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Lossy compression of images corrupted by noise has several peculiarities. First, a specific noise filtering effect is observed. Second, 
optimal operation point (OOP) can be observed, i.e. such coder parameter (e.g., quantization step) value can exist that quality of 
compressed image calculated with respect to noise-free image can be better compared to quality of uncompressed (original noisy) 
image. If OOP exists, it is worth compressing a given image in OOP, if no, other recommendations on coder parameter setting are 
reasonable. Since noise-free image is not available in practice, it is not possible to determine does OOP exist and what is image 
quality in it. In this paper, we show that OOP existence for several quality metrics can be predicted quite easily and quickly for 
grayscale images corrupted by additive white Gaussian noise and compressed by better portable graphics (BPG) encoder. Such a 
prediction is based on analysis of statistics of discrete cosine transform (DCT) coefficients calculated for a limited number of 8x8 

pixel blocks. A scatter-plot of metric improvement (reduction) depending upon these statistics is obtained in advance and prediction 
curve fitting is performed. Recommendations on encoder parameter setting for cases of OOP absence are given. 
Keywords: image lossy compression; optimal operation point; quality prediction; noise; discrete cosine transform 
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1. Introduction 
 

Images of different origin are widely used in 

numerous applications, e.g., remote sensing (Aiazzi et 
al., 2012), medical diagnostics (Braunschweig et al., 

2009), advertising (Bataeva et al., 2012), non-destructive 

control (Mahanti et al., 2021), everyday life (Zappavigna 

et al., 2016). The main tendencies observed in recent 

years in imaging deal with rapid increase of image 

number and image size (Khorram et al., 2016). This 

causes problems in image processing, storage, 

transmission, classification (Chi et al., 2016 and Ma et 

al., 2015). The problems in storage and transmission of 

imaging data can be solved by image compression 

(Hussain et al., 2018; Tao et al., 2018; Doss et al., 2020; 
Penna et al., 2007).  

As it is known, image compression techniques can be 

divided into two main groups – lossless and lossy 

(Hussain et al., 2018 and Sayood et al., 2017). Lossless 

compression does not lead to introducing distortions into 

images (data) but has one drawback – the provided 

compression ratio (CR) is usually unacceptably small. 

Then, lossy compression occurs to be preferable since 

CR can be varied and controlled (Sayood et al., 2017 and 

Li et al., 2020). Meanwhile, CR increasing usually leads 

to worse quality of a compressed image and a reasonable 

compromise has to be found in each particular case (Tao 
et al., 2018; Pandey et al., 2020; Zabala et al., 2006; 

Christophe et al., 2011). This compromise depends on 
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many factors: 1) what is the application of a considered 

image and how is it further processed (analyzed, 

interpreted) (Zabala et al., 2006 and Krivenko et al., 

2019); 2) what is a coder (compression method) used 

and how easy is it to vary and control compression 

parameters; 3) what are properties (content, complexity) 

of an image to be compressed (Li et al., 2020 and 

Krivenko et al., 2019); 4) what are the main 

requirements to compression and their priority.  

Concerning factor #1 – lossy compression should not 

result in too large degradation of image quality  

with respect to its visual perception by humans or 
classification or edge/object detection. The corresponding 

studies have been performed to predict just noticeable 

distortions (Bondžulić et al., 2021) or other measures of 

acceptable degradation of compressed images (Zabala et 

al., 2006 and Krivenko et al., 2011). Concerning factor 

#2 – different compression techniques employ different 

mechanisms of CR or compressed image quality 

variation and control. For example, JPEG2000 

(Taubman et al., 2013) and SPIHT (Said et al., 1996) 

allow providing a desired CR (or bits per pixel (BPP)) 

with wide diversity of compressed image quality 
depending on its complexity (Li et al., 2020). In turn, a 

modern better portable graphics (BPG) coder (Yee et al., 

2017 and Albalawi et al., 2016) uses the parameter Q 

that allows controlling peak signal-to-noise ratio (PSNR) 

between original and compressed images in wide limits 

(Kovalenko et al., 2021). This is a good quality attracting 

our attention just to this coder although PSNR is not an 

adequate metric in characterizing image quality (Zhai et 
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al., 2020). Concerning factor #3 – for any coder, it is 

more difficult to compress more complex structure 

images with providing appropriate quality for a given 

CR. Moreover, noise presence in compressed images 

additionally complicates the task of image compression 

(Al-Shaykh et al., 1998; Chang et al., 1997; 

