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Correlation of Satellite-based LAI and actual crop yield
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The main objective of this article was to investigate the correlation between actual crop yield and Sentinel-2 Leaf Area Index (LAI)
for the further possibility of predict model creating. To do so, the following steps have been done. Step 1 — the dataset of actual crop
yield was collected for 2364 fields in Ukraine represented with maize, soy, sunflower, winter wheat, winter rapeseed and winter
barley. Step 2 — the dataset of Sentinel-2 LAI was collected for 2016-2018 period according to the actual crop yield available.
Step 3 — LAI preprocessing (spatial averaging, temporal interpolation/extrapolation to fill the time series gaps, smoothing time series
dynamics, temporal averaging). In order to accomplish the process of filling the gaps for the LAI time series, the regular time series
dynamics of LAl with a 1-day interval were created using 4 methods: linear interpolation, spline interpolation, LOCF (Last
Observation Carried Forward) and ARIMA (AutoRegressive Integrated Moving Average). The time series smoothing process have
been accomplish using the local polynomial regression (LOESS) function with different degrees of smoothing. The LAI dynamics
preprocessing step did not strongly affect the improvement of the correlation coefficients. Thus, the smoothing process for the time
series LAI dynamics at the 0.1 degree of smoothing according to the LOCF and ARIMA gap-filling methods of improved correlation
coefficients by 0.01 on average. Step 4 — actual yield values were related to preprocessed satellite-based LAI (correlation of actual
yields and LAI). A strong relationship was not indicated (with averaged by vegetation periods correlation coefficient of 0.4 for
maize, 0.52 — soy, 0.39 — sunflower, 0.86 — winter barley, 0.54 — winter rapeseed and 0.5 — winter wheat). Since the reliability of
obtained correlation coefficients also depends on how many observed data points were in the sample, the hypothesis test of the
"significance of the correlation coefficient" has been performed and shows the significance level of p <0.05 for all crops except
winter barley (there is insufficient evidence to conclude that high correlation coefficient of 0.86 for this crop is significant). The
average correlation coefficient for all crops is about 0.5 (p <0.05) which is considered low/moderate. Thus, an attempt to create a
linear crop yield prediction model using only Leaf Area Index (LAI) derived from Sentinel-2 will not be effective (based on the cases
considered).
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1. INTRODUCTION The Leaf Area Index (LAI) is one of the most
] o ] fundamental vegetation biophysical parameters, defined
Crop yields have a high impact on the economic as a dimensionless measure of the one-sided leaf area
sustainability of any world country. Accurate prediction (m?) per unit ground surface area (m?) (Asner et al.,
of crop yield at the field scale is important for precision 2003; Chen et al., 1992). LAI has long been reported as
agriculture to understand crop production response to 4 go0d indicator for several agronomic, ecological, and
agronomic management practice and environmental hydrological applications (Reyes-Gonzalez et al., 2019;
stress. There are a lot of works related to using satellite- Charbonnier, 2013; Vifia et al., 2011; Jung et al., 2010;
retrieved LAI in different prediction models to estimate Fassnacht et al., 1997; Taugourdeau et al., 2014; Van
yield production around the world (Aboelghar et al.,  gen Hyrk et al., 2003; Jarlan et al., 2008; Mourad et al.,
2011; Aboelghar et al., 2010; Liu et al., 2020), where the 2020).
methodology is based on regressing measured yield with The retrieval of crop biophysical variables from
satellite-derived spectral information or the leaf area remote sensing falls into two categories: empirical and
index. However, there isn’t any work on the use of  physical modeling approaches (Mourad et al., 2020). The
satellite-based LAI in prediction models to estimate simplest method of estimating LAI from remote sensing
yield production in Ukraine. Prior to building any is by establishing an empirical relationship between the
prediction model, it is necessary to observe the remotely sensed vegetation indices (VIs) and measured
relationship between explanatory and target variables. LA, referred to as the LAI-VI approach (Baret et al.,
This is the reason why the correlation between the 1991; Broge et al., 2001). Vegetation indices are
actual yield of the fields in Ukraine and the satellite- computed based on the reflectance in two or more
based LAI has to be quantified. spectral bands and reflect biophysical characteristics of

_ ) . the plant canopy such as greenness, biomass, and LAl
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(Baghzouz et al., 2010; Huete et al., 1996). VIs that have
shown a good correlation with LAl are normalized
difference vegetation index (NDVI) (Deering, 1978), soil
adjusted vegetation index (SAVI) (Huete, 1988) and
enhanced vegetation index (EVI) (Huete, 1997).

