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Acquired remote sensing images can be noisy. This fact has to be taken into account in their lossy compression and classification.
In particular, a specific noise filtering effect is usually observed due to lossy compression and this can be positive for classification.
Classification can be also influenced by methodology of classifier learning. In this paper, we consider peculiarities of lossy
compression of three-channel noisy images by better portable graphics (BPG) encoder and their further classification. It is
demonstrated that improvement of data classification accuracy is not observed if a given image is compressed in the neighborhood of
optimal operation point (OOP) and the classifier training is performed for the noisy image. Performance of neural network based
classifier is studied. As demonstrated, its training for compressed remote sensing data is able to provide certain benefits compared to
training for noisy (uncompressed) data. Examples for Sentinel data used in simulations are offered.
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1. Introduction

Remote sensing (RS) from satellites, aircraft and
drones has found numerous applications in recent years
(Aiazzi et al., 2012; Chi et al., 2016; Vasilyeva et al.,
2023). Acquired images’ number and their mean size
have the tendency to increase (Khorram et al., 2016).
This leads to big data problems at all stages of image
data processing including co-registration, storage, filtering,
classification (Chi et al., 2016; Ma et al., 2015).

One way to solve the problems in RS data storage
and transmission is to apply their compression (Hussain
et al.,, 2018; Tao et al., 2018; Doss et al., 2020). As
known, two main types of image compression techniques
exist, namely, lossless and lossy (Hussain et al., 2018;
Sayood et al., 2017). Lossless techniques are known to
introduce no distortions into data. However, the
compression ratio (CR) provided by them is often
inappropriate. Thus, lossy compression has become the
main tool to provide a desired and variable CR or quality
of compressed RS data (Sayood et al., 2017; Li et al.,
2020; Proskura et al., 2020). Increased CR might result
in worse quality of compressed RS data. Because of this,
a reasonable trade-off between the attained CR and
compressed data quality has to be found for each
particular image (Tao et al., 2018; Christophe et al.,
2011; Makarichev et al., 2022). This trade-off depends
on an application analyzed, a coder (compression
method) applied, properties of an image to be
compressed, priority of requirements to compression and
their further processing (Makarichev et al., 2022), etc.
Here we consider the influence of lossy compression on
image classification accuracy.
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If an image to be compressed is (practically) noise-
free, the general tendencies are the following. CR
increase generally leads to worse classification where
overall probability of correct classification Pcc slightly
reduces with CR increase if distortions are invisible and
starts to diminish quickly if distortions become visible
(Proskura et al., 2020; Makarichev et al., 2022). Note
that coder parameters for just noticeable distortions
(JND) can be predicted (Bondzuli¢ et al., 2021). CR for
JND depends on image complexity where CR for
complex structure images can be by several times
smaller than for simple structure images for the same
quality of compressed RS data. Note that CR also
depends on a coder used. In this sense, the better
portable graphics (BPG) encoder (Yee et al., 2017,
Albalawi et al., 2016) is able to provide significantly
better performance characteristics compared to
JPEG2000 (Taubman et al., 2013) and some other
modern lossy compression techniques. This is one of the
main reasons why we consider just this encoder in our
studies.

In practice, there are cases when an image to be
compressed is noisy (Chatterjee and Milanfar, 2010).
Then, image lossless and lossy compression has several
specific features. First, CR for lossless compression is
only slightly larger than unity since bytes are spent on
noise preservation. In turn, specific noise filtering effect
is observed for lossy compression of noisy images. This
effect was first discovered almost 30 years ago (Al-
Shaykh et al., 1998; Chang et al., 1997) for JPEG. Later
it was studied for other lossy compression techniques
(Zemliachenko et al., 2015) and, in particular, for the
BPG encoder (Kovalenko et al., 2021; Lukin et al.,
2022). The BPG-based encoder is preferable for lossy
compression of noisy images compared to many modern
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encoders (Kryvenko et al., 2024) and this is the second
reason for paying the attention to its consideration. The
third advantage of this encoder is that position of optimal
operation point (OOP) for it can be easily determined for
a priori known or pre-estimated noise characteristics
(Lukin et al., 2022) where there exist blind methods for
noise characteristic evaluation (Selva et al., 2021;
Abramova et al, 2024).

