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Lossy compression of images corrupted by noise has several peculiarities. First, a specific noise filtering effect is observed. Second,
optimal operation point (OOP) can be observed, i.e. such coder parameter (e.g., quantization step) value can exist that quality of
compressed image calculated with respect to noise-free image can be better compared to quality of uncompressed (original noisy)
image. If OOP exists, it is worth compressing a given image in OOP, if no, other recommendations on coder parameter setting are
reasonable. Since noise-free image is not available in practice, it is not possible to determine does OOP exist and what is image
quality in it. In this paper, we show that OOP existence for several quality metrics can be predicted quite easily and quickly for
grayscale images corrupted by additive white Gaussian noise and compressed by better portable graphics (BPG) encoder. Such a
prediction is based on analysis of statistics of discrete cosine transform (DCT) coefficients calculated for a limited number of 8x8
pixel blocks. A scatter-plot of metric improvement (reduction) depending upon these statistics is obtained in advance and prediction

curve fitting is performed. Recommendations on encoder parameter setting for cases of OOP absence are given.
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1. Introduction

Images of different origin are widely used in
numerous applications, e.g., remote sensing (Aiazzi et
al., 2012), medical diagnostics (Braunschweig et al.,
2009), advertising (Bataeva et al., 2012), non-destructive
control (Mahanti et al., 2021), everyday life (Zappavigna
et al., 2016). The main tendencies observed in recent
years in imaging deal with rapid increase of image
number and image size (Khorram et al., 2016). This
causes problems in image processing, storage,
transmission, classification (Chi et al., 2016 and Ma et
al., 2015). The problems in storage and transmission of
imaging data can be solved by image compression
(Hussain et al., 2018; Tao et al., 2018; Doss et al., 2020;
Penna et al., 2007).

As it is known, image compression techniques can be
divided into two main groups — lossless and lossy
(Hussain et al., 2018 and Sayood et al., 2017). Lossless
compression does not lead to introducing distortions into
images (data) but has one drawback — the provided
compression ratio (CR) is usually unacceptably small.
Then, lossy compression occurs to be preferable since
CR can be varied and controlled (Sayood et al., 2017 and
Li et al., 2020). Meanwhile, CR increasing usually leads
to worse quality of a compressed image and a reasonable
compromise has to be found in each particular case (Tao
et al., 2018; Pandey et al., 2020; Zabala et al., 2006;
Christophe et al., 2011). This compromise depends on
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many factors: 1) what is the application of a considered
image and how is it further processed (analyzed,
interpreted) (Zabala et al., 2006 and Krivenko et al.,
2019); 2) what is a coder (compression method) used
and how easy is it to vary and control compression
parameters; 3) what are properties (content, complexity)
of an image to be compressed (Li et al., 2020 and
Krivenko et al., 2019); 4) what are the main
requirements to compression and their priority.
Concerning factor #1 — lossy compression should not
result in too large degradation of image quality
with respect to its visual perception by humans or
classification or edge/object detection. The corresponding
studies have been performed to predict just noticeable
distortions (Bondzuli¢ et al., 2021) or other measures of
acceptable degradation of compressed images (Zabala et
al., 2006 and Krivenko et al., 2011). Concerning factor
#2 — different compression techniques employ different
mechanisms of CR or compressed image quality
variation and control. For example, JPEG2000
(Taubman et al., 2013) and SPIHT (Said et al., 1996)
allow providing a desired CR (or bits per pixel (BPP))
with wide diversity of compressed image quality
depending on its complexity (Li et al., 2020). In turn, a
modern better portable graphics (BPG) coder (Yee et al.,
2017 and Albalawi et al., 2016) uses the parameter Q
that allows controlling peak signal-to-noise ratio (PSNR)
between original and compressed images in wide limits
(Kovalenko et al., 2021). This is a good quality attracting
our attention just to this coder although PSNR is not an
adequate metric in characterizing image quality (Zhai et
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al., 2020). Concerning factor #3 — for any coder, it is
more difficult to compress more complex structure
images with providing appropriate quality for a given
CR. Moreover, noise presence in compressed images
additionally complicates the task of image compression
(Al-Shaykh et al.,, 1998; Chang et al., 1997;
Zemliachenko et al., 2015; Naumenko et al., 2021). In
this paper, we just consider the task of lossy compression
of images corrupted by noise. Such a compression has
certain peculiarities, in particular, noise filtering effect
first discovered in (Al-Shaykh et al., 1998 and Chang et
al., 1997) and possible existence of optimal operation
point (OOP) that has been observed for many different
compression methods based on either wavelets or
discrete cosine transform (DCT). The main goal of our
paper is to show that existence of OOP and compression
parameters in it can be predicted for the BPG encoder
with quite high accuracy. Finally, concerning factor #4,
it is usually required to provide as high quality of
compressed images as possible for a given CR, to carry
out compression as quickly as possible and so on. Some
of these requirements are contradictory and difficult to
provide. In this paper, we concentrate on providing an
appropriate quality of compressed images with as large
CR as possible.

