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Lossy image compression is used in many applications including remote sensing. Image size and number increase and this often 
leads to the necessity to apply image compression. In lossy compression, it is assumed that rate-distortion curves are monotonous 
functions and this assumption is put into basis of compression control. However, it has been shown recently that there are grayscale 
and color images called “strange” for which the rate-distortion curves are not monotonous. In this paper, we demonstrate that some 
remote sensing images can be strange as well and this takes place for JPEG and some other compression techniques. Analysis of  
properties for strange images using Spearman rank order correlation coefficient is carried out and it is shown that there several 
parameters characterizing image complexity that have a rather high correlation with probability that a given image is strange. For 
example, image entropy is one of such parameters.  
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1. Introduction 
 

Images are widely used nowadays in numerous 

applications (Nan et al., 2022; Singh et al., 2022; 

Spasova et al., 2021). Remote sensing (RS) from 

airborne and spaceborne carriers is one of them. Modern 

RS sensors provide a lot of valuable information (Popov 

et al, Kussul et al) producing images of high spatial 

resolution with periodicity of a few days. This makes 

problematic image transfer from sensor carriers to on-

land centers of RS data processing as well as further 

storage and dissemination of images (Blanes et al). Then, 
image compression has to be applied (Blanes et al; 

Zabala et al; Hussain et al).   

It is common to divide image compression 

algorithms into two groups - lossy and lossless (Prasanna 

et al., 2021; Manga et al., 2021; Sayood, 2017). In this 

paper, we concentrate on lossy compression methods 

since they are able to provide quite large and variable 

compression ratio (CR) needed in many practical 

applications (Lukin et al; Bondzulic et al; Ortega et al, 

1998). On the one hand, the lossy compression 

introduces distortions into data and thus, in opposite to 

lossless compression, decompressed images differ from 
the corresponding original images. On the other hand, 

lossy compression often allows to ensure a reasonable 

compromise between the characteristics of introduced 

distortions (compressed image quality) and attained CR 

(Christophe 2011; Lin et al, 2015).  

Reaching this compromise is usually based on 

utilizing the rate-distortion curves (RDCs) – 

dependences of a parameter (metric) characterizing 

__________ 
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distortions (e.g., mean square error (MSE), peak signal-
t0-noise ratio (PSNR) or some visual quality metric) on 

CR or parameter that allows varying CR (e.g., quality 

factor (QF) for JPEG or quantization step (QS) for 

coders based on discrete cosine transform (DCT)). Two 

common assumptions concerning RDCs are the 

following. First, it is supposed that distortions increase 

(image quality becomes worse) if CR increases (QF 

reduces or QS becomes larger). Second, it is assumed 

that RDCs are monotonous functions – either increasing 

as, e.g., MSE on QS for DCT-based coders (Krivenko et 

al, 2018) or decreasing as, e.g., PSNR on QS. Such 
assumptions have been put into basis of different 

algorithms of providing a desired quality of compressed 

images (Oh et al, 2016; Bondzulic et al, ; Li et al, 2020) 

where quality can be understood in different ways. These 

can be compression with providing a given value of a 

considered metric, with visually lossless distortions and 

so on. The algorithms are iterative or, at least, two-step 

where compressed image quality is assessed after the 

first (or each) iteration (step) and then refined by 

changing a parameter the controls compression (PCC) – 

QF for JPEG, QS for DCT-based compression, bits per 

pixel (BPP) for JPEG2000 or SPIHT (Oh et al, 2016), 
parameter Q for better portable graphics (BPG) coder 

(Bellard 2018) and so on.  

However, recent studies (Li et al, 2022; Bondzulic et 

al, 2022) have demonstrated that RDCs can be not 

monotonous. Images for which this happens have been 

called strange. The studies have been first carried out for 

grayscale images for the coder AGU (Ponomarenko et 

al, 2005) for which the existence of strange images has 

been discovered. Then, possible non-monotonicity of 

RDCs has been found for JPEG and color images.  
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It seemed at the very beginning, that non-monotonicity 

of RDCs might be observed for artificial origin images 

containing large white color areas. However, later it has 

been shown (Bondzulic et al, 2022) that strange images 

can be of natural origin, for example, color images 

acquired in bad illumination (night) conditions. Non-

monotonicity can be observed not only for dependences 

of MSE or PSNR on PCC, but also for visual quality 
metrics. It has been also established that not coder but 

image properties determine is a given image strange or not.  