OOP (Al-Shaykh et al., 1998; Zemliachenko et al.,
2015), in general, is a parameter that controls
compression (PCC) for which the compressed image is
closer to the corresponding noise-free image than
original (noisy) image according to a considered metric
characterizing similarity. As PCC, different coders use
quality factor, bits per pixel, quantization step and so on.
The BPG encoder employs the parameter Q that is non-
negative and integer. There is a strict dependence
between Q in OOP and variance of additive noise (Lukin
et al., 2022). Thus, under condition of a priori known
noise variance or its pre-estimation with appropriate
accuracy, compression in OOP neighborhood can be
realized in fully automatic mode.

Lossy compression in OOP has several advantages.
First, a rather large CR can be provided. Second, it has
been shown for coders based on discrete cosine
transform that compression in OOP is able to produce a
larger F¢. than Fec for classification of original (noisy)
image (Lukin et al., 2008). However, peculiarities of
classification have not been yet studied for noisy
multichannel RS images compressed by the BPG
encoder.

As a starting point, we consider the case of three-
channel RS image corrupted by additive white Gaussian
noise (AWGN) with variance equal in all three
component images. Such an approach allows using
results and recommendations obtained in our previous
papers (Lukin et al., 2022) intended on reaching
compression in OOP. The paper novelty consists in the
following.  First, we analyze component-wise
compression of multichannel noisy RS images with
emphasis on accuracy of their classification. Second, we
demonstrate  that lossy compression in  OOP
neighborhood can be expedient from the viewpoint of
providing high F¢. if OOP exists, i.e. for images of a
quite simple structure corrupted by rather intensive
noise. We also analyze the cases of complex structure
image and, in addition to Fc, study probabilities of
correct classification for separate classes. Third, we
compare two opportunities of classifier learning — for
noisy image and for compressed RS data — and show that
the latter option can be beneficial.

2. Used criteria and image/noise model

As told above, we deal with lossy compression of
noisy three-channel images. Noise in RS data can be due
to different reasons (Abramova et al., 2023; Chatterjee et
al., 2010) including a limited time of signal registration,
principle of imaging system operation, etc. Respectively,
it can be additive or signal dependent. Below, we
concentrate  on considering the AWGN model
(Chatterjee et al., 2010) used as a starting point in our
research. According to it, one has
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the true ij-th pixel value, nyj is the value of AWGN
having zero mean and variance o2, k = 1,...3 denotes the
channel index. If noise is signal-dependent, proper
variance stabilizing transforms applied before RS data
compression can result in getting data for which the
model (1) is valid. We assume that noise variance is the
same in all three components and it is a priori known or
accurately pre-estimated (Selva et al., 2021).

Quality of original noisy image can be described in
different ways where the most typical is peak signal-to-
noise ratio (PSNR") determined as
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where | and J describe the image dimensions. Here and
below we assume that our image is represented as 8-bit
data in each component. To be visible, the AWGN
(supposed uncorrelated in component images) should
have o?~ 20 if an image has a simple structure and
o2 =~ 25-30 for complex structure images (Ponomarenko
et al., 2015). This corresponds to PSNR{ ~ 35dB and

PSNR; ~ 34 dB, respectively. Thus, in our simulations,

we consider the noise variance equal to 25 and larger.

To simulate natural scenes, we have taken two almost
noise-free RS images composed of three components of
visible range of Sentinel-2 multispectral data (see
Fig. 1). These images were acquired at the end of August
in 2019. The image fragments have the size of 512x512
pixels. The reasons for using these data were the
following. First, the images are of different complexity
where the image in Fig. 1, a is for country side (Kharkiv
region) and it contains rather large quasi-homogeneous
regions whilst the image in Fig.1,b has complex
structure and it corresponds to the North part of Kharkiv.
Second, we knew cover types (classes) — these data were
available from topographic maps and we knew these
regions well (the second region is close to our
University). Third, in both cases, four classes — Urban,
Water, vegetation, and Bare Soil could be quite easily
identified.