The physical modeling approach involves the use of
radiative transfer models (RTMs) to simulate the canopy
spectral reflectance and the inversion of RTMs to obtain
the required parameters (Campos-Taberner et al, 2016;
Féret et al, 2017). Because the inversion of an RTM
model can be very computing-intensive, precomputed
look-up-tables (LUTs) are often employed for
operational use, as in the MODIS LAI product main
algorithm (Myneni et al, 2002). Another modeling
technique is the retrieval of LAI biophysical parameters
based on neural networks, such as the algorithm
implemented in the Sentinel Application Platform
(SNAP) biophysical processor tool (Weiss et al, 2016)
developed by the European Space Agency (ESA). The
last one was used as a source of LAI data in this
research.

The present work aims to perform a correlation
analysis between Sentinel-2 LAI and actual crop yield
data at the field level in the regions of Ukraine.

2. DATA AND METHODS

The actual yield data for this study were available for
2364 agricultural fields located in 3 regions of Ukraine
(Fig. 1): Vinnytsia (about 80% of fields), Khmelnytskyi
and Cherkasy.

Fig. 1. Location of agricultural fields the actual yields data
were available for

The datasets of Sentinel-2 LAI generated by SNAP
for test regions were collected for the 5 cases:

Spring crops 2016 (441 fields: maize — 140, soy — 69,
sunflower — 232);

Winter crops 2016-2017 (264 fields: barley — 5,
rapeseed — 106, wheat — 153);

Spring crops 2017 (600 fields: maize — 198, soy — 72,
sunflower — 330);

Winter crops 2017-2018 (228 fields: barley — 3,
rapeseed — 54, wheat — 171);

Spring crops 2018 (831 fields: maize — 327, soy — 68,
sunflower — 436).

For each field of all the cases, the spatial average
LAI was calculated for all available cloudless satellite
images within following periods:

Spring crops 2016 - 20.06.2016-18.10.2016
(21 images with a mean interval of 6 days);

Winter crops 2016-2017 — 06.05.2017-25.07.2017
(20 images with a mean interval of 4 days);
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Spring crops 2017 - 25.06.2017-19.08.2017
(18 images with a mean interval of 3 days);

Winter crops 2017-2018 — 29.04.2018-12.07.2018
(30 images with a mean interval of 3 days);

Spring crops 2018 — 10.06.2018-21.09.2018 (44
images with a mean interval of 2 days).

This is the very question: what value of LAl do we
have to take as base for comparison with actual yield
(mean, maximum or certain timestep of vegetation
period)? A lot of discussions have been found related to
this issue (Kayad et al, 2022; He et al, 2021). In paper
(Kayad et al, 2022) LAl selection value was based on the
development stage, which is mostly correlated to the
final yield. Since the development stage data was
unavailable in our research, we used the approach
proposed in (He et al, 2021). The average LAI values of
above-mentioned time series were selected for
correlation analysis.

The first preprocessing step of LAI dataset was to
make temporal interpolation/extrapolation for each
period and create time series data with a 1-day interval.
To implement this step, the following 4 different
approaches were used to fill the time gaps: 1) simple
interpolation (linear); 2) polynomial interpolation
(spline); 3) ARIMA (AutoRegressive Integrated Moving
Average) and 4) LOCF (Last Observation Carried
Forward). Fig. 2 contains an example of LAI calculated
with all the above mentioned techniques alongside raw
satellite LAI for one field.

LAL satellite LAL linear LA spiine LAI_LOCF LALARIMA

./.”

Fig. 2. Example of different temporal LAI gap-filling
techniques (maize field, sowing date = 10.04.2016)

The second preprocessing step of prior correlation
was to apply local polynomial regression fitting (loess
function) (Cleveland et al, 2017) to created 1-day
interval LAI time-series dataset. The loess function was
applied with different degree of smoothing: 0.1, 0.3, 0.5
and 0.75, which is shown in Fig. 3-5 and Fig. 6
accordingly.

