. In: Proc. International J. Moreno, 2009. Scene-based spectral calibration as-
Geoscience and Remote Sensing Symposium (IGARSS), sessment of high spectral resolution imaging spectrometers.
Pasadena, CA, 8—12 August, [V-2369-1V-2371. Optics Express, 17 (14): 11594—-11606.

ENGEOMAP — IHCTPYMEHT JJI51 TEOJTOTTYHOTO KAPTOTPA®YBAHHSI /151 ENMAP-MICIT

K. Poracc, K. Cerin, K. Minbke, I. @ykc, I Kaydman

Pesrome. l'inepcriekTpaibHa Bi/IEOCTIEKTPOCKOITiA MA€ UPOKHH /1ialla30H NIPUKIAAHUX IIPOTPAM /I JUCTAHIIMHOT ileHTHdi-
Kalii MaTepiayIbHOT'O CKJIA/y IIOBEPXHEBOT'O MIAPY JIEHHOI TOBEPXHI. Y 3B513Ky 3 IIMM Bi/IMi4a€ThCs1, IO EPCIIEKTUBHUII TillEPC-
NeKTpanbHui cencop ENMAP 3a6€311€4nTh OTPUMAHHSA JAHUX KOCMIYHOI BiZIEOCIIEKTPOCKOITiT HOBOT'O PiBHA AKOCTI, IO JI03BO-
JINTh BECTU JIMCTAHLIMHNAN IIPOCTOPOBO-YACOBUI MOHITOPUHI MATEPiaIbHOI'O CKJIA/Ty 3€MHOI MOBEPXHi. BUCOKMIA piBEHD Bi/IHO-
meHHst currasn/uryMm ENMAP 1103BOJIsI€ pO3PI3HATH TA i1IeHTU(MIKYBATH OKPEMi MiHEPAIN YCEPEANHI CYyOCTpaTy Ha w1011 30 X 30
METPIB 10 XapPaKTEPHOMY ITOIVIMHAHHIO BUIIPOMIHIOBAHHSA Y BUJIMMIiM, O/IMKHIN i cepeiHii indpayepBonux 3oHax crekrpy (0,4—
2,5 mxm). 3a3BU4ai B IOJIOHUX 3aB/IaHHAX BUKOPUCTOBYIOTHCA Ii/IXO/IH, 3CHOBAHI HA METO/IAX PO3/IUIEHHS CIIEKTPAIbHUX CyM-
imert. IIpore nuM 1izixozam 6paKye BiJTBOPIOBAHOCTI, IOBTOPIOBAHOCTI i HE3aIEXKHOCTI Bifi XapAKTEPHUCTUK ceHcopa. Kpim Toro,
BOHH CYTTEBO 3aJ1€KATD Bi/l HE3MIlIAHUX CIIEKTPIB, 1110 JIOBIIbHO IIPU3HAYAIOTHCS HA 300PAKEHHI, 4 TAKOXK Bi/l OTPUMAHUX in situ
200 1260PATOPHO CHEKTPAIbHUX XAPAKTEPHUCTHK, SIKi BBAKAIOTHCS HE3MIIIIAHUMU, AJI€ € IPOCTOPOBO HECTAOUIbHUMU. Y J1aHil
PO6OTI 3aIIPONOHOBAHO HOBHUH iHCTPYMEHT, IKUH YCYBAE 11i OOMEKEHHSI CTOCOBHO XaPaKTEPUCTUK ceHcopa ENMAP. et incTpy-
MeHT Ma€ Ha3zBy ENMAP Geological Mapper — Engeomap. BiH nosisirae B Ho€iaHHi HOBUX i BJIOCKOHAJIEHUX METO/IB ifleHTHdi-
Kallil CIEKTPAJIbHO OHOPI/IHUX JiIAHOK. MiHepanun ieHTUMIKYyIOTh i IPHUOIM3HO OLIHIOIOTD IX Bi/IHOCHY KiJIbKIiCTh HA OCHOBi
JAHUX, OTPUMAHKMX CEHCOPOM i Bi/JIIOBI/IHOI'O iHTENEKTYAIbHOI'O IiZAXOAY. MOXKYTh (POPMYBATHUCA i iHII IPOJTYKTU y BUIJIAJI KADT
PO3NOALIB, OJHOPIIHOCTEN, 3MiH. ITepIii pe3yIBraTi MOKa3ylOTh, IO 3aIIPOIIOHOBAHNH 1iXij| 3a6e3neuye 100% BiaTBOPIOBA-
HOCTI i Ja€ CEPEAHIO TOMUIIKY iZieHTHdiKaLii MiHEepasliB 6JIM3bKO 2%. 3aIIPONIOHOBAHUM B pOOOTI Mi/IXiJ] HAIIZIEHN HA CIIEKTPO-
CKOIIiYHE MOJIEJIIOBAHHA CUHTEZY 300Pa’KEHDb MiHEPAJIIB, 1110 MOKE OYTH KOPUCHE IIPH I'€OJIONTYHOMY KapTOrpadyBaHHi.
KIr040Bi ¢/I0Ba: I'HIICPCIEKTPAIbHA BiICOCIEKTPOCKOILiA, reosioriune kaprorpadgysanns, micia EnMAP, inentudikarnia mine-
paniB, aHai3 cymimen

