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Acquired remote sensing images can be noisy. This fact has to be taken into account in their lossy compression and classification.  

In particular, a specific noise filtering effect is usually observed due to lossy compression and this can be positive for classification. 

Classification can be also influenced by methodology of classifier learning. In this paper, we consider peculiarities of lossy 

compression of three-channel noisy images by better portable graphics (BPG) encoder and their further classification. It is 

demonstrated that improvement of data classification accuracy is not observed if a given image is compressed in the neighborhood of 

optimal operation point (OOP) and the classifier training is performed for the noisy image. Performance of neural network based 

classifier is studied. As demonstrated, its training for compressed remote sensing data is able to provide certain benefits compared to 

training for noisy (uncompressed) data. Examples for Sentinel data used in simulations are offered.  
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1. Introduction 

 

Remote sensing (RS) from satellites, aircraft and 

drones has found numerous applications in recent years 

(Aiazzi et al., 2012; Chi et al., 2016; Vasilyeva et al., 

2023). Acquired images’ number and their mean size 

have the tendency to increase (Khorram et al., 2016). 

This leads to big data problems at all stages of image 

data processing including co-registration, storage, filtering, 

classification (Chi et al., 2016; Ma et al., 2015).  

One way to solve the problems in RS data storage 

and transmission is to apply their compression (Hussain 

et al., 2018; Tao et al., 2018; Doss et al., 2020). As 

known, two main types of image compression techniques 

exist, namely, lossless and lossy (Hussain et al., 2018; 

Sayood et al., 2017). Lossless techniques are known to 

introduce no distortions into data. However, the 

compression ratio (CR) provided by them is often 

inappropriate. Thus, lossy compression has become the 

main tool to provide a desired and variable CR or quality 

of compressed RS data (Sayood et al., 2017; Li et al., 

2020; Proskura et al., 2020). Increased CR might result 

in worse quality of compressed RS data. Because of this, 

a reasonable trade-off between the attained CR and 

compressed data quality has to be found for each 

particular image (Tao et al., 2018; Christophe et al., 

2011; Makarichev et al., 2022). This trade-off depends 

on an application analyzed, a coder (compression 

method) applied, properties of an image to be 

compressed, priority of requirements to compression and 

their further processing (Makarichev et al., 2022), etc. 

Here we consider the influence of lossy compression on 

image classification accuracy.  
 

____ 
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If an image to be compressed is (practically) noise-

free, the general tendencies are the following. CR 

increase generally leads to worse classification where 

overall probability of correct classification Pcc slightly 

reduces with CR increase if distortions are invisible and 

starts to diminish quickly if distortions become visible 

(Proskura et al., 2020; Makarichev et al., 2022). Note 

that coder parameters for just noticeable distortions 

(JND) can be predicted (Bondžulić et al., 2021). CR for 

JND depends on image complexity where CR for 

complex structure images can be by several times 

smaller than for simple structure images for the same 

quality of compressed RS data. Note that CR also 

depends on a coder used. In this sense, the better 

portable graphics (BPG) encoder (Yee et al., 2017; 

Albalawi et al., 2016) is able to provide significantly 

better performance characteristics compared to 

JPEG2000 (Taubman et al., 2013) and some other 

modern lossy compression techniques. This is one of the 

main reasons why we consider just this encoder in our 

studies. 

In practice, there are cases when an image to be 

compressed is noisy (Chatterjee and Milanfar, 2010). 

Then, image lossless and lossy compression has several 

specific features. First, CR for lossless compression is 

only slightly larger than unity since bytes are spent on 

noise preservation. In turn, specific noise filtering effect 

is observed for lossy compression of noisy images. This 

effect was first discovered almost 30 years ago (Al-

Shaykh et al., 1998; Chang et al., 1997) for JPEG. Later 

it was studied for other lossy compression techniques 

(Zemliachenko et al., 2015) and, in particular, for the 

BPG encoder (Kovalenko et al., 2021; Lukin et al., 

2022). The BPG-based encoder is preferable for lossy 

compression of noisy images compared to many modern 
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encoders (Kryvenko et al., 2024) and this is the second 

reason for paying the attention to its consideration. The 

third advantage of this encoder is that position of optimal 

operation point (OOP) for it can be easily determined for 

a priori known or pre-estimated noise characteristics 

(Lukin et al., 2022) where there exist blind methods for 

noise characteristic evaluation (Selva et al., 2021; 

Abramova et al, 2024). 