LAl linear_smooth LAI_spline_smooth LAI_LOCF_smooth LAI_ARIMA_smooth

=]

_,‘..../‘

Fig. 3. LAl dynamics with a smoothing degree of 0.1
(maize field, sowing date = 10.04.2016)
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Fig. 4. LAl dynamics with a smoothing degree of 0.3
(maize field, sowing date = 10.04.2016)
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Fig. 5. LAl dynamics with a smoothing degree of 0.5
(maize field, sowing date = 10.04.2016)
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Fig. 6. LAI dynamics with a smoothing degree of 0.75
(maize field, sowing date = 10.04.2016)

With the figures above, it is clear that an increasing
in the smoothing degree leads to an amplitude decrease
in the LAI dynamics.

In order to accomplish the correlation analysis, the
average time-series LAI values for each field were taken
into account.

For 5 datasets with 4-time series, gap-filling methods
of LAI and 5 different time series smoothing degrees
(including the O degree of smoothing), the “LAI vs.
YIELD?” correlation analysis has been conducted.

All technical work was performed using the R
programming language.
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3. RESULTS

In the tables below, the average correlation
coefficients between LAI and the actual yield grouped
by gap-filling methods and smoothing degrees are
presented for each crop, along with significance level of
the correlation coefficients (p-value).

Table 1 shows maize’s correlation coefficients
calculated and averaged for 3 vegetation periods (2016—
2018). Based on the results, the highest correlation
coefficient is 0.4 (p <0.05), which is considered low
according to Table 2. It is clear that the smoothing
process for the time-series LAI dynamics of maize fields
leads to increasing (insignificantly) the correlation
coefficients. The best gap-filling method on average is
ARIMA.

Table 1. Averaged correlation coefficients for maize grouped
by gap-filling method and smoothing degrees

Degree of Time-series fill gap method of LAI
smoothing | Linear Spline LOCF ARIMA
0 0.36 0.33 0.35 0.37
0.1 0.4 0.33 0.39 0.4
0.3 0.39 0.33 0.39 0.4
0.5 0.4 0.33 0.39 0.4
0.75 0.4 0.34 0.4 0.4

Table 2. Correlation coefficient interpretation
(Hinkle et al, 2003)

Size of Correlation Interpretation

0.9t01(-0.9to-1) Very high positive (negative)

correlation
0.7t00.9 (0.7 t0 -0.9)

High positive (negative) correlation
0.5t00.7 (-0.5t0-0.7)

Moderate positive (negative)
0.3t00.5(-0.3t0-0.5)

Low positive (negative) correlation

correlation
0t00.3(0to-0.3) Little if any correlation

In Table 3, the correlation coefficients for soy are
calculated and averaged for 3 vegetation periods (2016—
2018). Based on the results, the highest correlation
coefficient is 0.52 (p < 0.05) which is considered
moderate according to Table 2. In this case, the time-
series LAl dynamics smoothing process does not
improve the correlation coefficients. The best gap-filling
methods on average are LOCF and ARIMA.

Table 3. Average correlation coefficients for soy grouped by
gap-filling methods and smoothing degrees

Degree of Time-series fill gap method of LAI
smoothing | Linear Spline LOCF [ ARIMA
0 0.51 0.45 0.52 0.52
0.1 0.5 0.46 0.52 0.5
0.3 0.5 0.46 0.52 0.5
0.5 0.5 0.46 0.52 0.5
0.75 0.5 0.45 0.52 0.5

The average correlation coefficients of sunflower
calculated for 3 vegetation periods (2016-2018) are
presented in Table 4. The highest correlation coefficient
is 0.39 (p <0.05), considered as low (see Table 2). The
smoothing process for the time-series LAl dynamics
does not improve correlation coefficients. The best
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gap-filling methods on average are linear and spline
interpolation.