Fig. 1. Image fragments used in simulations:
SS1 - Staryi Saltiv (a), SS2 — North Kharkiv (b)

It is worth explaining what is OOP. Let us consider
dependences PSNcht (Q) where PSNth is calculated

between the a k-th true and compressed component



G. A. Proskura et al. Vxpaincoruii sccyprnan oucmanyiiinozo sondyeéanns 3emni, 2024, 11 (3), 10-16

images for a set of Q values that for the BPG encoder
vary from 1 (almost no distortions with small CR) to 51
(considerable CR and introduced distortions) with
Q = 27 that corresponds to distortion visibility threshold.
Recall here that in the case of compressing a single
channel noisy image or component-wise compression of
multichannel image the parameter Q for OOP is

determined as
Qoop =149+ 20 |Oglo(($). (4)

Then, for ¢ equal to 25, 50, and 100 considered in
our simulations, one has Qoop approximately equal to
29, 32, and 35, respectively.

One set of the obtained dependences is demonstrated
in Fig. 2 for the test images in Fig. 1 contaminated with
AWGN with o2 = 100 as well as two other images (SS3
and SS4 where the image SS3 is similar to SS1 and SS4
is similar to SS2). The plots for all three components are
given. The data analysis shows the following. First, the
plots for components are the same image are similar to
each other. This is not surprising since component
images of multispectral data are usually highly
correlated (similar). Second, there are quite many curves
that all have maxima observed for Qoor = 35 and this is
in agreement with (4). Third, maximal values PSNRE

observed in OOP can be significantly larger than
PSNR; = 28 dB. Then, compression in OOP seems

reasonable. Meanwhile, there are also one curve having
local maximum and two curves having no maxima at all
(they are monotonically decreasing) — all observed for
the image SS4 which has the most complex structure.

The analysis carried out for two other values of the
noise variance additionally shows that OOP is observed
not for all images and noise variance values. Usually, it
is possible to expect OOP existence for images having
quite simple structure and/or contaminated by a rather
intensive noise. OOP existence can be predicted before
compressing a given image using the approach based on
analysis of DCT coefficient statistics in 8x8 blocks
(Lukin et al., 2022). If OOP is (supposed) absent, it is
reasonable to use lossy compression with Q smaller than
Qoor (4). For example, it can be recommended to use
Qrec = Qoop — 4 0r Qrec = 27 or 28 to have invisibility of
introduced distortions.
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Fig. 2. Dependencies PSNRS! (Q) for the coder BPG applied to

the test images SS1-SS4 corrupted by AWGN with variance
equal to 100 component-wise (PSNR" ~ PSNRY (Q = 1)

is of about 28 dB)
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3. Considered coder and classifier

3.1. BPG encoder

As said above, in this paper, we focus on Better
Portable Graphics encoder. The BPG encoder relies on
the High Efficiency Video Coding (HEVC) method
proposed by Fabrice Bellard as the open-source code
(https://bellard.org/bpg/). This image compression
method aims to replace the JPEG format due to several
useful properties. First, it has significantly better
performance producing higher quality for the same size
of compressed data. It has lossless and lossy
compression and is supported by most Web browsers.
In addition, the BPG encoder supports the same chroma
formats as JPEG, namely, grayscale, YCbCr 4:2:0, 4:2:2,
4:4:4, and several color spaces.

In application to compressing multichannel images,
several options are possible. The simplest among them is
to apply compression component-wise. Other ones deal
with using aforementioned chroma formats. In this
paper, we relied on the former approach as the starting
point of using the BPG encoder for lossy compression of
multichannel noisy RS images. Other approaches can be
studied in the future.

3.2. Neural network classifier

For three-channel RS images, different approaches to
their classification can be applied (Proskura et al., 2020;
Makarichev et al., 2022). Based on the earlier obtained
results (Proskura et al., 2020), we have used a neural
network (NN) classifier applied pixel-wise. Its
performance depends on several factors including the
NN type and structure, methodology of training, etc.

The data to be processed have a direct impact on the
choice of a neural network structure. As mentioned
above, four main classes have been identified for both
images considered: Urban, Water, Vegetation, and Bare
Soil. Image fragments shown in Figures 3 and 4 were
selected for training and verification of the classifier.
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Fig. 3. Fragments employed for the classifier training
for the images SS1 (a) and SS2 (b)
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Fig. 4. Fragments employed for the classifier verification
for the images SS1 (a) and SS2 (b)
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The training and the verification samples sizes are

given in Tables 1 and 2.