OOP (Al-Shaykh et al., 1998; Zemliachenko et al., 

2015), in general, is a parameter that controls 

compression (PCC) for which the compressed image is 

closer to the corresponding noise-free image than 

original (noisy) image according to a considered metric 

characterizing similarity. As PCC, different coders use 

quality factor, bits per pixel, quantization step and so on. 

The BPG encoder employs the parameter Q that is non-

negative and integer. There is a strict dependence 

between Q in OOP and variance of additive noise (Lukin 

et al., 2022). Thus, under condition of a priori known 

noise variance or its pre-estimation with appropriate 

accuracy, compression in OOP neighborhood can be 

realized in fully automatic mode.  

Lossy compression in OOP has several advantages. 

First, a rather large CR can be provided. Second, it has 

been shown for coders based on discrete cosine 

transform that compression in OOP is able to produce a 

larger Fcc than Fcc for classification of original (noisy) 

image (Lukin et al., 2008). However, peculiarities of 

classification have not been yet studied for noisy 

multichannel RS images compressed by the BPG 

encoder. 

As a starting point, we consider the case of three-

channel RS image corrupted by additive white Gaussian 

noise (AWGN) with variance equal in all three 

component images. Such an approach allows using 

results and recommendations obtained in our previous 

papers (Lukin et al., 2022) intended on reaching 

compression in OOP. The paper novelty consists in the 

following. First, we analyze component-wise 

compression of multichannel noisy RS images with 

emphasis on accuracy of their classification. Second, we 

demonstrate that lossy compression in OOP 

neighborhood can be expedient from the viewpoint of 

providing high Fcc if OOP exists, i.e. for images of a 

quite simple structure corrupted by rather intensive 

noise. We also analyze the cases of complex structure 

image and, in addition to Fcc, study probabilities of 

correct classification for separate classes. Third, we 

compare two opportunities of classifier learning – for 

noisy image and for compressed RS data – and show that 

the latter option can be beneficial. 

 

2. Used criteria and image/noise model 

 

As told above, we deal with lossy compression of 

noisy three-channel images. Noise in RS data can be due 

to different reasons (Abramova et al., 2023; Chatterjee et 

al., 2010) including a limited time of signal registration, 

principle of imaging system operation, etc. Respectively, 

it can be additive or signal dependent. Below, we 

concentrate on considering the AWGN model 

(Chatterjee et al., 2010) used as a starting point in our 

research. According to it, one has  

,noisy true
kij kij kijI I n= +                           (1) 

where noisy
kijI  denotes the noisy ij-th pixel value, true

kijI  is 

the true ij-th pixel value, nkij is the value of AWGN 

having zero mean and variance σ2, k = 1,…3 denotes the 

channel index. If noise is signal-dependent, proper 

variance stabilizing transforms applied before RS data 

compression can result in getting data for which the 

model (1) is valid. We assume that noise variance is the 

same in all three components and it is a priori known or 

accurately pre-estimated (Selva et al., 2021).  

Quality of original noisy image can be described in 

different ways where the most typical is peak signal-to-

noise ratio (PSNRn) determined as  
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where I and J describe the image dimensions. Here and 

below we assume that our image is represented as 8-bit 

data in each component. To be visible, the AWGN 

(supposed uncorrelated in component images) should 

have σ2 ≈ 20 if an image has a simple structure and 

σ2 ≈ 25–30 for complex structure images (Ponomarenko 

et al., 2015). This corresponds to n
kPSNR   35 dB and 

n
kPSNR   34 dB, respectively. Thus, in our simulations, 

we consider the noise variance equal to 25 and larger. 

To simulate natural scenes, we have taken two almost 

noise-free RS images composed of three components of 

visible range of Sentinel-2 multispectral data (see 

Fig. 1). These images were acquired at the end of August 

in 2019. The image fragments have the size of 512×512 

pixels. The reasons for using these data were the 

following. First, the images are of different complexity 

where the image in Fig. 1, a is for country side (Kharkiv 

region) and it contains rather large quasi-homogeneous 

regions whilst the image in Fig. 1, b has complex 

structure and it corresponds to the North part of Kharkiv. 

Second, we knew cover types (classes) – these data were 

available from topographic maps and we knew these 

regions well (the second region is close to our 

University). Third, in both cases, four classes – Urban, 

Water, vegetation, and Bare Soil could be quite easily 

identified. 
 