Table 4. Average correlation coefficients for sunflower
grouped by gap-filling methods and smoothing degrees

Table 7. Average correlation coefficients for winter wheat
grouped by gap-filling methods and smoothing degrees

Degree of Time-series fill gap method of LAI
smoothing Linear Spline LOCF ARIMA
0 0.48 0.48 0.48 0.48
0.1 0.5 0.41 0.49 0.5
0.3 0.5 0.41 0.49 0.5
0.5 0.5 0.41 0.49 0.5
0.75 0.5 0.4 0.49 0.5

Degree of Time-series fill gap method of LAI
smoothing | Linear Spline LOCF | ARIMA
0 0.39 0.39 0.37 0.38
0.1 0.37 0.37 0.36 0.37
0.3 0.37 0.37 0.36 0.37
0.5 0.37 0.36 0.36 0.37
0.75 0.37 0.36 0.36 0.37

The average correlation coefficients of winter barley
calculated for 2 vegetation periods (20162017, 2017—
2018) are presented in Table 5. For this crop, the
correlation coefficient is the highest (0.86) compared to
other crops, but the p-value is greater than 0.05. Thus,
there is insufficient evidence to conclude that the high
correlation coefficient of 0.86 for this crop is significant
(one of the reasons is the small number of fields). The
smoothing process for the time series LAl dynamics
slightly improves the correlation coefficients. The best
gap-filling method on average is LOCF.

Table 5. Average correlation coefficients for winter barley
grouped by gap-filling methods and smoothing degrees

r_coefficient
=
[=1]

=
n

03- . : . i
0 250 500 750 1000
number_of_fields

Fig. 7. Relationship between the obtained correlation
coefficients and the number of crop fields

The average correlation coefficients for all crops are
similar and close to 0.5 (p <0.05) despite different
gap-filling techniques and degree of smoothing (Table 8).

Table 8. Average correlation coefficients for all crops grouped
by gap-filling methods and smoothing degrees

Degree of Time-series fill gap method of LAI
smoothing | Linear Spline LOCF | ARIMA
0 0.82 0.77 0.83 0.82
0.1 0.84 0.75 0.86 0.85
0.3 0.84 0.75 0.86 0.84
0.5 0.84 0.76 0.85 0.84
0.75 0.83 0.78 0.85 0.84

In Table 6, the correlation coefficients for winter
rapeseed are calculated and averaged for 2 vegetation
periods (2016-2017, 2017-2018). Based on the results,
the highest correlation coefficient is 0.54 (p <0.05),
which is considered moderate according to Table 2. In
this case, the time series LAl dynamics smoothing
process does not improve the correlation coefficients.
The best gap-filling methods on average are LOCF and
ARIMA.

Table 6. Average correlation coefficients for winter rapeseed
grouped by gap-filling methods and smoothing degrees

Degree of Time-series fill gap method of LAI
smoothing | Linear Spline LOCF ARIMA
0 0.5 0.46 0.5 0.5
0.1 0.5 0.45 0.51 0.51
0.3 0.5 0.45 0.5 0.5
0.5 0.5 0.45 0.5 0.5
0.75 0.5 0.45 0.5 0.5

Degree of Time-series fill gap method of LAI
smoothing | Linear Spline LOCF | ARIMA
0 0.54 0.45 0.54 0.54
0.1 0.53 0.48 0.54 0.54
0.3 0.53 0.48 0.54 0.54
0.5 0.53 0.48 0.54 0.54
0.75 0.53 0.49 0.54 0.54

The average correlation coefficients of winter wheat
for 2 vegetation periods (2016-2017, 2017-2018) are
presented in Table 7. The highest correlation coefficient
is 0.5 (p <0.05), which is considered low/moderate (see
Table 2). The smoothing process for the time-series LAI
dynamics slightly increases the correlation coefficients.
The best gap-filling methods on average are linear
interpolation and ARIMA.
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Although the variation in the correlation coefficient
is low among various gap-filling techniques and
smoothing degrees, the LOCF and ARIMA have the
highest values with the 0.1 degree of smoothing.