As stated above, only artificial and natural scene 

(conventional) images have been considered. A question 

is can RS images be strange and what are the main 

properties of such images? The goal of this paper is to 

partly answer these questions. We show that strange RS 

images exist and they have specific properties dealing 

with image complexity.  

 

2. Definition of strange images and criteria 

 
Although we have already mentioned what images 

can be considered strange, it is worth showing some 

example. It is presented in Fig. 1. The image itself  

(Fig. 1, a) is not atypical, similar scene images can be 

found in RS databases and sites. Its specific feature is 

that it contains quasi-homogeneous strips. As seen in 

Fig. 1, b, dependence of PSNR on QF is not 

monotonous. It has quite many local minima and 

maxima. It follows from analysis that, e.g., it is more 

reasonable to compress the considered image using 

QF = 12 than QF = 13, since in the former case a larger 
CR and better PSNR are provided simultaneously (for 

QF = 12, PSNR = 30.4 dB and CR = 53.12 whilst, for 

QF = 13, PSNR = 30.1 dB and CR = 51.23). As can be 

seen, the difference in PSNR is equal to 0.3 dB and such 

difference can be visually noticeable when comparing 

two compressed images.  
 

  
                     a                                                  b 
Fig. 1. An example of strange image (a) and RDC PSNR(QF) 

for JPEG (b) for this image 

 

A question then is what image can be considered 
strange? The first formal answer can be the following. If 

RDC is assumed monotonically decreasing, then an 

image is strange if there is, at least, one i for which  

Metr(i – 1) < Metr(i) ^ Metr(i) > Metr(i + 1)       (1) 

or simply Metr(i) > Metr(i – 1) where Metr is a metric 

used in analysis (e.g., PSNR).  

In turn, if RDC is supposed monotonically 

increasing, then an image can be treated as strange if 

there is, at least, one i for which 

Metr(i – 1) > Metr(i) ^ Metr(i) < Metr(i + 1) 

or simply Metr(i) < Metr(i – 1), i.e. if, at least, one local 
minimum exists. Here i is index of RDC value array 

used in analysis. For example, for JPEG it coincides with 

QF values which are integers from 1 to 100. If PCC is 

not QF, but some other parameter, then it is a question 

what number of samples I (i = 1,…I) to analyze for a 

given RDC. A larger I allows carrying out a more 

thorough analysis but requires more operations of image 

compression, decompression, and metric estimation. 

There are coders for which PCC can take any value in 
some range. The examples are BPP values for JPEG or 

SPIHT that can vary from 0 to 8 for grayscale images 

represented as 8-bit 2D data. For DCT-based coders 

controlled by QS such as, e.g., the coder AGU 

(Ponomarenko et al, 2005), minimal QS tends to 0 whilst 

maximal value is, in general, not restricted. Because of 

this, it is reasonable to consider QS values in such a 

range that compressed images are not totally damaged 

(the distortions are not too annoying). Hence, we 

analyzed data for QS from 1 to 100 using integer values 

(although it is, in general, possible to apply not integer 

QS values). 
Here it is worth noting the following. Analyzing 

RDCs, researchers often obtain them using sparsely set 

values of PCC, e.g., setting QF equal to 5, 10, 15, …., 

100. In such a case, there is a big chance that RDC might 

seem monotonous and image strangeness is not observed 

(detected).  

Let us come back to definitions of strange images. 

The definition can be stricter. Suppose that RDC is 

decreasing. Then, an image can be considered strange if 

there is, at least, one i that  

ΔM = Metr(i) – Metr(i – 1) > δ.                (3) 
Similarly, for increasing RDC, an image can be 

treated as strange if there is, at least, one i that  

ΔM = Metr(i) – Metr(i – 1) < –δ.              (4) 

Here δ is the preset threshold showing that 

unexpected “jump” is considerable. For example, for the 

metric PSNR, δ can be set about 0.3–0.5 dB. Really, if the 

found ΔPSNR (3) for the RDC PSNR(QS) is equal to, let 

us say, 0.01 dB, it is not too problematic in practice.  

Thus, it is possible to consider two practical 

situations: 1) an image is formally strange (FS) but 

absolute value of the largest found ΔM is small (the 
conditions (3) or (4) are not satisfied); 2) an image is 

strictly strange (SS), this takes place if the conditions (3) 

or (4) are valid.   

 

3. Results for JPEG  

 

Recall that our main interest is to RS images. 