Zemliachenko et al., 2015; Naumenko et al., 2021). In 

this paper, we just consider the task of lossy compression 
of images corrupted by noise. Such a compression has 

certain peculiarities, in particular, noise filtering effect 

first discovered in (Al-Shaykh et al., 1998 and Chang et 

al., 1997) and possible existence of optimal operation 

point (OOP) that has been observed for many different 

compression methods based on either wavelets or 

discrete cosine transform (DCT). The main goal of our 

paper is to show that existence of OOP and compression 

parameters in it can be predicted for the BPG encoder 

with quite high accuracy. Finally, concerning factor #4, 

it is usually required to provide as high quality of 

compressed images as possible for a given CR, to carry 
out compression as quickly as possible and so on. Some 

of these requirements are contradictory and difficult to 

provide. In this paper, we concentrate on providing an 

appropriate quality of compressed images with as large 

CR as possible.  

 

2. Used criteria and rate/distortion curves 
 

A specific aspect of this paper is that we consider 

lossy compression of just noisy images. Noise appears in 

images due to many factors (Colom et al., 2014 and 

Chatterjee et al., 2010) and it can be visible or invisible. 

We concentrate on the case of visible noise that happens 
if PSNR of original image is less than a certain threshold 

(about 35 dB). Moreover, we focus on the simplest 

additive white Gaussian noise (AWGN) model 

(Chatterjee et al., 2010) leaving more complex noise 

models (Colom et al., 2014) for future studies.  

According to this model, one has  
noisy true
ij ij ijI I n  ,                           (1) 

where noisy
ijI  denotes the noisy ij-th pixel value, true

ijI  is 

the true ij-th pixel value, nij is the value of AWGN 

having zero mean and variance σ2. Below we assume 

that noise variance is a priori known or pre-estimated 

(Colom et al., 2014 and Selva et al., 2021) with high 

accuracy.  

The conventional metrics to characterize quality of 

original noisy image are mean square error (MSE) and 

peak signal-to-noise ratio (PSNR) calculated as  
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where I, J define image dimensions and it is supposed 

that the image is represented as 8-bit data. In such a case, 

noise, to be visible, should have variance about 20 for 

simple structure images (see an example in Fig. 1, a) and 

about 30…40 for complex structure ones (see examples 
in Fig. 1, b and 1, c) (Ponomarenko et al., 2015). This 

explains why we consider the values of noise variance 

larger than 40 in our simulations.  

The quality of original (noisy) image can be also 

characterized by other metrics including visual quality 

ones. These can be, e.g., PSNR–HVS–M (Ponomarenko 

et al., 2007) or MS–SSIM (Wang et al., 2003). In 

particular,   
2
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where MSE–HVS–Mn is defined in a set of 8x8 pixel 

blocks considering different sensitivity of human vision 

system (HVS) to distortions in different spatial 

frequencies as masking effect (Ponomarenko et al., 

2007).   

 
a 

 
b 

 
c 

Fig. 1. Some examples of the test images:  
Frisco (a), Diego (b), and Fr01 (c) 
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We are more interested in other metrics and their 

dependences on compression parameters. In particular, 

consider the dependences PSNRc(Q) and PSNR–HVS–

Mc(Q) where these metrics are calculated for images 

compressed by BPQ with different Q and the 

corresponding original (noisy) images. Examples of such 

dependencies for six test images (the images Fr02, Fr03, 

and Fr04 are of approximately the same complexity as 
the test image Fr01 in Fig. 1, c) taken from the paper 

(Kovalenko et al., 2021) are presented in Fig. 2. 

 
a 

 
b 

 

Fig. 2. Dependencies of PSNR and PSNR–HVS–M  
on Q for the coder BPG for six test images corrupted  

by AWGN with variance equal to 64  
(PSNRn is about 30 dB) 