To visualize relationships between the mean time
series LAI and the actual yields of crops for all cases
(Fig. 8-12), the ARIMA gap-filling techniques were
chosen by the 0.1 degree of smoothing for the
preprocessing LAI time-series dynamics.
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Fig. 8. Scatter plot of mean LAl vs actual yields (t/ha)
of spring crops (2016)
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Fig. 9. Scatter plot of mean LAI vs actual yields (t/ha)
of winter crops (2016-2017)

crop

maize

— soy

mean_LAI

sunflower

actual_yield

Fig. 10. Scatter plot of mean LAI vs actual yields (t/ha)
of spring crops (2017)
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Fig. 11. Scatter plot of mean LAl vs actual yields (t/ha)
of winter crops (2017-2018)

crop

maize

— soy

mean_LAI

sunflower

5 10 15
actual_yield

Fig. 12. Scatter plot of mean LAI vs actual yields (t/ha)
of spring crops (2019)
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4. CONCLUSION

Based on the obtained results, the average correlation
coefficient between Sentinel-2 LAI and the actual crop
yield is about 0.5 (p <0.05), which is considered
low/moderate (with a correlation coefficient of 0.4 for
maize, 0.52 — soy, 0.39 — sunflower, 0.86 — winter
barley, 0.54 — winter rapeseed and 0.5 — winter wheat).
The hypothesis test of the "significance of the correlation
coefficient” shows the significance level of p <0.05 for
all crops except winter barley (there is insufficient
evidence to conclude that a high correlation coefficient
of 0.86 for this crop is significant). The dependency of
correlation coefficients and the number of fields was
observed.

The two steps of LAI dynamics preprocessing lead
to a slightly increasing correlation coefficients. Thus, a
smoothing process for the time-series LAl dynamics at
the 0.1 degree of smoothing slightly improves the
correlation coefficients on average. The best gap-filling
methods on average are LOCF and ARIMA.

We also made attempts to use the maximum value of
LAI (instead of mean), as well as values at certain
intervals of the growing season. However, these
manipulations did not improve the correlation
coefficients (therefore, the results of this attempts were
ommited).

In our point of view low correlation between
satellite-derived LAl and actual yield depends on
uncertainties of retrieval LAl using spectral
measurements in visible and infrared channels from low-
orbiting satellites (Yan et al, 2019). Also, in our opinion
it depends on specific vegetation condition of different
crop types, their biophysical development and producing
of plants green biomass.

Thus, our results show that the real relationship
between LAI and final actual yield for different crop
types are not strong enough, which is the main goal of
this article. Creating a linear crop yield prediction model
using only LAI derived from Sentinel-2 will not be
efficient. Based on this conclusion we need to use more
complicated methods to predict crop yield (Machine
Learning, Deep Learning etc.)

Today there are a lot of low-orbital satellites
(Sentinel-2, Landsat, Planet, SPOT) which can produce
LAI on a regular basis that open another way of using
LAI (in respect to crop yield prediction) as assimilation
into biophysical models (use the output of these models
directly or as predictors) (Dente et al, 2008; Fang et al,
2011; Ma et al, 2013; Curnel et al, 2011; Tewes et al,
2020; Peng et al, 2021). Satellite-based LAI assimilation
into biophysical models is subject of further research,
which can be realized as additional module in the crop
growth monitoring system in Ukraine (CGMS-Ukraine)
(Kryvobok et al, 2018; Kryvoshein et al, 2020). We hope
that this improvement will increase the accuracy of crop
yield prediction.
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KOPEJIALI CYITY THUKOBOI'O IHIEKCY IUIOLII JIMCTKOBOI [TIOBEPXHI (LAI) 3 ®AKTUYHOIO BPOXKAMHICTIO
Kpupomein O. 0.22, Kpuobok O. A.12, Koxymko O. .23

LEarth Observing System (EOS) Data Analytics, 01025, m.Kuis, eyn. Jecamunua, 5

2 Vipaincokuii 2iopomemeoponoiunuii incmumym, 03028, m. Kuis, npocnexm Hayxu, 37

® Hayionanvnuii ynisepcumem 600nozo 2ocnodapcmea ma npupodokopucmyeanus, 33028, m. Pisne, eyn. Cobopua 11