Because of this, we have chosen four datasets  

(classes) of three-channel (color) images from the  

freely available UC Merced Land Use Dataset 

(http://weegee.vision.ucmerced.edu/datasets/landuse.html). 

Each obtained dataset contains 31 images and the 
datasets have the names “Agricultural”, “Airplane”, 

“Beach”, and “Dense Residential”. Fig. 2 presents four 

small copies of typical images for each dataset. The 

dataset Agricultural contains two SS images and five FS 

ones. The dataset Airplane has no SS images and only 

three FS ones. Quite many (twenty one) SS images have 

been found in the dataset Beach, four other ones are 

formally strange. Finally, no strange images have been 

found in the dataset Dense Residential.    
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Even visual inspection of images in Fig. 2 explains 

why is it so. The dataset Agricultural contains some 

images with quite large homogeneous regions (e.g., the 

rightmost image in the corresponding row). The images 

in the sets Airplane and, especially, Dense Residential 

are more heterogeneous. Finally, the images in the set 

Beach usually contain two large (quasi)homogeneous 

regions that correspond to sand and water surface. Note 
that the leftmost image in the corresponding row is not 

strange whilst the two rightmost are strictly strange ones.  

Above, we have given verbal descriptions of 

properties of some RS images. Meanwhile, image 

complexity can be characterized quantitatively. The 

paper (Zhang et al, 2018) presents five parameters able 

to characterize image complexity and denoted as entropy 

(E), edge ratio (ER), contrast (C), correlation (CO), and 

energy (EN). The parameters E, ER, and C have smaller 

values for simpler structure images whilst the parameters 

CO and EN have the opposite properties (Zhang et al, 

2018). Our idea (assumption) is that the aforementioned 
parameters can be correlated with probability of an 

image to be strange. To check this idea, we have 

calculated the parameters for images in the datasets. As 

an example, let us present a part of data for fifteen first 

images in the set Agricultural. They are given in Table 1.  

As seen, the parameters have different ranges of 

variation. Entropy is from 5.54 to 7.22 (in fact, from 5.1 

to 7.5 for all 124 considered images), ER varies in the 

limits from 0.14 to 0.40 (from 0.07 to 0.41 for all 

images), C is from 0.07 to 2.25 (from 0.02 to 2.25 for all 

images), CO varies from 0.11 to 0.95 (from 0.05 to 0.99 

for all images), and EN is from 0.06 to 0.31 (from 0.06 

to 0.44 for all images). The main properties mentioned 
above are observed, i.e. strange images (that usually 

have quite simple structure and a larger percentage of 

pixels that belong to homogeneous regions) are 

commonly characterized by smaller E, ER, and C whilst 

CO and EN for them are mostly the largest. However, 

this dependence is not strict. We have calculated 

Spearman rank order correlation coefficients (SROCCs) 

between parameters and numerical representation of 

image strangeness (0 for usual images, 1 for FS images 

and 2 for SS images) for three datasets (recall that for the 

dataset Dense Residential there are no SS and FS 

images, so correlation for it cannot be determined). The 
result is that there is quite large correlation for image 

strangeness and contrast (C), entropy (E), and energy 

(EN). Other two parameters show high correlation (large 

absolute values of SROCC) only for particular datasets – 

see data in Table 2.  
 

    
Typical representatives for the set “Agricultural” 

    
Typical representatives for the set “Airplane” 

    
Typical representatives for the set “Beach” 

    

Typical representatives for the set “Dense Residential” 

Fig. 2. Examples of images in datasets 
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Table 1. Example of image parameters (“Agricultural” dataset) 

Image E ER C CO EN Strange or not 

Img00 6.4324 0.3530 0.4345 0.6235 0.2194 Y/N (1) 

Img01 6.2656 0.3562 0.4256 0.5284 0.2287 N (0) 

Img02 6.3933 0.3537 0.4558 0.5644 0.2027 N (0) 

Img03 6.1998 0.3901 0.3953 0.5045 0.2571 N (0) 

Img04 6.8800 0.1361 0.3637 0.8594 0.1518 N (0) 

Img05 6.9877 0.3997 1.3106 0.3825 0.0856 N (0) 

Img06 6.8322 0.4031 1.2088 0.3352 0.1006 N (0) 

Img07 6.8351 0.3936 1.7582 0.1097 0.0901 Y/N (1) 

Img08 6.9941 0.3868 1.7872 0.2861 0.0720 N (0) 