 

As one can see, three main areas can be defined in 

these curves. The first is for Q < 9 where dependencies 

are nonlinear and quality of compressed images is 

characterized by very high values of PSNRc and PSNR–
HVS–Mc that mean that almost no distortions are 

introduced. Then, for Q from about 9 till Q = 33, one has 

practically linear reduction of PSNRc (approximately as 

63-Q) and almost linear reduction of PSNR–HVS–Mc 

(approximately as 83–1.33 Q). This part of the curves 

corresponds to invisible distortions (for Q about 28 and 

less) and visible distortions for Q > 28. Visible distortions 

relate to both noise filtering and information content 

degradation. The third area (Q > 33) is characterized by 

diversion in dependency behavior depending on image 

complexity. 

 

Similar analysis has been carried out for several other 

values of the noise variance. The margins of the first 

area are practically unchanged. The right margin of the 

second area depends on noise variance. The value  

of Q for the right margin is approximately equal to 

Qrm = 63 – PSNRn. In practice, dependencies of PSNRc 

and PSNR–HVS–Mc on Q can be obtained for any 

particular image, but the approximations given above 
can be used to determine the starting point.  

Theoretically, i.e. in simulations when one has a 

noise-free image, adds AWGN to it, and applies lossy 

compression, it is also possible to calculate metrics 

between a compressed image and the corresponding 

noise-free one. Let us denote such metrics as PSNRct and 

PSNR–HVS–Mct. Examples of such dependencies on Q 

for six test images are presented in Fig. 3 and 4. 

 
a 

 
b 

 

Fig. 3. Dependencies of PSNRct on Q for the coder BPG for six 

test images corrupted by AWGN with variance equal to 64 (a, 
PSNRn is about 30 dB) and 100  

(b, PSNRn is about 28 dB) 

 

As one can see in Fig. 3, OOPs are observed for five 

out of six test images. For the simplest structure test 

image Frisco, OOP is more obvious than for other 
images. For the most complex structure image Diego, 

OOP is absent in both cases and the dependencies are 

monotonous. OOPs are “more obvious” for larger σ2. 

Besides, Q for OOP is almost the same for all images for 

which OOP exists and it is larger for larger σ2. Thorough 

analysis has shown that the formulas for QOOP can be 

written as 63-QOOP = PSNRn or, equivalently, 

QOOP = 14,9 + 20log10 ( σ).                  (3) 
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Then, one has QOOP about 33 for σ = 8 (see data in 

Fig. 3, a) and about 35 for σ = 10 (see data in Fig. 3, b). 

 
a  

 
b 

 

Fig. 4. Dependencies of PSNR–HVS–Mct on Q for the coder 
BPG for six test images corrupted by AWGN  

with variance equal to 64 (a, PSNRn is about 30 dB)  
and 100 (b, PSNRn is about 28 dB) 

 

Analysis of dependencies in Fig. 4 shows that OOP 

can be observed for visual quality metrics (e.g., PSNR–

HVS–M) as well although this happens more rarely. 

OOP is not so “obvious” as for PSNRct. Expression (3) is 

approximately valid to determine QOOP according to this 

metric. 
Summarizing the presented results and the data 

represented in the papers (Kovalenko et al., 2021 and 

Naumenko et al., 2021), it is possible to state that OOP 

can be observed and, if this happens, it is reasonable to 

compress such images in OOP. This allows providing 

compressed image quality closer to noise-free image 

compared to the original image and ensuring a rather 

large CR (Fig. 5 gives an example of such a situation). 

Meanwhile, if OOP does not exist for a given image, it is 

worth compressing this image with Q smaller than QOOP 

defined by (3) to avoid introducing too large distortions.  