2. Used criteria and rate/distortion curves

A specific aspect of this paper is that we consider
lossy compression of just noisy images. Noise appears in
images due to many factors (Colom et al., 2014 and
Chatterjee et al., 2010) and it can be visible or invisible.
We concentrate on the case of visible noise that happens
if PSNR of original image is less than a certain threshold
(about 35 dB). Moreover, we focus on the simplest
additive white Gaussian noise (AWGN) model
(Chatterjee et al., 2010) leaving more complex noise
models (Colom et al., 2014) for future studies.

According to this model, one has

n0|sy true
P =150+ (D)
where |i;.‘°isy denotes the noisy ij-th pixel value, |itjrue is

the true ij-th pixel value, nj is the value of AWGN
having zero mean and variance % Below we assume
that noise variance is a priori known or pre-estimated
(Colom et al., 2014 and Selva et al., 2021) with high
accuracy.

The conventional metrics to characterize quality of
original noisy image are mean square error (MSE) and
peak signal-to-noise ratio (PSNR) calculated as
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where |1, J define image dimensions and it is supposed
that the image is represented as 8-bit data. In such a case,
noise, to be visible, should have variance about 20 for
simple structure images (see an example in Fig. 1, a) and
about 30...40 for complex structure ones (see examples
in Fig. 1, b and 1, ¢) (Ponomarenko et al., 2015). This
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explains why we consider the values of noise variance
larger than 40 in our simulations.

The quality of original (noisy) image can be also
characterized by other metrics including visual quality
ones. These can be, e.g., PSNR-HVS-M (Ponomarenko
et al., 2007) or MS-SSIM (Wang et al., 2003). In
particular,

n 2557

PSNR -HVS-M" =10log,, -

MSE - HVS-M
where MSE-HVS-M" is defined in a set of 8x8 pixel
blocks considering different sensitivity of human vision
system (HVS) to distortions in different spatial
frequencies as masking effect (Ponomarenko et al.,
2007).

=

Fig. 1. Some examples of the test images:
Frisco (a), Diego (b), and Fr01 (c)
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We are more interested in other metrics and their
dependences on compression parameters. In particular,
consider the dependences PSNR®(Q) and PSNR-HVS-
M(Q) where these metrics are calculated for images
compressed by BPQ with different Q and the
corresponding original (noisy) images. Examples of such
dependencies for six test images (the images Fr02, Fr03,
and FrO4 are of approximately the same complexity as
the test image FrOl in Fig. 1, c) taken from the paper
(Kovalenko et al., 2021) are presented in Fig. 2.
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Fig. 2. Dependencies of PSNR and PSNR-HVS-M
on Q for the coder BPG for six test images corrupted
by AWGN with variance equal to 64
(PSNR" is about 30 dB)