Img09 7.2211 0.3958 2.2514 0.2974 0.0616 N (0) 

Img10 6.6044 0.1987 0.0767 0.9473 0.2759 Y (2) 

Img11 5.5384 0.1577 0.4204 0.1340 0.3065 Y/N (1) 

Img12 6.5364 0.1982 0.0699 0.9470 0.2930 Y (2) 

Img13 6.4552 0.3876 1.1089 0.1444 0.1278 N (0) 

Img14 6.9084 0.4041 1.6922 0.3034 0.0824 N (0) 

 
Table 2. Spearman rank order correlation coefficients between image strangeness  

and parameters characterizing image complexity 

Dataset (class) C CO ER EN E 

Agricultural –0.6057 0.4971 –0.3942 0.5849 –0.3274 

Airplane –0.4270 0.1586 0.0366 –0.0366 –0.1830 

Beach –0.7882 0.6660 –0.8004 0.6110 –0.6220 

All images –0.7154 0.3387 –0.1336 0.6159 –0.6786 

 

The analysis shows the following. There is no one 

parameter characterizing image complexity that allows 

reliable detection of strange images before their 

compression by setting some threshold. However, there 

is a quite strict connection between parameters 

describing image complexity and image strangeness that 

can be potentially exploited for detection. This can be a 

direction of future research. Furthermore, it can be 

observed that the highest SROCCs are for Beach dataset 
with the most strange images, than for Agricultural and 

Airplane (with the least strange images) datasets. 

Finally, we would like to present two plots for the 

strange image Beach16. They are given in Fig. 3. The 

RDC PSNR(QF) (Fig. 3 a) has been used in previous 

analysis for detecting strange images. As seen, this RDC 

has multiple local minima and maxima confirming the 

strangeness of this image. Fig. 3 b presents the RDC 

MDSI(QF) where MDSI is mean deviation similarity 

index (Nafchi et al, 2016). This is one of the best visual 

quality metrics that has the property to be smaller for 
better visual quality. Note that earlier we have not 

analyzed image strangeness according to MDSI.   
 

 
                          a                                                 b  

Fig. 3. RDCs PSNR(QF) (a) and MDSI(QF) (b)  
for the image Beach16 

 

As seen, according to the RDC in Fig. 3 b, beach16 is 

the strange image as well as according to conventional 

PSNR. Moreover, the largest “fluctuations” of MDSI are 

observed for the same interval of QF variation as for 

PSNR – for QF around 10.  

 

4. Brief analysis for AGU 

 

We have already shown (Bondzulic et al, 2022) that 
image can be strange not only if they are compressed by 

JPEG but also by other coders. Because of this, we have 

decided to carry out a more thorough study for the coder 

AGU (Ponomarenko et al, 2005) that performs DCT in 

32×32 pixel blocks, bit-plain coding of quantized DCT 

coefficients, and deblocking after decompression. Due to 

this, the coder AGU outperforms JPEG and JPEG2000 

for grayscale images (see https://ponomarenko.info/ 

agu.htm for more details).  

If an image is three-channel, AGU can be applied 

component-wise or one can use 3D version of AGU that 
has been developed for compressing multichannel (in 

particular, hyperspectral) images. Here, we employed the 

former variant since it has been interesting for us what 

are the differences for components of three-channel 

images in the sense of its strangeness. Since we focus on 

strange images, the same 31 images from the dataset 

Beach have been considered. For each component, the 

following parameters have been determined for the 

obtained dependences PSNR on QS: 1) number of local 

maxima; 2) values of the metric Hom of background 

content (Abramov et al, 2009), which is one more metric 
characterizing image complexity. This metric has larger 

values for simpler structure images. In addition, the 
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number of local maxima is presented for PSNR 

determined for the Y component in YCbCr space.   

The obtained data are presented in Table 3. Their 

analysis shows several interesting tendencies. First, there 

are non-strange images for which all RDCs (for all three 

components and in aggregate) are monotonous (e.g., 

beach00.tif). Meanwhile, there are also images, for 

which some partial RDCs are monotonous whilst other 
one or ones contain local maximum o maxima (see data 

for images beach06.tif and beach21.tif). Finally, there 

are images, for which local maxima are observed for all 

components (e.g., the images beach12.tif or beach16.tif). 

Second, the number of maxima is usually different for 

RDCs obtained for different components. For Y 

component, the number of local maxima is 

approximately the same as for the RDCs for R, G, and B 

components.  