Table 1. The training and verification sample sizes
for the test image SS1

Training Verification
Class samples sizes, samples sizes,
pixels pixels
Urban 7441 12154
Water 52310 96852
Vegetation 19936 38258
Bare Soil 1841304 1842906

Table 2. The training and verification sample sizes

for the test image SS2

Training Verification
Class samples sizes, samples sizes,
pixels pixels
Urban 11469 28040
Water 4201 7117
Vegetation 5993 6032
Bare Soil 1850089 1854133

As discussed in (Lukin et al., 2023), for small sample
sizes it is advisable to use a feedforward neural network,
i.e. multilayer perceptron (MLP). The developed neural
network includes 4 hidden layers containing 64, 32, 16,
and 8 neurons, respectively, and an output layer. Hidden
layers use the activation function ReLU, which is a
nonlinear function that transforms the input value into a
value between 0 and positive infinity.

ReLU(x) = max(0,x).

ReLU is characterized by high performance because
it is a simple and has fast operation, which allows
speeding up the learning process when using it in hidden
layers. The output layer uses the Softmax activation
function. The Softmax function curve has the property
that the probability of any element in the vector
increases if the values of other elements decrease, which
allows this function to be used for multi-class
classification.

To train MLP, the RMSProp optimizer was used,
which is a modernized error backpropagation algorithm.
The sparse categorical cross-entropy loss function has
been utilized as a loss function, since it has demonstrated
good results in multi-class classification.

Figure 5 shows the loss function and accuracy of our
MLP depending on epoch number. It can be seen that the
best result is observed around the 35th epoch.

Consider the metrics used to assess the quality of a
classification. To evaluate the quality of the algorithm
we have used an aggregated F-measure quality criterion
representing the average harmonic precision and recall:

_o. precision - recall
precision + recall

Precision can be introduced as the proportion of
objects that are classified by the classifier as positive and
are actually positive. Recall shows how many objects of
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a full class of all positive objects the algorithm found.
So, recall demonstrates the algorithm’s ability to detect a
given class in general, and precision shows its ability to
distinguish this class from other classes.

o
)
L

o
o
L

validation loss

0.4 1

0.2 4

epoch

a)

12

1.0+

o
@
.

e
o
s

validation loss

0.4 4

0.2 4

T u T T T T T
o] 10 20 30 40 50 60 70
epoch

b)

Fig. 5. MLP loss function (a) and accuracy (b) depending
on the number of epochs

For each image, F-measures were obtained when
trained on the original image Fn and when trained on

the compressed image F¢, as well as the corresponding
F-measures for classes Fr.m=1..,4 and From=1..,4,

where m is the class index and 1 corresponds to Urban, 2
— Water, 3 — Vegetation and 4 — Bare Soil.

4. Analysis of the obtained results

4.1. Data for the simple structure image

The obtained results are collected in Table 2. The
values of Q that correspond to OOP for the
corresponding noise variance are marked by Bold.
Analysis shows the following:

1) The total F¢ is quite large (exceeds 0.9 for
6% = 25), Case 1, but this is mainly due to high F; for

Class 2 (Water); for other classes the probabilities are
significantly smaller;

2) If noise is more intensive (o2 =150, Case 5, and
c2=100, Case 9), the total F decreases; probabilities
for particular classes diminish too;

3) Lossy compression leads to reduction of the total
Fe, this reduction is especially large for the largest
considered Q = 35; probabilities for particular classes
steadily decrease as well; in OOP according to PSNR,
there is no OOP according to the total F;
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4) The classifier learning for compressed data allows
improving the classification results — compare the data
for Case 13 to data for Case 2, the results for Case 14 to
the results for Case 7, the data for Case 15 to the data for
Case 12. The largest improvement is observed for the

Cases 12 and 15 — FccC has improved by 0.31.