Thus, the task of predicting OOP existence for a 
given noisy image and quality parameters for OOP is 

important. Design of the corresponding method might 

allow carrying out automatic compression. 

 
a 

 
b 

Fig. 5. Noisy image Frisco (a) and the same image compressed 
in OOP (b), noise variance equals to 196 

 

3. Prediction of OOP existence and compression 

parameters in it 
 

Formally, OOP exists if there is such Q that 

Metrct(Q) is larger than Metrn where Metrct is the full-

reference metric calculated for the compressed and 

noise-free (true) image and Metrn is the same metric 

calculated between the noisy and true images (here we 

suppose that larger metric values correspond to better 

quality, this holds for both PSNR and PSNR–HVS–M as 

well as most other visual quality metrics). In practice, 
one does not have noise-free image and, therefore, 

neither Metrct(Q) nor Metrn can be calculated. Because 

of this, we propose the following approach. We assume 

that it is possible to predict (estimate) the difference 

∆M = Metrct(QOOP) – Metrn keeping in mind that σ is a 

priori known or pre-estimated with high accuracy and, 

thus, QOOP is also known according to (3). Then, if a 

predicted ∆M is positive, the conclusion (decision) is 

that OOP (according to a considered metric) exists and 

vice versa.  
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In fact, we employ the approach similar to that one 

earlier proposed in the paper (Zemliachenko et al., 2015) 

for the DCT based coders and check whether or not it is 

applicable for the BPG coder.   

 

3.1. Prediction approach 

First, let us recall requirements to prediction. It 

should be fast enough and accurate enough. Saying fast, 
we mean that it has to be faster than compression itself. 

Saying accurate enough, it is meant that errors of ∆M 

prediction should have root mean square error (RMSE) 

small enough (e.g., less than 1 dB for the metrics PSNR 

and PSNR–HVS–M, both expressed in dB).  

Generally speaking, the approach (Zemliachenko et 

al., 2015) presumes that there is a dependency between 

∆M and some input parameter which “characterizes” 

image/noise properties and can be easily calculated. This 

dependency is known (determined) in advance (off line) 

and it is available to the moment when OOP existence 

has to be predicted for a given image to be compressed.  
As input parameters, several statistical parameters 

have been proposed and tested in (Zemliachenko et al., 

2015). They are based on comparison of amplitudes of 

DCT coefficients calculated in 8x8 pixel blocks to 

certain thresholds connected with noise standard 

deviation. Simplicity of obtaining such input parameters 

deals with two aspects. First, DCT in 8x8 pixels blocks 

is a standard operation in image/video processing (Wei 

et al., 2009) and it can be realized very quickly. Second, 

DCT should not be carried out for all possible block 

positions of a given image. It is enough to take 
300…1000 randomly placed blocks to estimate the input 

parameter with appropriate accuracy (this will become 

clear later from analysis of scatter-plots). 

It is unclear at the moment what statistical parameter 

of the considered type is the best for the analyzed 

application. We try to show only that the proposed 

approach is able to work quite well leaving the 

optimization task for the future research. 

 

3.2. Scatter-plot obtaining and curve fitting 

Similarly to the paper (Zemliachenko et al., 2015), 
we consider two input parameters – P2σ and P2.7σ. The 

first parameter is the probability that DCT coefficient 

amplitudes are smaller than 2σ. The second parameter is 

the probability that DCT coefficient amplitudes are 

larger than 2.7σ. Such parameters have originated from 

the theory of DCT-based denoising (Abramov et al., 

2013). Their properties will become clear from the 

further analysis.  

To get prediction dependencies, scatter-plots of ∆M 

on input parameters have been obtained. One example is 

presented in Fig. 6 for ∆PSNR and P2σ. Each particular 

point of the scatter-plot corresponds to one test image 
corrupted by AWGN with a given noise variance and 

compressed with QOOP set according to (3). We have 

used 11 test images of different complexity and 8 values 

of the noise variance in the limits from 0.25 to 400.  

Analysis of data in Fig. 6 shows the following. First, 

P2σ varies in the wide limits from almost zero to almost 

unity. Small values of P2σ relate to complex structure 

images and/or rather small noise variances (see an 

example in Fig. 7, edge/detail smoothing is observed in 

the compressed image). In turn, large values of P2σ take 

place for simple structure images corrupted by a rather 

intensive noise (see the example in Fig. 5).  