 

Table 3. Statistical characteristics for the dependences PSNR on QS  
and Hom metric values for AGU coder applied component-wise to three-channel images of the dataset Beach 

Image 

Numbers of maxima Hom metric values 

R G B Y R G B Y 

beach00.tif 0 0 0 0 0.166 0.176 0.173 0.174 

beach01.tif 0 0 0 0 0.141 0.149 0.140 0.146 

beach02.tif 0 0 0 0 0.106 0.122 0.088 0.117 

beach03.tif 0 0 0 0 0.099 0.111 0.091 0.104 

beach04.tif 0 0 0 0 0.097 0.105 0.074 0.095 

beach05.tif 0 0 0 0 0.123 0.142 0.145 0.142 

beach06.tif 0 1 1 1 0.200 0.187 0.163 0.176 

beach07.tif 3 0 2 2 0.192 0.182 0.163 0.178 

beach08.tif 1 2 2 3 0.158 0.155 0.146 0.152 

beach09.tif 0 0 0 0 0.175 0.167 0.137 0.160 

beach10.tif 0 0 0 0 0.181 0.173 0.146 0.166 

beach11.tif 3 3 4 4 0.326 0.300 0.241 0.283 

beach12.tif 4 2 2 2 0.303 0.284 0.214 0.259 

beach13.tif 11 6 8 5 0.306 0.291 0.213 0.276 

beach14.tif 5 8 11 11 0.305 0.276 0.232 0.261 

beach15.tif 4 9 3 4 0.314 0.289 0.275 0.288 

beach16.tif 15 18 15 17 0.394 0.359 0.337 0.361 

beach17.tif 6 6 7 9 0.316 0.285 0.260 0.280 

beach18.tif 15 14 14 13 0.313 0.286 0.252 0.276 

beach19.tif 1 0 2 0 0.194 0.219 0.257 0.188 

beach20.tif 0 1 2 1 0.246 0.253 0.294 0.232 

beach21.tif 0 1 0 0 0.229 0.253 0.254 0.245 

beach22.tif 0 0 2 0 0.245 0.255 0.266 0.245 

beach23.tif 1 0 1 0 0.238 0.282 0.237 0.257 

beach24.tif 3 0 4 1 0.233 0.280 0.252 0.248 

beach25.tif 3 2 4 1 0.232 0.217 0.198 0.211 

beach26.tif 2 2 4 3 0.271 0.259 0.219 0.246 

beach27.tif 0 0 0 0 0.246 0.235 0.225 0.233 

beach28.tif 0 0 0 0 0.233 0.210 0.171 0.211 

beach29.tif 1 0 0 1 0.209 0.210 0.180 0.201 

beach30.tif 1 0 0 1 0.233 0.249 0.217 0.238 

 

An example of four dependences is presented in 

Fig. 4 where one can see multiple maxima for all 

components. Third, strange images obtained for JPEG 

are mostly the same as for the coder AGU. In the first 
order, this relates to images ## 11–17. The images 

beach14 and beach16 are shown in Fig. 4. As seen, both 

images mainly contain two quasi-homogeneous areas of 

water surface and beach sand. Fourth, the values of Hom 

metric are usually larger for images detected as strange. 

The values of this metric are usually quite close for all 

three components. This is not surprising since 

components of color images are commonly highly 

correlated (similar to each other). We have calculated 

SROCC between image strangeness (here we assigned 0 

to images for which RDC is monotonous and unity to 
those images having at least one local maxima) and Hom 

values. The following SROCC values have been got: 

0.71 for R, 0.63 for G, 0.57 for B, and 0.67 for Y 

component. Thus, the correlation is high again and the  

 

parameter Hom seems to be quite informative. However, 
it is still difficult to set a certain threshold for reliable 

discrimination of images into strange and not strange. 

 
 

Fig. 4. Dependences of PSNR on QS for the coder AGU 

applied component-wise to the image beach16 
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                         a                                                 b  

Fig. 5. The images beach14 (a) and beach16 (b)  
that are strange for both JPEG and AGU coders 

 

5. Conclusions 

 

Analysis of monotonicity of RDCs for four datasets 

(classes) of typical RS images has been carried out for 

two coders (JPEG and AGU applied in different ways). 
It has been shown that there is a certain percentage of 

images for which the dependences PSNR on QF for 

JPEG and PSNR on QS for AGU are not monotonous. 