  
а                                               b 

Fig. 1. Image fragments used in simulations:  

SS1 – Staryi Saltiv (a), SS2 – North Kharkiv (b) 

 

It is worth explaining what is OOP. Let us consider 

dependences ( )ct
kPSNR Q  where ct

kPSNR  is calculated 

between the a k-th true and compressed component 
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images for a set of Q values that for the BPG encoder 

vary from 1 (almost no distortions with small CR) to 51 

(considerable CR and introduced distortions) with 

Q ≈ 27 that corresponds to distortion visibility threshold. 

Recall here that in the case of compressing a single 

channel noisy image or component-wise compression of 

multichannel image the parameter Q for OOP is 

determined as  

QOOP = 14.9 + 20 log10(σ).                     (4) 

Then, for σ2 equal to 25, 50, and 100 considered in 

our simulations, one has QOOP approximately equal to 

29, 32, and 35, respectively.  

One set of the obtained dependences is demonstrated 

in Fig. 2 for the test images in Fig. 1 contaminated with 

AWGN with σ2 = 100 as well as two other images (SS3 

and SS4 where the image SS3 is similar to SS1 and SS4 

is similar to SS2). The plots for all three components are 

given. The data analysis shows the following. First, the 

plots for components are the same image are similar to 

each other. This is not surprising since component 

images of multispectral data are usually highly 

correlated (similar). Second, there are quite many curves 

that all have maxima observed for QOOP = 35 and this is 

in agreement with (4). Third, maximal values ct
kPSNR  

observed in OOP can be significantly larger than 
n
kPSNR  = 28 dB. Then, compression in OOP seems 

reasonable. Meanwhile, there are also one curve having 

local maximum and two curves having no maxima at all 

(they are monotonically decreasing) – all observed for 

the image SS4 which has the most complex structure. 

The analysis carried out for two other values of the 

noise variance additionally shows that OOP is observed 

not for all images and noise variance values. Usually, it 

is possible to expect OOP existence for images having 

quite simple structure and/or contaminated by a rather 

intensive noise. OOP existence can be predicted before 

compressing a given image using the approach based on 

analysis of DCT coefficient statistics in 8x8 blocks 

(Lukin et al., 2022). If OOP is (supposed) absent, it is 

reasonable to use lossy compression with Q smaller than 

QOOP (4). For example, it can be recommended to use 

Qrec = QOOP – 4 or Qrec = 27 or 28 to have invisibility of 

introduced distortions.  

 
Fig. 2. Dependencies ct

kPSNR (Q) for the coder BPG applied to 

the test images SS1-SS4 corrupted by AWGN with variance 

equal to 100 component-wise ( n ct
kPSNR PSNR  (Q = 1)  

is of about 28 dB) 

 

3. Considered coder and classifier 

 

3.1. BPG encoder 

As said above, in this paper, we focus on Better 

Portable Graphics encoder. The BPG encoder relies on 

the High Efficiency Video Coding (HEVC) method 

proposed by Fabrice Bellard as the open-source code 

(https://bellard.org/bpg/). This image compression 

method aims to replace the JPEG format due to several 

useful properties. First, it has significantly better 

performance producing higher quality for the same size 

of compressed data. It has lossless and lossy 

compression and is supported by most Web browsers.  

In addition, the BPG encoder supports the same chroma 

formats as JPEG, namely, grayscale, YCbCr 4:2:0, 4:2:2, 

4:4:4, and several color spaces. 

In application to compressing multichannel images, 

several options are possible. The simplest among them is 

to apply compression component-wise. Other ones deal 

with using aforementioned chroma formats. In this 

paper, we relied on the former approach as the starting 

point of using the BPG encoder for lossy compression of 

multichannel noisy RS images. Other approaches can be 

studied in the future. 

 

3.2. Neural network classifier 

For three-channel RS images, different approaches to 

their classification can be applied (Proskura et al., 2020; 

Makarichev et al., 2022). Based on the earlier obtained 

results (Proskura et al., 2020), we have used a neural 

network (NN) classifier applied pixel-wise. Its 

performance depends on several factors including the 

NN type and structure, methodology of training, etc.  