 
Fig. 6. The scatter-plot of ∆PSNR and P2σ and the fitted curve 

 

 
a 

 
b 

 

Fig. 7. Noisy image Diego (a) and the same image compressed 
in OOP (b), noise variance equals to 64 

 

Second, ∆PSNR varies in rather wide limits from 

about –2 dB (see the data in Fig. 3, a for the test image 

Diego) till about +8 dB (see the data in Fig. 3, b for the 
test image Frisco).  

Third, there is an obvious tendency to ∆PSNR 

increasing if P2σ becomes larger. Diversity of scatter-plot 

points for a given P2σ is not large (mostly smaller than  

1 dB). This means that potentially accurate fitting is 
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possible and, using the fitted curves, it is possible to 

predict ∆PSNR quite accurately (in the next subsection, 

these questions will be discussed more in detail). 

Fourth, if the main question is the OOP existence 

(but not prediction of ∆PSNR value in OOP), then a 

simple rule is possible. One can consider that OOP for 

the PSNR metric exists with rather high probability if P2σ 

exceeds 0.75.  
Consider now another input parameter – P2.7σ. The 

scatter-plot of ∆PSNR vs P2.7σ is presented in Fig. 8. In 

opposite to the scatter-plot in Fig. 8, there is a tendency 

of ∆PSNR reduction if P2.7σ increases. This is because 

P2σ and P2.7σ are defined in different ways (smaller and 

larger than the threshold, respectively). In this case, the 

rule for decision undertaking on OOP existence can be 

formulated as follows: OOP exists with high probability 

if P2.7σ is smaller than 0.15. Thus, decision can be 

undertaken for both input parameters.   

 
Fig. 8. The scatter-plot of ∆PSNR and P2.7σ  

and the fitted curve 

 

Let us analyze now is it possible to predict ∆PSNR–

HVS–M. The scatter-plots for ∆PSNR–HVS–M vs P2σ 

and P2.7σ. are represented in Fig. 9. The scatter-plots are 

not so compact as for ∆PSNR. Meanwhile, the main 
tendencies are similar to those ones observed before. 

∆PSNR–HVS–M increases if P2σ increases and P2.7σ 

reduces. OOP according to ∆PSNR–HVS-M is observed 

for a smaller number of images.  

 
a 

 
b 

Fig. 9. The scatter-plot of ∆PSNR–HVS–M  
vs P2σ (a) and P2.7σ (b) and the fitted curves 

One specific feature is that ∆PSNR–HVS–M varies 

in other limits than ∆PSNR: from about –15 dB to about 

4 dB. According to ∆PSNR–HVS–M, OOP is observed 

if P2σ exceeds 0.85 or P2.7σ is less than 0.08. 

It might seem that a very large reduction of PSNR–

HVS–Mct due to lossy compression can be observed (as it 

follows from the scatter-plots in Fig. 9, ∆PSNR–HVS–M 

can be about –10 dB). However, it is not a fatal case – 
this happens for P2σ about 0.2 (P2.7σ about 0.7), i.e. for 

very complex images with low intensity noise. This 

means that PSNR–HVS–Mn can be of the order 60 dB 

and PSNR–HVS–Mct for QOOP is 50 dB. PSNR–HVS–Mn 

about 60 dB means that noise is invisible in original 

image and PSNR–HVS–Mct about 50 dB means that 

introduced distortions are not visible too. Thus, ∆PSNR–

HVS–M about –10 dB in such cases is not a problem. 

The problem is if PSNR–HVS–Mn is about 30–40 dB 

(i.e., noise is visible) and ∆PSNR–HVS–M is about  

–2 dB. Just such cases take place for the test image 

Diego in Fig. 4, the illustration is given in Fig. 7. 
 

3.3. Curve fitting and prediction accuracy 

We have not yet studied the question of curve fitting 

into scatter-plots. On one hand, the examples shown in 

Fig. 6, 8, and 9 intuitively show that fitting can be done 

efficiently. On the other hand, requirements to fitting and 

quantitative criteria of fitting efficiency have not been 

discussed.  

The curve fitting into a scatter-plot can be done by 

different methods, using different tools and criteria 

(Cameron et al., 1997 and Guruswami et al., 2016). In 
particular, Matlab and Excel offer good facilities for 

curve fitting. In our studies, we have used Matlab Curve 

Fitting Tool.  