As one can see, three main areas can be defined in
these curves. The first is for Q <9 where dependencies
are nonlinear and quality of compressed images is
characterized by very high values of PSNR® and PSNR-
HVS-M¢ that mean that almost no distortions are
introduced. Then, for Q from about 9 till Q = 33, one has
practically linear reduction of PSNR® (approximately as
63-Q) and almost linear reduction of PSNR-HVS-M°¢
(approximately as 83-1.33 Q). This part of the curves
corresponds to invisible distortions (for Q about 28 and
less) and visible distortions for Q > 28. Visible distortions
relate to both noise filtering and information content
degradation. The third area (Q > 33) is characterized by
diversion in dependency behavior depending on image
complexity.
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Similar analysis has been carried out for several other
values of the noise variance. The margins of the first
area are practically unchanged. The right margin of the
second area depends on noise variance. The value
of Q for the right margin is approximately equal to
Qrm =63 — PSNR". In practice, dependencies of PSNR®
and PSNR-HVS-M°® on Q can be obtained for any
particular image, but the approximations given above
can be used to determine the starting point.

Theoretically, i.e. in simulations when one has a
noise-free image, adds AWGN to it, and applies lossy
compression, it is also possible to calculate metrics
between a compressed image and the corresponding
noise-free one. Let us denote such metrics as PSNR and
PSNR-HVS-M®, Examples of such dependencies on Q
for six test images are presented in Fig. 3 and 4.
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Fig. 3. Dependencies of PSNR® on Q for the coder BPG for six
test images corrupted by AWGN with variance equal to 64 (a,
PSNR" is about 30 dB) and 100
(b, PSNR" is about 28 dB)

As one can see in Fig. 3, OOPs are observed for five
out of six test images. For the simplest structure test
image Frisco, OOP is more obvious than for other
images. For the most complex structure image Diego,
OORP is absent in both cases and the dependencies are
monotonous. OOPs are “more obvious” for larger c°.
Besides, Q for OOP is almost the same for all images for
which OOP exists and it is larger for larger 2 Thorough
analysis has shown that the formulas for Qoor can be
written as 63-Qoor = PSNR" or, equivalently,

Qoor = 14,9 + 20logio (11 o). 3
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Then, one has Qoo about 33 for o =8 (see data in
Fig. 3, a) and about 35 for o = 10 (see data in Fig. 3, b).
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Fig. 4. Dependencies of PSNR-HVS-M® on Q for the coder
BPG for six test images corrupted by AWGN
with variance equal to 64 (a, PSNR" is about 30 dB)
and 100 (b, PSNR" is about 28 dB)

Analysis of dependencies in Fig. 4 shows that OOP
can be observed for visual quality metrics (e.g., PSNR—
HVS-M) as well although this happens more rarely.
OOP is not so “obvious” as for PSNR®. Expression (3) is
approximately valid to determine Qoop according to this
metric.

Summarizing the presented results and the data
represented in the papers (Kovalenko et al., 2021 and
Naumenko et al., 2021), it is possible to state that OOP
can be observed and, if this happens, it is reasonable to
compress such images in OOP. This allows providing
compressed image quality closer to noise-free image
compared to the original image and ensuring a rather
large CR (Fig. 5 gives an example of such a situation).
Meanwhile, if OOP does not exist for a given image, it is
worth compressing this image with Q smaller than Qoop
defined by (3) to avoid introducing too large distortions.

Thus, the task of predicting OOP existence for a
given noisy image and quality parameters for OOP is
important. Design of the corresponding method might
allow carrying out automatic compression.
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Fig. 5. Noisy image Frisco (a) and the same image compressed
in OOP (b), noise variance equals to 196

3. Prediction of OOP existence and compression
parameters in it

Formally, OOP exists if there is such Q that
Metr(Q) is larger than Metr" where Metr® is the full-
reference metric calculated for the compressed and
noise-free (true) image and Metr" is the same metric
calculated between the noisy and true images (here we
suppose that larger metric values correspond to better
quality, this holds for both PSNR and PSNR-HVS-M as
well as most other visual quality metrics). In practice,
one does not have noise-free image and, therefore,
neither Metr®(Q) nor Metr" can be calculated. Because
of this, we propose the following approach. We assume
that it is possible to predict (estimate) the difference
AM = Metr(Qoor) — Metr" keeping in mind that ¢ is a
priori known or pre-estimated with high accuracy and,
thus, Qoo is also known according to (3). Then, if a
predicted AM is positive, the conclusion (decision) is
that OOP (according to a considered metric) exists and
vice versa.
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In fact, we employ the approach similar to that one
earlier proposed in the paper (Zemliachenko et al., 2015)
for the DCT based coders and check whether or not it is
applicable for the BPG coder.