The data to be processed have a direct impact on the 

choice of a neural network structure. As mentioned 

above, four main classes have been identified for both 

images considered: Urban, Water, Vegetation, and Bare 

Soil. Image fragments shown in Figures 3 and 4 were 

selected for training and verification of the classifier. 
 

      
a                                                 b 

 

Fig. 3. Fragments employed for the classifier training  

for the images SS1 (a) and SS2 (b) 
 

 
a                                          b 

Fig. 4. Fragments employed for the classifier verification  

for the images SS1 (a) and SS2 (b) 
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The training and the verification samples sizes are 

given in Tables 1 and 2. 
 

Table 1. The training and verification sample sizes  

for the test image SS1 

Class 

Training 

samples sizes, 

pixels 

Verification 

samples sizes, 

pixels 

Urban 7441 12154 

Water 52310 96852 

Vegetation 19936 38258 

Bare Soil 1841304 1842906 

 

Table 2. The training and verification sample sizes  

for the test image SS2 

Class 

Training 

samples sizes, 

pixels 

Verification 

samples sizes, 

pixels 

Urban 11469 28040 

Water 4201 7117 

Vegetation 5993 6032 

Bare Soil 1850089 1854133 

 

As discussed in (Lukin et al., 2023), for small sample 

sizes it is advisable to use a feedforward neural network, 

i.e. multilayer perceptron (MLP). The developed neural 

network includes 4 hidden layers containing 64, 32, 16, 

and 8 neurons, respectively, and an output layer. Hidden 

layers use the activation function ReLU, which is a 

nonlinear function that transforms the input value into a 

value between 0 and positive infinity. 

ReLU(x) = max(0,x). 

ReLU is characterized by high performance because 

it is a simple and has fast operation, which allows 

speeding up the learning process when using it in hidden 

layers. The output layer uses the Softmax activation 

function. The Softmax function curve has the property 

that the probability of any element in the vector 

increases if the values of other elements decrease, which 

allows this function to be used for multi-class 

classification. 

To train MLP, the RMSProp optimizer was used, 

which is a modernized error backpropagation algorithm. 

The sparse categorical cross-entropy loss function has 

been utilized as a loss function, since it has demonstrated 

good results in multi-class classification. 

Figure 5 shows the loss function and accuracy of our 

MLP depending on epoch number. It can be seen that the 

best result is observed around the 35th epoch. 

Consider the metrics used to assess the quality of a 

classification. To evaluate the quality of the algorithm 

we have used an aggregated F-measure quality criterion 

representing the average harmonic precision and recall: 

2 .
precision recall

F
precision recall


= 

+

 

Precision can be introduced as the proportion of 

objects that are classified by the classifier as positive and 

are actually positive. Recall shows how many objects of 

a full class of all positive objects the algorithm found. 

So, recall demonstrates the algorithm’s ability to detect a 

given class in general, and precision shows its ability to 

distinguish this class from other classes. 

 
a) 

 
b) 

 

Fig. 5. MLP loss function (a) and accuracy (b) depending  

on the number of epochs 

 

For each image, F-measures were obtained when 

trained on the original image n
ccF  and when trained on 

the compressed image c
ccF , as well as the corresponding 

F-measures for classes , 1,...,4n
mF m =  and , 1,...,4c

mF m = , 

where m is the class index and 1 corresponds to Urban, 2 

– Water, 3 – Vegetation and 4 – Bare Soil. 

 

4. Analysis of the obtained results 

 

4.1. Data for the simple structure image 

The obtained results are collected in Table 2. The 

values of Q that correspond to OOP for the 

corresponding noise variance are marked by Bold. 

Analysis shows the following:  

1) The total Fcc is quite large (exceeds 0.9 for 

σ2 = 25), Case 1, but this is mainly due to high 
2
cF  for 

Class 2 (Water); for other classes the probabilities are 

significantly smaller;  

2) If noise is more intensive (σ2 = 50, Case 5, and 

σ2 = 100, Case 9), the total Fcc decreases; probabilities 

for particular classes diminish too;  

3) Lossy compression leads to reduction of the total 

Fcc, this reduction is especially large for the largest 

considered Q = 35; probabilities for particular classes 

steadily decrease as well; in OOP according to PSNR, 

there is no OOP according to the total Fcc; 
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4) The classifier learning for compressed data allows 

improving the classification results – compare the data 

for Case 13 to data for Case 2, the results for Case 14 to 

the results for Case 7, the data for Case 15 to the data for 

Case 12. The largest improvement is observed for the 

Cases 12 and 15 – c
ccF  has improved by 0.31.  