Most often this happens for images of the dataset Beach 

for which the images mostly contain two quasi-

homogeneous areas corresponding to beach sand and 

water surface.  

It is also demonstrated that there are quite many 

parameters intended to characterize image complexity 

that have quite high correlation with probability of an 

image to be strange. This can be considered as a pre-

requisite for design of a method for detection of 
potentially strange images before their compression. In 

the future, it is also worth investigating the influence of 

the discovered strangeness effects on target detection 

probability, errors in the land surface physical parameter 

retrieval, or the RS data classification accuracy.  

 
References 

 
Abramov, S. K., Lukin, V. V, Ponomarenko, N. N., 

Pogrebnyak, O. B. (2009). Entropy-like measure of 
background content for image retrieval and sorting in large 

databases. Telecommunications and Radio Engineering, 
68(8), 667–675. 

Bellard, F. (2018). BPG Image format. Retrieved from 
https://bellard.org/bpg/. 

Bondžulić, B., Stojanović, N., Petrović, V., Pavlović, B., 
Miličević, Z. (2021). Efficient prediction of the first just 
noticeable difference point for JPEG compressed images. 
Acta Polytechnica Hungarica, 18(8), 201–220. 

Bondzulic, B., Bujakovic, D., Li, F., Lukin, V. (2022). On 
strange images with application to lossy image 
compression. Radioelectronic and Computer Systems, 4, 
143–152. 

Blanes, I., Magli, E., Serra-Sagrista, J. (2014). A tutorial on 
image compression for optical space imaging systems. 
IEEE Geoscience Remote Sensing Magazine, 2(3), 8–26. 

Christophe, E. (Eds.) (2011). Hyperspectral data compression 

tradeoff. Optical remote sensing, 9–29. 
Hussain, A. J., Al-Fayadh, A., Radi, N. (2018). Image 

compression techniques: A survey in lossless and lossy 
algorithms. Neurocomputing, 300, 44–69.  

Krivenko, S. S., Krylova, O., Bataeva, E., Lukin, V. V. (2018). 
Smart Lossy Compression of Images Based on Distortion 
Prediction. Telecommunications and Radio Engineering, 
77(17), 1535–1554.  

Kussul, N., Lavreniuk, M., Shelestov, A., Skakun, S. (2018). 
Crop inventory at regional scale in Ukraine: Developing  
in season and end of season crop maps with multi-temporal 

optical and SAR satellite imagery. European Journal  
of Remote Sensing, 51(1), 627–636. DOI: 
10.1080/22797254.2018.1454265.   

Li, F., Krivenko, S., Lukin, V. (2020). Two-step providing of 
desired quality in lossy image compression by SPIHT. 
Radioelectronic and computer systems, 94(2), 22–32.  

Li, F., Lukin, V. (2022). Strange Images with Non-monotonous 
Rate-Distortion Curves in Lossy Image Compression. 

Proceedings of 2022 IEEE 5th International Conference on 
Information Systems and Computer Aided Education, 1–6. 
DOI: 10.1109/ICISCAE55891.2022.9927685.  

Yuchieh, J., Jin, L., Hu, S., Katsavounidis, I., Li, Z., Aaron, A., 
Jay Kuo, C.-C. (2015). Experimental design and analysis of 
JND test on coded image/video. SPIE Optical Engineering 
+ Applications, 9599, 324–334.  

Lukin, V., Vasilyeva, I., Krivenko, S., Li, F., Abramov, S., 

Rubel, O. Vozel, B., Chehdi, K., Egiazarian, K. (2020). 
Lossy Compression of Multichannel Remote Sensing 
Images with Quality Control. Remote Sensing, 12(22), 3840. 
DOI: 10.3390/rs12223840.  

Manga, I., Garba, E. J., Ahmadu, A. S. (2021). Lossless Image 
Compression Schemes: A Review. Journal of Scientific 
Research and Reports, 27(6), 14–22. DOI: 
10.9734/jsrr/2021/v27i630398. 

Nan, S., Feng, X., Wu, Y., Zhang, H. (2022). Remote sensing 
image compression and encryption based on block 
compressive sensing and 2D-LCCCM. Springer, 108, 
2705–2729. DOI: 10.1007/s11071-022-07335-4.  

Ziaei Nafchi, H., Shahkolaei, A., Hedjam, R., Cheriet, M. 
(2016). Mean Deviation Similarity Index: Efficient and 
Reliable Full-Reference Image Quality Evaluator. IEEE 
Access, 4, 5579–5590. DOI: 10.1109/ACCESS.2016.2604042.  