3.1. Prediction approach

First, let us recall requirements to prediction. It
should be fast enough and accurate enough. Saying fast,
we mean that it has to be faster than compression itself.
Saying accurate enough, it is meant that errors of AM
prediction should have root mean square error (RMSE)
small enough (e.g., less than 1 dB for the metrics PSNR
and PSNR-HVS-M, both expressed in dB).

Generally speaking, the approach (Zemliachenko et
al., 2015) presumes that there is a dependency between
AM and some input parameter which ‘“characterizes”
image/noise properties and can be easily calculated. This
dependency is known (determined) in advance (off line)
and it is available to the moment when OOP existence
has to be predicted for a given image to be compressed.

As input parameters, several statistical parameters
have been proposed and tested in (Zemliachenko et al.,
2015). They are based on comparison of amplitudes of
DCT coefficients calculated in 8x8 pixel blocks to
certain thresholds connected with noise standard
deviation. Simplicity of obtaining such input parameters
deals with two aspects. First, DCT in 8x8 pixels blocks
is a standard operation in image/video processing (Wei
et al., 2009) and it can be realized very quickly. Second,
DCT should not be carried out for all possible block
positions of a given image. It is enough to take
300...1000 randomly placed blocks to estimate the input
parameter with appropriate accuracy (this will become
clear later from analysis of scatter-plots).

It is unclear at the moment what statistical parameter
of the considered type is the best for the analyzed
application. We try to show only that the proposed
approach is able to work quite well leaving the
optimization task for the future research.

3.2. Scatter-plot obtaining and curve fitting

Similarly to the paper (Zemliachenko et al., 2015),
we consider two input parameters — Py, and P,7.. The
first parameter is the probability that DCT coefficient
amplitudes are smaller than 2c. The second parameter is
the probability that DCT coefficient amplitudes are
larger than 2.7c. Such parameters have originated from
the theory of DCT-based denoising (Abramov et al.,
2013). Their properties will become clear from the
further analysis.

To get prediction dependencies, scatter-plots of AM
on input parameters have been obtained. One example is
presented in Fig. 6 for APSNR and P»,. Each particular
point of the scatter-plot corresponds to one test image
corrupted by AWGN with a given noise variance and
compressed with Qoop Set according to (3). We have
used 11 test images of different complexity and 8 values
of the noise variance in the limits from 0.25 to 400.

Analysis of data in Fig. 6 shows the following. First,
P, varies in the wide limits from almost zero to almost
unity. Small values of P, relate to complex structure
images and/or rather small noise variances (see an
example in Fig. 7, edge/detail smoothing is observed in
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the compressed image). In turn, large values of Py, take
place for simple structure images corrupted by a rather
intensive noise (see the example in Fig. 5).

APSNR

2

05
P

Fig. 6. The scatter-plot of APSNR and P25 and the fitted curve

Fig. 7. Noisy image Diego (a) and the same image compressed
in OOP (b), noise variance equals to 64

Second, APSNR varies in rather wide limits from
about -2 dB (see the data in Fig. 3, a for the test image
Diego) till about +8 dB (see the data in Fig. 3, b for the
test image Frisco).

Third, there is an obvious tendency to APSNR
increasing if P, becomes larger. Diversity of scatter-plot
points for a given Py, is not large (mostly smaller than
1dB). This means that potentially accurate fitting is
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possible and, using the fitted curves, it is possible to
predict APSNR quite accurately (in the next subsection,
these questions will be discussed more in detail).

Fourth, if the main question is the OOP existence
(but not prediction of APSNR value in OOP), then a
simple rule is possible. One can consider that OOP for
the PSNR metric exists with rather high probability if P
exceeds 0.75.