 

Table 2. Classification data for the test image SS1 

Case 
Noise 

variance 

Image used 

for training 

Image used 

for 
classification 

F1 F2 F3 F4 
Total 

Fcc 

1 25 Noisy Noisy 0.75 0.97 0.86 0.73 0.92 

2 25 Noisy Compressed 
with Q = 29 

0.75 0.82 0.64 0.63 0.75 

3 25 Noisy Compressed 

with Q = 32 
0.71 0.77 0.58 0.55 0.69 

4 25 Noisy Compressed 
with Q = 35 

0.68 0.69 0.52 0.47 0.62 

5 50 Noisy Noisy 0.68 0.95 0.77 0.65 0.87 

6 50 Noisy Compressed 
with Q = 29 

0.60 0.76 0.58 0.36 0.65 

7 50 Noisy Compressed 

with Q = 32 
0.48 0.67 0.53 0.26 0.57 

8 50 Noisy Compressed 

with Q = 35 
0.44 0.59 0.48 0.21 0.49 

9 100 Noisy Noisy 0.55 0.91 0.66 0.57 0.82 

10 100 Noisy Compressed 

with Q = 29 
0.43 0.75 0.53 0.24 0.62 

11 100 Noisy Compressed 

with Q = 32 0.34 0.62 0.46 0.19 0.49 

12 100 Noisy Compressed 

with Q = 35 
0.27 0.51 0.42 0.16 0.40 

13 25 Compressed 
with Q = 29 

Compressed 
with Q = 29 

0.75 0.93 0.73 0.68 0.86 

14 50 Compressed 
with Q = 32 

Compressed 
with Q = 32 

0.62 0.88 0.58 0.47 0.78 

15 100 Compressed 

with Q = 35 

Compressed 

with Q = 35 0.41 0.83 0.42 0.22 0.71 

 

4.2. Data for the complex structure image 

The obtained results are collected in Table 2. 

Analysis allows drawing the following conclusions:  

1) The total Fcc for σ2 = 25 is smaller than for simple 

structure image (compare the data for Cases 1 in Tables 

2 and 3; all classes are recognized not well enough;  

2) If noise intensity increases (σ2 = 50, Case 5, and 

σ2 = 100, Case 9), the total Fcc diminishes; probabilities 

for particular classes become smaller too;  

3) Lossy compression results in reduction of Fcc, 

especially for Q = 35; probabilities for particular classes 

steadily decrease as well; OOPs according to the total Fcc 

are not observed; 

4) The classifier training for the compressed data 

improves the classification – compare the data for Cases 

13 and 2, Case 14 and Case 7, Cases 15 and 12, 

respectively. 
 

Table 3. Classification data for the test image SS2 

Case 
Noise 

variance 
Image used 
for training 

Image used for 
classification 

F1 F2 F3 F4 
Total 
Fcc 

1 25 Noisy Noisy 0.84 0.64 0.60 0.86 0.79 

2 25 Noisy Compressed 

with Q = 29 
0.79 0.47 0.52 0.75 0.70 

3 25 Noisy Compressed 
with Q = 32 

0.78 0.38 0.48 0.68 0.67 

4 25 Noisy Compressed 
with Q = 35 

0.77 0.37 0.43 0.57 0.63 

5 50 Noisy Noisy 0.76 0.42 0.54 0.74 0.70 

6 50 Noisy Compressed 

with Q = 29 
0.72 0.25 0.45 0.68 0.63 

7 50 Noisy Compressed 
with Q = 32 0.68 0.24 0.40 0.55 0.56 

8 50 Noisy Compressed 

with Q = 35 
0.66 0.17 0.35 0.48 0.53 

9 100 Noisy Noisy 0.68 0.32 0.47 0.66 0.62 

10 100 Noisy Compressed 

with Q = 29 
0.65 0.22 0.40 0.60 0.56 

11 100 Noisy Compressed 

with Q = 32 
0.62 0.20 0.32 0.46 0.49 

12 100 Noisy Compressed 

with Q = 35 
0.60 0.16 0.29 0.43 0.47 

13 25 Compressed 
with Q = 29 

Compressed 
with Q = 29 

0.81 0.57 0.54 0.78 0.74 

14 50 Compressed 

with Q = 32 

Compressed 

with Q = 32 
0.71 0.18 0.41 0.65 0.61 

15 100 Compressed 

with Q = 35 

Compressed 

with Q = 35 
0.56 0.05 0.29 0.57 0.51 

 