Oh, H., Bilgin, A., Marcellin, M. (2016). Visually lossless 

JPEG 2000 for remote image browsing. Information, 7(3), 
1–45.  

Ortega, A., Ramchandran, K. (1998). Rate-distortion methods 
for image and video compression. IEEE Signal Processing 
Magazine, 15(6), 23–50.  

Ponomarenko, N. N., Lukin, V. V., Egiazarian, K., Astola, J. 
(2005). DCT Based High Quality Image Compression. 
Proceedings of 14th Scandinavian Conference on Image 

Analysis, 1177–1185.  
Lyalko, V., Popov, M., Sedlerova, O., Fedorovskyi, O., 

Stankevich, S., Yelistratova, L., Khyzhniak, A. (2022). On 
the development of remote sensing methods and technologies 
in Ukraine. Ukrainian journal of remote sensing, 9(2), 43–53. 
DOI: https://doi.org/10.36023/ujrs.2022.9.2.214. 

Prasanna, Y. L., Tarakaram, Y., Mounika, Y., Subramani, R. 
(2021). Comparison of Different Lossy Image 

Compression Techniques. 2021 International Conference 
on Innovative Computing, Intelligent Communication  
and Smart Electrical Systems (ICSES), 1–7. DOI: 
10.1109/ICSES52305.2021.9633800.  

Sayood, K. (2017). Introduction to data compression. Morgan 
Kaufmann.  

Singh, B. K., Sinha, G. R. (2022). Medical Image Processing. 
In book: Machine Learning in Healthcare. DOI: 

10.1201/9781003097808-4.  
Spasova, G., Boyachev, I. (2022). A Method of Color Images 

Compression. 2021 International Conference on 
Biomedical Innovations and Applications (BIA), 111–114. 
DOI: 10.1109/BIA52594.2022.9831403.  

Zabala, A., Pons, X., Diaz-Delgado, R., Garcia, F., Auli-Llinas, F., 
Serra-Sagrista, J. (2006). Effects of JPEG and JPEG2000 
Lossy Compression on Remote Sensing Image 

Classification for Mapping Crops and Forest Areas. 2006 

https://bellard.org/bpg/


F. Li et al. Український журнал дистанційного зондування Землі, 2023, 10 (2), 12–18 
 

Online ISSN 2313-2132 18 

IEEE International Symposium on Geoscience and Remote 
Sensing, 790–793. DOI: 10.1109/IGARSS.2006.203. 

 

ДИВНІ ЗОБРАЖЕННЯ В ДИСТАНЦІЙНОМУ ЗОНДУВАННІ ТА ЇХ ВЛАСТИВОСТІ 

Ф. Лі1, В. В. Лукін1, С. С. Кривенко1, Б. Бонджуліч2, Д. Буяковіч2, Б. Павловіч2 

1Кафедра інформаційно-комунікаційних технологій ім. О. О. Зеленського, Національний аерокосмічний університет,  
61070 Харків, Україна 
2Військова академія, Університет оборони в Белграді, 11000 Белград, Сербія 
Стиснення зображень із втратами використовується в багатьох додатках, включаючи дистанційне зондування. Їх розмір і 
кількість збільшується, тому часто необхідно застосовувати стиснення зображення. При стисненні з втратами допускається, 
що криві швидкість / спотворення є монотонними функціями, і це припущення покладено в основу управління стисненням. 
Однак нещодавно було показано, що існують зображення в градаціях сірого та кольорові зображення, які називаються 

“дивними”, для яких криві швидкості / спотворення не є монотонними. У статті описано, що деякі зображення 
дистанційного зондування також можуть бути дивними і це стосується як JPEG, так і деяких інших методів стиснення. 
Проаналізовано властивості дивних зображень за допомогою коефіцієнта рангової кореляції Спірмена та показано, що існує 
кілька параметрів, які характеризують складність зображення, мають досить високу кореляцію з імовірністю того, що це 
зображення є дивним. Зокрема, одним із таких параметрів є ентропія зображення. 
Ключові слова: стиснення зображень з втратами, дивні зображення, криві швидкість / спотворення, складність зображення. 
 

Рукопис статті отримано 19.05.2023 

Надходження остаточної версії: 27.05.2023 
Публікація статті: 29.06.2023 

 