Fitting quality is usually characterized by several 

quantitative parameters (criteria) such as goodness-of-

the-fit R2, RMSE, Adjusted R2 and so on (Cameron et 

al., 1997). R2 and Adjusted R2 have to be as large as 

possible (approaching to unity) and RMSE should be as 

small as possible for good fitting. The regression is 

considered very good if R2 and Adjusted R2 exceed 0.9.  

In (Zemliachenko et al., 2015), polynomial 
approximation has been used. It has been shown that 

polynomials of the fourth and fifth order usually provide 

good fitting. Two examples of polynomial fitting are 

given in Fig. 10. For the data in Fig. 10, a, one has 

R2 = 0.93, RMSE = 0.71, Adjusted R2 = 0.93, i.e. the 

results are quite good. For the fifth order polynomial 

(Fig. 10, b), the fitting results are even better (R2 = 0.97, 

RMSE = 0.47, Adjusted R2 = 0.97). Meanwhile, the 

fitted curves are not monotonous and local maxima can 

be observed. We do not state that the dependencies 

should be monotonous but it seems so from visual 

analysis of the scatter-plots. 
Rather good polynomial fitting results have been 

obtained for the scatter-plot of ∆PSNR–HVS–M vs P2σ 

(see Fig. 11). The obtained curves for all polynomials 

are monotonous and the best fitting has been obtained 

for the fifth order polynomial (R2 = 0.87, RMSE = 1.66, 

Adjusted R2 = 0.86). Note that large RMSE is mainly 

due to diversity of scatter-plot data for P2σ < 0.5. This 

does not sufficiently influence the decision on OOP 

existence. 
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Meanwhile, the fitting results are worse than for the 

scatter-plots of ∆PSNR vs P2σ. The reason is that the 

scatter-plot of ∆PSNR–HVS–M vs P2σ is not as compact 

as the scatter-plot of ∆PSNR–HVS–M vs P2σ. 

Analysis carried out for the scatter-plots where P2.7σ 

was used as the argument has shown that fitting for each 

particular case is slightly worse than for P2σ. For 

example, for the fifth order polynomial for the scatter-
plot ∆PSNR vs P2.7σ one has R2 = 0.95, RMSE = 0.62, 

Adjusted R2 = 0.95. This allows coming to preliminary 

conclusion that it is worth using P2σ as input parameter. 

a  

 
b  

Fig. 10. Examples of polynomial fitting for ∆PSNR vs P2σ for 
polynomials of the third (a) and fifth (b) orders 

 

 
Fig. 11. Example of polynomial fitting for ∆PSNR–HVS–M vs 

P2σ for polynomials of the fifth order 

 

It is worth stressing that polynomial-based fitting is 

not the only possible option. In particular, another option 

is to use a sum of two exponents as 

f(x) = a * exp(bx) + c * exp(dx),                  (4) 

where there are four adjustable parameters: a, b, c, and d. 

Just such fitting functions with adjusted parameters are 

shown in Fig. 6, 8, and 9. Visually, fitting is very good 

and the obtained curves are monotonous. Let us also 

analyze quantitative characteristics. They are given in 

Table 1. As one can see, the conclusions that can be 

drawn are the same as for polynomial fitting. The use of 

P2σ as input parameter provides slightly better fitting 

than the use of P2.7σ. ∆PSNR–HVS–M is approximated 

and, thus, predicted worse than ∆PSNR. 

 

Table 1. Fitting characteristics for the sums of two exponents 
 

Predicted 
parameter 

Input 
parameter 

R2 Adjusted 
R2 RMSE 

∆PSNR P2σ 0.974 0.973 0.437 

∆PSNR P2.7σ 0.963 0.962 0.523 

∆PSNR–
HVS–M 

P2σ 0.870 0.865 1.64 

∆PSNR–
HVS–M 

P2.7σ 0.863 0.859 1.68 

 

Keeping in mind the monotonicity of the 

approximation (4) and its accuracy characteristics, we 

recommend using the following approximations: 

ΔPSNR = 0.0008269 * exp(9.755 * P2σ) – 

                 – 13.24 * exp(–1.192 * P2σ).                           (5) 

ΔPSNR–HVS–M = –4.897 * exp(–4.897 * P2σ) +  

                                 + 10.07 * exp(–12.12 * P2σ).          (6) 

Above, we have paid attention to accuracy of 
approximations meaning that they determine accuracy of 

prediction. This is, in general, true although accuracy of 

prediction is also determined by one more factor, 

namely, how accurately input parameters are estimated. 