Table 2. Classification data for the test image SS1

. Image used
Case Nglse Image_u_sed for BB R Total
variance| for training I Fec
classification
11 25 Noisy Noisy  |0.75/0.97/0.86(0.73| 0.92
2B e [0.75(082/0.64/0.63 0.75
3B s [0.71(0.770.58(0.55) 0.69
s 10.68(0.69/0.520.47| 062
5| 50 | Noisy Noisy  |0.68/0.95/0.77/0.65| 0.87
O e [0.60[0.760.56/0.36) 0.65
T | s [0:48(0.67/053/0.26| 057
8] 50 | Noisy S;?t?%ejsgg 0.44{0.59(0.48/0.21 0.49
9 | 100 Noisy Noisy  0,55(0.91/0.66/0.57| 0.82
107|100} Nolsy S,?tr‘gejszeg 0.43(0.75/0.53(0.24 0.62
11 | 100 Noisy | Compressed
with O = 32 0:34/0.62(0.46(0.19) 0.49
12:] 100 | Noisy Sv?t?%ejsgg 0.270.51/0.42/0.16| 0.40
B Sv?t?‘gej‘szeg sv?tw%ejsgg 0.75/0.93/0.73(0.68| 0.86
147 %0 Sv?t?"gefgg Sv?tr%efsgg 0.62(0.880.58(0.47 0.78
15 | 100 |Compressed| Compressed
with Q = 35 with O = 35 |0-41(0.83(0.42/0.22/ 0.71

4.2. Data for the complex structure image

The obtained results are collected in Table 2.
Analysis allows drawing the following conclusions:

1) The total F¢ for % = 25 is smaller than for simple
structure image (compare the data for Cases 1 in Tables
2 and 3; all classes are recognized not well enough;

2) If noise intensity increases (o® =50, Case 5, and
o? =100, Case 9), the total F diminishes; probabilities
for particular classes become smaller too;

3) Lossy compression results in reduction of Fe,
especially for Q = 35; probabilities for particular classes
steadily decrease as well; OOPs according to the total Fe.
are not observed;

4) The classifier training for the compressed data
improves the classification — compare the data for Cases
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13 and 2, Case 14 and Case 7, Cases 15 and 12,
respectively.

Table 3. Classification data for the test image SS2

Case | e o g | tessonion | P+ | P2 [Fs | 7o [T
1| 25 Noisy Noisy  |0.84 0.64/0.60[0.86 0.79
2 25 Noisy Sv?tf%eissg 0.79|0.47 0.52/0.75| 0.70
3 | 25 Noisy Sv?trr?%eisgg 0.78|0.38|0.48/0.68/ 0.67
4 25 Noisy Sv?trr?%ef;g 0.77/0.37|0.43/0.57| 0.63
5 | 50 Noisy Noisy  |0.76|0.420.54/0.74/0.70
6 | 50 | Noisy Sv‘l’tf]"gef;g 0.72/0.25 |0.45(0.68| 0.63
7 | 50 | Noisy Svcl’t’;?‘gejsgg 0.680.24 /0.40(0.55| 0.56
8 | 50 | Noisy Sv‘l’tf]"gefgg 0.66 017 [0.35(0.48| 0.53
9 | 100 | Noisy Noisy  |0.68|0.32/0.47/0.66 0.62
10 | 100 | Noisy a?twrgejsgg 0.650.22 /0.40/0.60| 0.56
11 | 100 Noisy Sv?twfgejsgg 0.62|0.20 |0.32/0.46| 0.49
12 | 100 | Noisy a?tw%ejsgg 0.60(0.16 |0.29/0.43| 0.47
13 | 25 Sv?trﬁ%eiszeg Svcl’tw‘gejsgg 0.81(0.57|0.54/0.78 0.74
14 | 50 a?t?%ejsgg Sv?tw%ejsgg 0.71|0.180.41/0.65/ 0.61
15 | 100 Svft?%ejsgg Svftw‘gejsgg 0.56|0.05|0.29/0.57 0.51

4.3. General tendencies and examples

Let us list and illustrate the general tendencies. First,
if noise variance increases and classification is applied to
uncompressed image (Cases 1, 5, and 9; classification
maps in Figures 6, a, d, and e), classification maps
become more “noisy” too. However, prolonged details
are preserved (see the right part of the maps). Second,
lossy compression leads to obtaining better classification
results in homogeneous regions (vegetation, water
surface) but fine details are partly lost — compare the
maps in Fig.6,a and 6,c to the map in Fig. 1, b. In
addition, quite many misclassifications appear — many
pixels are classified as Water instead of Vegetation in
the urban region. This can be due to the fact that the
classes Water and Vegetation are close for the image in
Fig. 1, b since the water was “in blossom” in August
when the image was acquired. Third, if noise is intensive
and Q is large, classification maps occur to be of very
low quality (Fig. 6, ).