Consider now another input parameter — P,7,. The
scatter-plot of APSNR vs P, 7, is presented in Fig. 8. In
opposite to the scatter-plot in Fig. 8, there is a tendency
of APSNR reduction if P,7, increases. This is because
P»s and P, are defined in different ways (smaller and
larger than the threshold, respectively). In this case, the
rule for decision undertaking on OOP existence can be
formulated as follows: OOP exists with high probability
if P27, is smaller than 0.15. Thus, decision can be
undertaken for both input parameters.

APSNR

Fig. 8. The scatter-plot of APSNR and P27
and the fitted curve

Let us analyze now is it possible to predict APSNR—
HVS-M. The scatter-plots for APSNR-HVS-M vs Py,
and P,.+. are represented in Fig. 9. The scatter-plots are
not so compact as for APSNR. Meanwhile, the main
tendencies are similar to those ones observed before.
APSNR-HVS-M increases if P, increases and P.7s
reduces. OOP according to APSNR-HVS-M is observed
for a smaller number of images.

APSNR-HVS-M

APSNR-HVS-M

Fig. 9. The scatter-plot of APSNR-HVS-M
vs P2s (a) and P25 (b) and the fitted curves
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One specific feature is that APSNR-HVS-M varies
in other limits than APSNR: from about —15 dB to about
4 dB. According to APSNR-HVS-M, OOP is observed
if P»s exceeds 0.85 or P, 7, is less than 0.08.

It might seem that a very large reduction of PSNR—
HVS-M® due to lossy compression can be observed (as it
follows from the scatter-plots in Fig. 9, APSNR-HVS-M
can be about —10 dB). However, it is not a fatal case —
this happens for P, about 0.2 (P»7, about 0.7), i.e. for
very complex images with low intensity noise. This
means that PSNR-HVS-M" can be of the order 60 dB
and PSNR-HVS-M® for Qoo is 50 dB. PSNR-HVS-M"
about 60 dB means that noise is invisible in original
image and PSNR-HVS-M® about 50 dB means that
introduced distortions are not visible too. Thus, APSNR—
HVS-M about —10 dB in such cases is not a problem.
The problem is if PSNR-HVS-M" is about 30-40 dB
(i.e., noise is visible) and APSNR-HVS-M is about
-2 dB. Just such cases take place for the test image
Diego in Fig. 4, the illustration is given in Fig. 7.

3.3. Curve fitting and prediction accuracy

We have not yet studied the question of curve fitting
into scatter-plots. On one hand, the examples shown in
Fig. 6, 8, and 9 intuitively show that fitting can be done
efficiently. On the other hand, requirements to fitting and
quantitative criteria of fitting efficiency have not been
discussed.

The curve fitting into a scatter-plot can be done by
different methods, using different tools and criteria
(Cameron et al., 1997 and Guruswami et al., 2016). In
particular, Matlab and Excel offer good facilities for
curve fitting. In our studies, we have used Matlab Curve
Fitting Tool.

Fitting quality is usually characterized by several
quantitative parameters (criteria) such as goodness-of-
the-fit R?2, RMSE, Adjusted R? and so on (Cameron et
al., 1997). R? and Adjusted R? have to be as large as
possible (approaching to unity) and RMSE should be as
small as possible for good fitting. The regression is
considered very good if R? and Adjusted R? exceed 0.9.

In  (Zemliachenko et al., 2015), polynomial
approximation has been used. It has been shown that
polynomials of the fourth and fifth order usually provide
good fitting. Two examples of polynomial fitting are
given in Fig. 10. For the data in Fig. 10, a, one has
R?=0.93, RMSE =0.71, Adjusted R?=0.93, i.e. the
results are quite good. For the fifth order polynomial
(Fig. 10, b), the fitting results are even better (R?= 0.97,
RMSE = 0.47, Adjusted R?=0.97). Meanwhile, the
fitted curves are not monotonous and local maxima can
be observed. We do not state that the dependencies
should be monotonous but it seems so from visual
analysis of the scatter-plots.