ENGEOMAP — MHCTPYMEHT IJIAI TEOJIOTUYECKOI'O KAPTHMPOBAHMA JIS1 ENMAP-MHCCHUH

K. Poracc, K. Cern, K. Muibke, Y. dyke, I Kaydman

Pesrome. [unepcrekTrpaabHas BUACOCIIEKTPOCKOIM PACIIONATAET IUPOKUM ANANIA30HOM IIPUK/IAJHBIX IIPOTPAMM AUCTAHIIY-
OHHOU MICHTU(PUKALNHN BEIIECTBEHHOIO COCTABA 3¢MHOM ITIOBEPXHOCTH. B 3TOI CBA3U OTMEYAETCH, YTO HEPCIECKTUBHBINA I'H-
MEPCHEKTPAIbHBIN ceHCOp ENMAP o6ecrieunT NOMydeHUE JaHHBIX KOCMUYECKOHU BUIECOCIIEKTPOCKOIIMH HOBOT'O YPOBHS Kade-
CTBA, YTO IO3BOJIUT BECTH JAUCTAHIIMOHHBIA IPOCTPAHCTBEHHO-BPEMEHHON MOHUTOPUHI' MUHEPAJILHOI'O COCTABA 3¢MHOI I10-
BEPXHOCTU. BBICOKMI yPOBEHD OTHOIIEHMA CUTHaI/IyM ENMAP 1103BOJII€T pA3/IM4aTh U MACHTU(PULIMPOBATD MUHEPAJIbI BHYT-
pu cyobeTparta Ha mwiomagy 30 x 30 METPOB MO XaPAKTEPHOMY IIOIVIOMICHUIO U3Iy4YCHHUs B BUAUMOW, OJIMPKHEN U CpeIHEN UH -
pakpacHbIX 30HaxX crexkrpa (0,4—2,5 mxm). OOBIYHO B ITOJIOOHBIX 33/Ja4aX UCIOIB3YIOTCS O/XO/Ibl, OCHOBAHHbBIC HA METO/]AX
pasaenenys CIEKTPaIbHbIX cMecer. OJHAKO 3TUM ITOAXOAM HE JOCTAET BOCIIPOMU3BOJIUMOCTH, IIOBTOPSAEMOCTU M HE3ABUCUMO-
CTU OT XaPAKTEPUCTUK CEHCOPA. Kpome TOro, OHU CyIIECTBEHHO 3aBUCAT OT IIPOU3BOJIBHO HA3HAYACMbIX Hd U300PAKCHUHU HE-
CMEIIAHHBIX CIIEKTPOB, 4 TAKKE OT IOJIYYEHHBIX in Situ UM 1a60PATOPHO CIEKTPATIbHBIX XaPAKTEPUCTUK, KOTOPBIC CYUTAIOTCS
HECMEUIAaHHBIMY, HO ABJIAIOTCA IPOCTPAHCTBEHHO HECTAOMIbHBIMU. B 1aHHON padoTe MPEIOoKEH HOBBIN HHCTPYMEHT, KOTO-
PBIA yCTPAHAET 3TU OT PAHUYEHMSA IIPUMEHUTENIBHO K XaPAKTEPUCTUKAM CeHCOPa ENMAP. DTOT MHCTPYMEHT Ha3biBaeTCa EnMAP
Geological Mapper — EnGeoMAP. OH 3aKII094€TCsA B COBOKYITHOCTH HOBBIX M YCOBEPIICHCTBOBAHHBIX TOAXOJOB K MACHTU(DUKA-
LIMH CIIEKTPAIBHO OJAHOPOAHBIX Y4aCTKOB. MUHEPA/Ibl HAECHTU(MDUUMPYIOTCA U NPUOIU3UTEIBHO KOJIMYECTBEHHO OLICHUBAIOTCS
Ha OCHOBE CEHCOP-3aBUCHUMBIX IAHHBIX M COOTBETCTBYIOIIETO UHTE/UICKTYAJIBHOI'O NOAX0AA. MOryT (hDOPMHPOBATHCA U JPYTUE
NPOAYKTBI B BUJIE KAPT PACIIPEACIICHUI, OAHOPOJAHOCTEN, M3MEHEHUI. [IepBble pe3y/IBTraThl HOKA3bIBAIOT, YTO IPEIIOKEHHDBIN
nogxoz obecrneunsaeT 100% BOCIPOMU3BOAUMOCTH M CPEAHIOI0 OIIMOKY MACHTH(MDUKALIMH MUHEPATIOB OKOJIO 2%. ITpemioxKeH-
HBIN B paboTe OAXO] HALIECJIEH Ha CIIEKTPOCKOIMYECKOE MOJEIMPOBAHUE CHHTE33 N300 PAKEHUI MUHEPAJIOB, YTO MOYKET OBITD
MOJIE3HBIM IIPU I'€OJIOIMYECKOM KAPTUPOBAHUH.

KirroueBbi€e CJI0BA: TUIIEPCIIEKTPAIbHASA BUIEOCIIEKTPOCKOIIMSA, F€OJIOIMYECKOE KapTUPOBaHue, Muccusa EnMAP, ngentudurka-
U MUHEPAJIOB, aHAJIN3 CMECCH