Thus, one should keep in mind that noise and
distortions due to lossy compression of noisy images
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usually lead to significant misclassifications, especially
if noise is intensive and/or Q is large (that corresponds to
relatively large compression ratio).
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Fig. 6. Classification results for several Cases (see details in
Table 3): a) Case 1; b) Case 2; c) Case 4; d) Case 5; ) Case 9;
f) Case 12

One might think that aforementioned effects take
place only for complex structure images. Fig. 7 shows
examples of classification maps for the image in
Fig. 1, a. In Fig. 7, a, the map is obtained for the image
with o2 =25 for which training and classification have
been performed (Case 1 in Table 2). The result is good
enough although there are misclassifications between
Water and Vegetation classes. In turn, Fig. 7, b shows
the map obtained for compressed image (Q = 35) where
training was done for uncompressed image with ¢% = 100
(Case 12 in Table 1). As one can see, small details (dam
and roads) are partly lost and the classification results
are of low quality.

BN
epoch

a b

Fig. 7. Classification results for several Cases (see details in
Table 1): a) Case 1; b) Case 12

5. Conclusions and future work

The task of pixel-wise classification of noisy three-
channel images subject to lossy compression is
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considered. It is shown that both noise and distortions
due to lossy compression result in degradation of
classification where this degradation can be significant
for intensive noise and high compression ratio. The
situation can be partly improved if the classifier training
is carried out for compressed data and/or if compression
is performed without visual losses. In the future, we also
plan to consider the opportunities of noisy image pre- or
post-filtering to improve classification.

This work is supported by the National Research
Foundation in  Ukraine  within the  project
Ne 2023.04/0039 “Geospatial monitoring system for the
war impact on the agriculture of Ukraine based on
satellite data” (2024-2025).

References

Abramova, V., Abramov, S., Abramov, K., Vozel, B. (2024).
Blind Evaluation of Noise Characteristics in Multichannel
Images. Studies in Systems, Decision and Control
(pp. 209-229) Cham: Springer. doi: 10.1007/978-3-031-
43579-9_4.

Aiazzi, B., Alparone, L., Baronti, S., Lastri, C., Selva, M.
(2012). Spectral distortion in lossy compression of
hyperspectral data. Journal of Electrical Computer
Engineering. Article ID 850637, 8. https://doi.org/10.1155/
2012/850637.

Albalawi, U., Mohanty, S. P., Kougianos, E. (2016). Energy-
Efficient Design of the Secure Better Portable Graphics
Compression  Architecture  for  Trusted  Image
Communication in the loT. 2016 IEEE Computer Society
Annual Symposium on VLSI (ISVLSI), 302-307. doi:
10.1109/ISVLSI.2016.21.

Al-Shaykh, O.K., Mersereau, R.M. (1998). Lossy
compression of noisy images. IEEE Transactions on Image
Processing, 7(12), 1641-1652. doi: 10.1109/ 83.730376.

Bondzuli¢, B., Stojanovi¢, N., Petrovi¢, V., Pavlovi¢, B.,
Mili¢evi¢, Z. (2021). Efficient Prediction of the First Just
Noticeable Difference Point for JJEG Compressed Images.
Acta Polytechnica Hungarica, 18(8), 201-220. doi:10.12700/
APH.18.8.2021.8.11.

Chang, S. G., Yu, B., Vetterli, M. (1997). Image denoising via
lossy compression and wavelet thresholding. Proceedings
of International Conference on Image Processing, 1, 604—
607. doi: 10.1109/1CIP.1997.647985.

Chatterjee, P., Milanfar, P. (2010). Is Denoising Dead? IEEE
Transactions on Image Processing, 19(4), 895-911. doi:
10.1109/T1P.2009.2037087.

Chi, M., Plaza, A., Benediktsson, J. A., Sun, Z., Shen, J.,
Zhu, Y. (2016). Big data for remote sensing: Challenges
and opportunities. Proceedings of the IEEE, 104(11),
2207-2219. doi: 10.1109/JPROC.2016.2598228.

Christophe, E., Prasad, S., Bruce, L., Chanussot, J. (eds)
(2011). Hyperspectral Data Compression Tradeoff. Optical
Remote Sensing. Augmented Vision and Reality.
doi:10.1007/978-3-642-14212-3_2.