4.3. General tendencies and examples 

Let us list and illustrate the general tendencies. First, 

if noise variance increases and classification is applied to 

uncompressed image (Cases 1, 5, and 9; classification 

maps in Figures 6, a, d, and e), classification maps 

become more “noisy” too. However, prolonged details 

are preserved (see the right part of the maps). Second, 

lossy compression leads to obtaining better classification 

results in homogeneous regions (vegetation, water 

surface) but fine details are partly lost – compare the 

maps in Fig. 6, a and 6, c to the map in Fig. 1, b. In 

addition, quite many misclassifications appear – many 

pixels are classified as Water instead of Vegetation in 

the urban region. This can be due to the fact that the 

classes Water and Vegetation are close for the image in 

Fig. 1, b since the water was “in blossom” in August 

when the image was acquired. Third, if noise is intensive 

and Q is large, classification maps occur to be of very 

low quality (Fig. 6, f).  

Thus, one should keep in mind that noise and 

distortions due to lossy compression of noisy images 
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usually lead to significant misclassifications, especially 

if noise is intensive and/or Q is large (that corresponds to 

relatively large compression ratio). 

  
a b 

 

  
c d 

 

  
e f 

 

Fig. 6. Classification results for several Cases (see details in 

Table 3): a) Case 1; b) Case 2; c) Case 4; d) Case 5; e) Case 9; 

f) Case 12 

 

One might think that aforementioned effects take 

place only for complex structure images. Fig. 7 shows 

examples of classification maps for the image in 

Fig. 1, a. In Fig. 7, a, the map is obtained for the image 

with σ2 = 25 for which training and classification have 

been performed (Case 1 in Table 2). The result is good 

enough although there are misclassifications between 

Water and Vegetation classes. In turn, Fig. 7, b shows 

the map obtained for compressed image (Q = 35) where 

training was done for uncompressed image with σ2 = 100 

(Case 12 in Table 1). As one can see, small details (dam 

and roads) are partly lost and the classification results 

are of low quality.  

  
a b 

 

Fig. 7. Classification results for several Cases (see details in 

Table 1): a) Case 1; b) Case 12 

 

5. Conclusions and future work 

 

The task of pixel-wise classification of noisy three-

channel images subject to lossy compression is 

considered. It is shown that both noise and distortions 

due to lossy compression result in degradation of 

classification where this degradation can be significant 

for intensive noise and high compression ratio. The 

situation can be partly improved if the classifier training 

is carried out for compressed data and/or if compression 

is performed without visual losses. In the future, we also 

plan to consider the opportunities of noisy image pre- or 

post-filtering to improve classification. 

This work is supported by the National Research 

Foundation in Ukraine within the project 

№ 2023.04/0039 “Geospatial monitoring system for the 

war impact on the agriculture of Ukraine based on 

satellite data” (2024–2025). 
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КЛАСИФІКАЦІЯ ЗАШУМЛЕНИХ ЗОБРАЖЕНЬ, СТИСНУТИХ З ВТРАТАМИ НА ОСНОВІ BPG 

Проскура Г. А., Науменко В. В., Лукін В. В. 

Кафедра інформаційно-комунікаційних технологій, Національний аерокосмічний університет, 61070 Харків, Україна 

Отримані зображення дистанційного зондування можуть містити шум. Цей факт необхідно враховувати при їх стисненні з 

втратами та класифікації. Зокрема, при стисненні з втратами зазвичай спостерігається специфічний ефект фільтрації шуму, 

який може бути позитивним для класифікації. На класифікацію також може впливати методологія навчання класифікатора. 

У статті розглядаються особливості стиснення з втратами триканальних зображень, що спотворені шумом, за допомогою 

кодера покращеної портативної графіки (BPG) та їх подальша класифікація. Показано, що покращення точності 

класифікації даних не спостерігається, якщо стискати зображення в околі оптимальної робочої точки (ОРТ), а тренування 

класифікатора виконувати для зображень із шумом. Досліджено роботу класифікатора на основі нейронної мережі. 

Показано, що його навчання на стиснених даних дистанційного зондування здатне забезпечити певні переваги порівняно з 

навчанням на зашумлених (нестиснених) даних. У статті наведено приклади використання даних Sentinel у моделюванні. 

Ключові слова: стиснення втрати зображення; оптимальна точка експлуатації; кодер BPG, класифікаційна трансформація. 
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