Rather good polynomial fitting results have been
obtained for the scatter-plot of APSNR-HVS-M vs Py,
(see Fig. 11). The obtained curves for all polynomials
are monotonous and the best fitting has been obtained
for the fifth order polynomial (R?=0.87, RMSE = 1.66,
Adjusted R?=0.86). Note that large RMSE is mainly
due to diversity of scatter-plot data for P, < 0.5. This
does not sufficiently influence the decision on OOP
existence.
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Meanwhile, the fitting results are worse than for the
scatter-plots of APSNR vs P,,. The reason is that the
scatter-plot of APSNR-HVS-M vs P, is not as compact
as the scatter-plot of APSNR—-HVS—M vs Pa.

Analysis carried out for the scatter-plots where P, 7,
was used as the argument has shown that fitting for each
particular case is slightly worse than for P,. For
example, for the fifth order polynomial for the scatter-
plot APSNR vs P,7, one has R?=0.95, RMSE = 0.62,
Adjusted R?2=0.95. This allows coming to preliminary
conclusion that it is worth using P2, as input parameter.

APSNR

APSNR

Fig. 10. Examples of polynomial fitting for APSNR vs P for

polynomials of the third (a) and fifth (b) orders

=)

APSNR-HVS-M

s - ;
Fig. 11. Example of polynomial fitting for APSNR-HVS-M vs
P2s for polynomials of the fifth order

It is worth stressing that polynomial-based fitting is
not the only possible option. In particular, another option
is to use a sum of two exponents as

f(x) = a~exp(bx) + ¢ ~exp(dx), 4)
where there are four adjustable parameters: a, b, ¢, and d.
Just such fitting functions with adjusted parameters are
shown in Fig. 6, 8, and 9. Visually, fitting is very good
and the obtained curves are monotonous. Let us also
analyze quantitative characteristics. They are given in
Table 1. As one can see, the conclusions that can be
drawn are the same as for polynomial fitting. The use of
P.s as input parameter provides slightly better fitting
than the use of P,7,. APSNR-HVS-M is approximated
and, thus, predicted worse than APSNR.
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Table 1. Fitting characteristics for the sums of two exponents

Predicted Input R Adjuzsted RMSE
parameter | parameter R

APSNR P2s 0.974 0.973 0.437

APSNR P2.76 0.963 0.962 0.523
APSNR-

HVS_M P2o 0.870 0.865 1.64
APSNR-

HVS_M P26 0.863 0.859 1.68

Keeping in mind the monotonicity of the

approximation (4) and its accuracy characteristics, we
recommend using the following approximations:

APSNR = 0.0008269 »exp(9.755 * P2;) —

—13.24+exp(~1.192 = Py). (5)
APSNR-HVS-M = —4.897 ~exp(~4.897 Py,) +
+10.07 ~exp(~12.12 » Py). (6)

Above, we have paid attention to accuracy of
approximations meaning that they determine accuracy of
prediction. This is, in general, true although accuracy of
prediction is also determined by one more factor,
namely, how accurately input parameters are estimated.
Special study has shown that P, for most images can be
determined with errors less than 0.01 if the number of
analyzed blocks is of the order 300-1000. As it follows
from analysis of the fitted curves’ behavior, such errors
usually do not lead to essential changes (systematic
errors) of predicted values. At least, such errors are
smaller than RMSE.

Finally, other functions can be used in scatter-plot
fitting. This can be a direction of the future studies.

4. Conclusions and future work

In this paper, we have shown that BPG-based lossy
compression of noisy images has specific features. In
particular, OOP can be observed under condition that an
image is quite simple and noise is quite intensive. If
OOP exists, it is reasonable to compress a given image
in OOP. If OOP is not observed, Q should be set smaller
than Qoop not to introduce too large distortions.

It is also demonstrated that it is possible to predict
does OOP exists and, moreover, what is image quality
for Qoop. Possibility of OOP existence is shown for two
metric and this can be done quite easily and quickly. The
prediction employs simple analysis of DCT coefficient
statistics determined in a limited number of 8x8 pixel
blocks. Having this prediction, it becomes possible to
undertake a correct decision what Q to set.