Doss, S., Pal, S., Akila, D., Jeyalaksshmi, S., Jabeen, T. N.,
Suseendran, G. (2020). Satellite image remote sensing for
identifying aircraft using SPIHT and NSCT. IEEE Signal
processing magazine, 7(5), 631-634.

Hussain, A. J., Al-Fayadh, A., Radi, N. (2018). Image
compression techniques: A survey in lossless and lossy
algorithms. Neurocomputing, 300, 44-69. doi:10.1016/
j.neucom.2018.02.094.

Kovalenko, B., Lukin, V., Naumenko, V., Krivenko S. (2021).
Analysis of noisy image lossy compression by BPG using
visual quality metrics. 2021 IEEE 3rd International



G. A. Proskura et al. Vxpaincoruii sccyprnan oucmanyiiinozo sondyeéanns 3emni, 2024, 11 (3), 10-16

Conference on Advanced Trends in Information Theory
(ATIT), 20-25. doi:10.1109/ATI1T54053.2021.9678575.
Khorram, S., Van der WieleFrank, C. F., Koch, F. H.
Nelson, S. A. C., Potts, M. D. (2016). Future Trends in
Remote Sensing. Principles of Applied Remote Sensing,

277-285.

Kryvenko, S., Lukin, V., Vozel, B. (2024). Lossy Compression

of Single-channel Noisy Images by Modern Coders.

Remote Sensing, 16, 2093, 1-19. doi:10.3390/rs16122093.

F., Krivenko, S., Lukin, V. (2020). Adaptive two-step

procedure of providing desired visual quality of

compressed image. Proceedings of the 2020 4th

International Conference on Electronic Information

Technology and Computer Engineering, 407-414. doi:

10.1145/3443467.3443791.

Lukin, V., Ponomarenko, N., Zelensky, A., Kurekin, A., Lever, K.
(2008). Compression and classification of noisy
multichannel remote sensing images. Proc. SPIE 7109,
Image and Signal Processing for Remote Sensing, XIV,
1-12. d0i:10.1117/12.799497.

Lukin, V., Kovalenko, B., Kryvenko, S., Naumenko, V.,
Vozel, B. (2022). Prediction of Optimal Operation Point
Existence and Its Parameters in BPG-Based Automatic
Lossy Compression of Noisy Images. Current Overview on
Science and Technology Research, 9, 1-36. doi:10.9734/
bpi/costr/v9/4316A.

Ma, Y., Wu, H., Wang, L., Huang, B., Ranjan, R., Zomaya, A.,
Jie, W. (2015). Remote sensing big data computing:
Challenges and opportunities.  Future  Generation
Computer Systems, 51, 47-60. doi:10.1016/
j.future.2014.10.029.

Makarichev, V., Vasilyeva, I, Lukin, V. Vozel, B,
Shelestov, A., Kussul, N. (2021). Discrete Atomic
Transform-Based Lossy Compression of Three-Channel
Remote Sensing Images with Quality Control. Remote
Sens, 14(1), 125. doi:10.3390/rs14010125.

Ponomarenko, N., Lukin, V., Astola, J., Egiazarian, K. (2015).
Analysis of HVS-metrics’ properties using color image
database TID2013. International Conference on Advanced

Li

Concepts for Intelligent Vision Systems, 613-624.
doi:10.1007/978-3-319-25903-1_53.

Proskura, G., Vasilyeva, 1., Li, F., Lukin, V. (2020).
Classification of Compressed Multichannel Images and Its
Improvement. Proceedings of the 30th International
Conference  Radioelektronika, 62-67. doi:10.1109/
radioelektronika49387.2020.9092371.

Sayood, K. (2017) Introduction to data compression. San
Francisco: Morgan Kaufmann. ISBN: 978-0-12-415796-5.

Selva, E., Kountouris, A., Louet, Y. (2021). K-Means Based
Blind Noise Variance Estimation. 2021 IEEE 93rd
Vehicular Technology Conference (VTC2021-Spring), 1-7.
d0i:10.1109/VTC2021-Spring51267.2021.9449072.

Tao, D., Di, S., Liang, X., Chen, Z., Cappello, F. (2018).
Fixed-PSNR Lossy Compression for Scientific Data. 2018
IEEE International Conference on Cluster Computing
(CLUSTER), 314-318. d0i:10.48550/arXiv.1805.07384.