OCHOBHOIO METOIO Ii€l CTaTTi OyNo NOCTIUTH KOPEIIII0 MK (PaKTHIHOIO BPOXANHHICTIO CUTBCHKOTOCHOAPCHKHUX KYJIBTYP Ta
iHmekcoM Tmiomi JcTkoBoi moBepxHi (LAI) 3a cymyramkoBumu manmmu Sentinel-2. st mporo Oymo 3po0iieHO Taki KpOKH.
1) 3i6pano Habip naHuX (HaKTHIHOI BporkaiHOCTI 11t 2364 momiB B YKpaiHi (30kpeMa, y BiHHHIbKIH, XMeTbHUIBKIHN Ta YepKachKii
0071acTsX), IO CKJIAJIAETHCS 3 TAKUX CLIBCHKOTOCIIOAAPCHKUX KYIBTYP: KyKypyli3a, COsl, COHSIIHHUK, O3MMa MIIEHHUIIA, 03UMHH pinak
Ta o3uMui staMiHb. 2) CdopmoBaHo Habip maHmX iHAekcy ymcTkoBoi moBepxHi (LAI) 3a cymyrHukoBumMu manumMu Sentinel-2 3a
niepiox 20162018 pp. BixnoBizHO 10 HasBHOI (akTuaHOi BpoxkaiHocTi. 3) ITomepennst o6podka LAIL IlpoctopoBe ycepeaneHHsS
3HAaYeHb 1HIEKCY JIMCTKOBOI MOBEPXHi IO moito. YacoBa iHTeproisis / ekcrpanossuis 3HadeHb LAl s 3anoBHeHHs HpoOiniB y
YacoBHX psiiaX (CTBOPEHHS PErYISPHOTO YacOBOTO PsAY 3 iHTepBaJoM | JeHb) 3a OMOMOror 4 METOHIB: JiHIiHA iHTEPIONIAIL,
inreprionsis cruaiiHoM, LOCF (“ocTaHHE criocTepexeHHs MepeHeceHo Brepea’) Ta iHTerpoBaHa MOJeNb aBToperpecii — KOB3HOrO
cepennboro (ARIMA). 3rnajkyBaHHA JUHAMIKM 4YacOBHX PsJIB 3a JIOMOMOror (yHKUil JIOKaabHOI MOJiHOMianbHOI perpecii
(LOESS) 3 pi3HuM cTyrieHeM 3ria/uKyBaHHs. Y cepeaHeHHs 3HaueHb LAl y gaci. 4) Kopernsinist pakruusoi BpoxaiiHocti ta LAT st
BCIX MOXKJIMBHX BapiaHTiB MomnepeHboro onparoBanHs LAL

VY pesynbTaTi MpOBEAEHOro aHalizy He OyJ0 BHSBIECHO CHIBHUI KOpEILSIMiHHWI 3B’SI30K (HalBUIMH KoedillieHT KOpewsuil Iuis
Kykypymu — 0,4; st coi — 0,52; st corsrauky — 0.39, w1 o3umoro stamento — 0,86; mist osumoro pimaky — 0,54 ta st o3umol
nenut — 0,5). CrnocTepiraerbest 3alIeXHICTh Koe(illieHTiB KOPEILii Ta KITbKOCTI CLIIBCHKOTOCIIOAAPChKUX OB (8 10M1iB 03UMOro
STYMEHIO MalOTh CHJIbHHEN KoediuienT kopemsiti — 0,86, a 998 momiB COHSAIIHUKY MaroTh cnabkuii koedimient kopesnsmii — 0,39).
CepenHiil koeilieHT KOpesuii Ui BCIX KyIbTYp CTaHOBHUTH Onm3bko 0,5. OTke, JiHIHA MOIETh TPOrHO3YBaHHS BPOXKAWHOCTI, 3
BHUKOPUCTAHHSM SIK MPEIUKTOpa JIMIIE iHAEKCY IUIONI JHMCTKOBOI MOBEpXHi, oTpuMaHoro 3 Sentinel-2, He Oyne edexTuBHOI0O (Ha
OCHOBI pO3MJIAHYTHX BUMajKiB). Came TOMy, Ha Hally TYMKY, KpaliuM crnocoOoMm BukopucranHs LAl B acnekTi NporHo3yBaHHS
MaifOyTHBOI BpOXKAHOCTI € Horo acumissinist B 6iodi3udHi Mozei.

KirouoBi ciioBa: inziexc mionii yimctkoBoi noBepxHi LAI, ¢akTnuHa BpoKaiHICTh CITBCHKOrOCHONAPCHKHUX KYIBTYpP, KOPEJSLis,
CYITYTHHUKOBI JIaHi.
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