In the future, we plan to consider the cases of signal
dependent noise and multichannel images. Maybe,
prediction accuracy for the metric PSNR-HVS-M can
be improved.
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[IPOIrHO3YBAHHS ITAPAMETPIB B OIITUMAJIbHII POBOYIN TOYLII JIJISI CTUCHEHHS 3 BTPATOIO 30BPAXKEHD 3
ITYMOM HA OCHOBI BPG
B. B. Kosanerxko?, B. B. JIykin®, C. C. Kpusenko?, B. B. Haymenko?, B. Bozens?
! Hayionansnuii aepoxocmivnuil ynisepcumem, xagpeopa ingpopmayiino-xomynixayiiinux mexnonoaiti, Xapxie 61070, Yipaina
2|ETR, UMR CNRS 6164, Yuieepcumem m. Pen 1, 22305, Jlanviion, @panyis
CTHCHEHHS 3 BTPATOIO 300pakeHb, CHOTBOPEHHUX LIYMOM, Ma€ JieKibka ocobmmBocteil. [lo-nepmre, criocrepiraersest cnenudigamit
edexr dinprpanii mrymy. [lo-apyre, Moxe criocrepiratucst ontuManbsHa pododa Touka (OPT), ToOTO MOXKe iCHyBaTH Take 3HAUCHHS
rapameTpa Kojepa (HalpHKiIaj, KpOKy KBAHTYBAaHHS), IO AKICTb CTUCHEHOTO 300pa)keHHs, PO3Pax0BaHOr0 BiTHOCHO OE3LIyMHOIrO
300pakeHHs1, MOKe OYTH KpaIIoro MOPIiBHSIHO 3 SIKICTIO CTHCHEHOTro (BHXiIHOTO 3amymieHoro) 3oopaxenns. Skmo OPT e, To BapTo
crucHytH 1ie 300paxeHHs B OPT, ko Hi, TO ciymiHi iHIII peKoMeHAalii 100 HalalTyBaHHsA mapaMerpiB kozgepa. OCKiIbKH
Oe3nrymHe 300pakeHHsT Ha MPAKTHULl HEAOCTYITHE, BU3HAYNTH, uu icHye OPT i sika B HbOMY SIKICTh 300pa’keHHs, HEMOXJIMBO. Y ILii
CTaTTi BUKJIAJICHO, 10 icHyBaHHA OPT s KiJIbKOX METPHUK SKOCTI MOXKHA JIOCUTB JIETKO 1 IIBUAKO MPOTHO3YBATH IS 300paXeHb Yy
rpajalisx ciporo, COTBOPEHHMX AJIUTHBHUM OUIMM raycCOBHUM IIYyMOM Ta CTHCHYTUM KoaepoM better portable graphics (BPG).
Takuii MPOrHO3 IPYHTYETHCS HA aHANI3I CTATHCTUKH KOE(illiEHTIB TUCKPEeTHOro KocuHycHoro nepersopenss (IKIT), pospaxoBanux
st oOMexeHol KibkocTi OnokiB 8x8 mikceniB. Jliarpama po3citOBaHHS IOKpAIeHHs (IOTipIIEHHS) METPUKH 3aJ€XHO B IUX
CTaTUCTHUYHUX [AaHUX OTPUMYETbCA 3a3/aJierib 1 BHUKOHYeTbCA MiA0ip mporHo3Hoi kpuBoi. HaBeneHo pexomeHpamii 1mozo
HaJIaIITyBaHHS MapaMeTpiB Kojepa Wi BUNaakiB BigcyrHocti OPT.
KorouoBi cyioBa: crucHeHHs 300pa’keHHs i3 BTpaTaMH, ONTHMajbHA TOYKa POOOTH, SAKICHE MPOTHO3YBaHHS, IIYM, AUCKPETHE
KOCHHYCHE IIEpETBOPEHHS.
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