Special study has shown that P2σ for most images can be 

determined with errors less than 0.01 if the number of 

analyzed blocks is of the order 300–1000. As it follows 

from analysis of the fitted curves’ behavior, such errors 

usually do not lead to essential changes (systematic 

errors) of predicted values. At least, such errors are 

smaller than RMSE.   

Finally, other functions can be used in scatter-plot 
fitting. This can be a direction of the future studies.  

 

4. Conclusions and future work 
 

In this paper, we have shown that BPG-based lossy 

compression of noisy images has specific features. In 

particular, OOP can be observed under condition that an 

image is quite simple and noise is quite intensive. If 

OOP exists, it is reasonable to compress a given image 

in OOP. If OOP is not observed, Q should be set smaller 

than QOOP not to introduce too large distortions.  

It is also demonstrated that it is possible to predict 

does OOP exists and, moreover, what is image quality 
for QOOP. Possibility of OOP existence is shown for two 

metric and this can be done quite easily and quickly. The 

prediction employs simple analysis of DCT coefficient 

statistics determined in a limited number of 8x8 pixel 

blocks. Having this prediction, it becomes possible to 

undertake a correct decision what Q to set.  

In the future, we plan to consider the cases of signal 

dependent noise and multichannel images. Maybe, 

prediction accuracy for the metric PSNR–HVS–M can 

be improved. 
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ПРОГНОЗУВАННЯ ПАРАМЕТРІВ В ОПТИМАЛЬНІЙ РОБОЧІЙ ТОЧЦІ ДЛЯ СТИСНЕННЯ З ВТРАТОЮ ЗОБРАЖЕНЬ З 
ШУМОМ НА ОСНОВІ BPG 
Б. В. Коваленко1, В. В. Лукін1, С. С. Кривенко1, В. В. Науменко1, Б. Возель2 
1 Національний аерокосмічний університет, кафедра інформаційно-комунікаційних технологій, Харків 61070, Україна 
2 IETR, UMR CNRS 6164, Університет м. Рен 1, 22305, Ланьйон, Франція 

Стиснення з втратою зображень, спотворених шумом, має декілька особливостей. По-перше, спостерігається специфічний 
ефект фільтрації шуму. По-друге, може спостерігатися оптимальна робоча точка (OРТ), тобто може існувати таке значення 
параметра кодера (наприклад, кроку квантування), що якість стисненого зображення, розрахованого відносно безшумного 
зображення, може бути кращою порівняно з якістю стисненого (вихідного зашумленого) зображення. Якщо OРТ є, то варто 
стиснути це зображення в OРТ, якщо ні, то слушні інші рекомендації щодо налаштування параметрів кодера. Оскільки 
безшумне зображення на практиці недоступне, визначити, чи існує OРТ і яка в ньому якість зображення, неможливо. У цій 
статті викладено, що існування OРТ для кількох метрик якості можна досить легко і швидко прогнозувати для зображень у 
градаціях сірого, спотворених адитивним білим гауссовим шумом та стиснутим кодером better portable graphics (BPG). 

Такий прогноз ґрунтується на аналізі статистики коефіцієнтів дискретного косинусного перетворення (ДКП), розрахованих 
для обмеженої кількості блоків 8x8 пікселів. Діаграма розсіювання покращення (погіршення) метрики залежно від цих 
статистичних даних отримується заздалегідь і виконується підбір прогнозної кривої. Наведено рекомендації щодо 
налаштування параметрів кодера для випадків відсутності OРТ. 
Ключові слова: стиснення зображення із втратами, оптимальна точка роботи, якісне прогнозування, шум, дискретне 
косинусне перетворення. 
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