Taubman, D. S., Marcellin, M. W. (2013). JPEG2000: image
compression fundamentals, standards, and practice.

Vasilyeva, 1., Lukin, V., Kharchenko, V., Nereta, A. (2023).
Combined Processing of Satellite and UAV Data to
Increase the Classification Reliability. Proceedings of the
4th International Workshop on Intelligent Information
Technologies & Systems of Information Security, 539-
552. https://ceur-ws.org/Vol-3373/paper37.pdf.

Yee, D., Soltaninejad, S., Hazarika, D., Mbuyi, G., Barnwal, R.,
Basu, A. (2017). Medical image compression based on
region of interest using better portable graphics (BPG).
2017 IEEE International Conference on Systems, Man, and

Cybernetics (SMQ), 216-221. doi:10.1109/
SMC.2017.8122605.
Zemliachenko, A., Abramov, S., Lukin, V., Vozel, B,

Chehdi, K. (2015). Lossy Compression of Noisy Remote
Sensing Images with Prediction of Optimal Operation Point
Existence and Parameters. SPIE Journal on Advances in
Remote Sensing, 9(1), 26. doi:10.1117/1.JRS.9.095066.
Zhai, G., Min, X. (2020). Perceptual image quality assessment:
a survey. Science China Information Sciences, 63(11), 1-52.
doi:10.1007/s11432-019-2757-1.

KITACU®DIKALIA 3ALTYMJIEHUX 30BPAXKEHDB, CTUCHYTUX 3 BTPATAMU HA OCHOBI BPG

Ipockypa I'. A., Haymenko B. B., JIykin B. B.

Kagheopa ingpopmayiiino-xomynixayitinux mexronoziu, Hayionanvnuii aepoxocmiunuil ynisepcumem, 61070 Xapxkis, Yxpaina
OTtpumaHi 300pakeHHS AUCTAHIIIMHOTO 30HAYBAHHSI MOXYTh MICTUTH IIyM. Lleit ¢akT HeoOXinHO BpaXOByBaTH NpPH iX CTUCHEHHI 3
BTpaTaMH Ta Kiacudikamii. 30kpeMa, Ipu CTHCHEHHI 3 BTpaTaMy 3a3BUYail crioctepiraeThes crieudiganii edexT GinpTpamii mymy,
SIKHA MO>Ke OYyTH MO3UTUBHHUM Jutsl Kinacudikamii. Ha kmacudikamiro Takosk MOKe BIUTMBATH METOJOJIOTISI HABYaHHS KiIachdikaropa.
VY crarTi po3risiaaThes OCOOIMBOCTI CTHCHEHHS 3 BTpaTaMU TPUKAHAIBHUX 300pakeHb, IO CIIOTBOPEHI LIyMOM, 3a JOIOMOTOIO
KoJepa TOKpaieHoi mopratuBHOi rpadiku (BPG) Tta ix momanpmia kimacudikaigis. ITokasaHo, 0 MOKPAIIEHHS TOYHOCTI
kiacuikaiii JaHUX He CIIOCTEPIraeThesl, SIKIIO CTUCKATH 300paXKeHHs B OKOJIi onTUManbHOI pobodol Touku (OPT), a TpeHyBaHHS
knacugikaTopa BHKOHYBaTH Uis 300pakeHb i3 miymoM. JlocmimkeHo poboTy kimacudikaropa Ha OCHOBI HEHPOHHOI MeEpexi.
ITokazaHo, 110 HOr0 HaBYaHHS HAa CTUCHEHHX JAHHX JUCTAHLIMHOTO 30HIAyBaHHS 3/1aTHE 3a0€3MeUMTH IEBHI MepeBark MOPiBHIHO 3
HABYAHHSM Ha 3alIyMJIeHHX (HECTHCHEHMX) JaHHUX. Y CTATTi HaBeJEeHO MPUKIAAN BUKOPHUCTaHHs AaHux Sentinel y monenroBauHi.
KiouoBi cnoBa: cTuCHEHHS BTpaTH 300pa)KeHHS; ONTHMAalIbHA TOYKa eKcIuTyaTaii; koaep BPG, knacudikamiitna Tpanchopmarris.
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