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Yield prediction at field level
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Yield prediction at the field level is crucial for optimizing agricultural productivity and ensuring food security. This study analyzes
the yield variability of maize, sunflower, and winter wheat across 481 agricultural fields in two regions of Ukraine (Kyiv and
Cherkasy) over a three-year period (2020—2022). The objective was to explore the influence of environmental factors on crop yield
predictions using satellite and weather data, sowing dates, and field area as predictors in a machine learning model. The study
employed Random Forest model. Satellite data from Sentinel-2, including NDVI and LAI values, were used to assess crop conditions
during the growing season. For each investigated year during the April-September period, focusing solely on the NDVI and LAI
values for each month. Weather data, especially precipitation, was also examined but found to have limited predictive power due to
the coarser spatial resolution of the gridded data (6.5 km), which cannot fully account for the local variations within each grid cell.
As a result, despite the strong correlation between precipitation and yield at a broader scale (regional), weather data alone were not
sufficient to accurately predict yield variability at the field level. The results showed that maize had the highest yield variability,
while sunflower and winter wheat exhibited more stable yields. For maize, the model demonstrated strong predictive performance,
with an R-squared of 0.8 and an RMSE of 1.5 t/ha. The most significant predictors were vegetation indices in August and sowing
date. The normalized RMSE for maize was 20%. For sunflower, the model exhibited moderate accuracy, with an R-squared of 0.4
and an RMSE of 0.9 t/ha. Key predictors included the average LAI in May and July. However, the model’s predictive power was
limited, resulting in a normalized RMSE of 23%. Winter wheat showed similar performance to sunflower, with an R-squared of 0.35
and an RMSE of 0.9 t/ha. Due to higher average yields, the normalized RMSE for winter wheat was 15%. Overall, the study
demonstrates varying levels of model accuracy across different crops, with maize achieving the best predictive performance. The
results also emphasize the need for additional factors, such as soil properties, microclimates, and detailed field management
practices, to improve predictive models at the field level.
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1. Introduction
Recent advances in remote sensing technology and

Accurate yield prediction at the field level is pivotal machine learning offer new opportunities to enhance
for modern agriculture, as it influences key decisions yield prediction accuracy. Liu and Zhang provide an
related to resource management, market strategies, and overview of remote sensing methods used for crop yield
food security. With the growing demand for efficient estimation and forecasting, highlighting key technologies
agricultural practices and the pressures of climate (Liu & Zhang, 2022). They also focus on the use of
change, the need for precise and timely yield forecasts satellite data combined with machine learning models
has never been greater. Yield prediction at the field level for wheat yield prediction, showcasing its practical
is critical for optimizing agricultural practices and applications (Liu, Zhang & Liu, 2021). Khan and
managing resources. Accurate forecasting of crop yields Hameed review the role of machine learning approaches
enables farmers to make informed decisions about in crop yield prediction, identifying both progress and
planting, fertilization, irrigation, and harvesting, thereby challenges in the field (Khan & Hameed, 2023). Miao,
enhancing productivity and sustainability. Traditional Liu and Wang explore deep learning techniques
yield prediction methods (Kryvobok, 2018), which often integrated with remote sensing for field-scale crop yield
rely on historical yield data and agronomic models, have prediction (Miao, Liu & Wang, 2024). Miller and Scott
limitations in their ability to incorporate real-time discuss advancements in forecasting crop yields by
environmental variability and spatial heterogeneity as combining satellite and ground-based data (Miller &
well as the simple machine learning model, with just a Scott, 2023). Zhang and Li evaluate the effectiveness of
single predictor, lacks the capability to deliver high- multi-source data combined with machine learning
accuracy predictions (Kryvoshein, 2023). techniques for improving crop yield prediction (Zhang &

Li, 2021). Huang and Liu present a real-time crop yield

*E-mail: aleksandr.krivoshein@eosda.com prediction model using remote sensing and ensemble
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learning methods (Huang & Liu, 2022). Desloires et al.
focus on predicting out-of-year corn yields by
integrating Sentinel-2 satellite imagery with machine
learning methods, offering insights into accurate field-
level vyield forecasting (Desloires et al., 2023). In
(Marszalek, Koérner & Schmidhalter, 2022) explore the
use of satellite and climatological data for predicting
multi-year winter wheat yields at the field level,
demonstrating the value of combining remote sensing
and climate information for improved yield predictions.
Additionally, Hosseini et al. investigate soybean yield
prediction at the field scale using Sentinel-1 data,
showcasing the potential of radar satellite data in crop
yield forecasting (Hosseini et al., 2020). These studies
highlight the growing role of satellite data in enhancing
the accuracy and reliability of yield predictions in
agriculture.

Machine learning techniques have proven to be
highly effective in processing and analyzing these
complex datasets. Algorithms such as regression models,
decision trees, and neural networks can identify patterns
and relationships between various input factors,
improving the precision of yield forecasts (Khan &
Hameed, 2023). For example, Liu et al. (2021)
demonstrated how integrating satellite data with machine
learning models significantly enhanced wheat yield
predictions. Additionally, deep learning approaches have
shown promise in processing high-resolution satellite
images to make real-time yield forecasts (Chen &
Zhang, 2022; Zhou & Liu, 2024).

The combination of remote sensing data with
machine learning techniques has led to the development
of sophisticated predictive models that address the
limitations of traditional methods. These models
incorporate diverse data sources, such as weather data,
soil properties, and crop-specific information, to
generate  accurate field-level yield predictions
(Hernandez & Ritchie, 2023). Studies by Kumar and
Verma (2023) and Shao & Chen (2023) highlight how
integrating multiple data sources and employing
ensemble models can improve prediction accuracy and
reliability.

However, challenges remain in applying these
advanced techniques universally across different crop
types and geographic regions. In the subsequent sections,
we will outline the methodology employed to build and
validate our model, present the results of our field-level
assessments, and discuss the implications of our findings
for future research.

2. Materials and Methods

The yield data for this study were obtained from 481
agricultural fields—encompassing those with identical
geometry but different crops cultivated in various years—
across two regions of Ukraine (Fig. 1): Kyiv, which
accounted for approximately 10% of the fields, and
Cherkasy, comprising about 90%. The data covers a
three-year period from 2020 to 2022 and includes crops
such as wheat (146 fields), maize (223 fields), and
sunflower (112 fields).
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Fig. 1. Location of agricultural fields considering in this study
(area of interest AOI)

Satellite data, sowing dates, and field area were
primarily utilized as key predictors to develop a machine
learning model for vyield forecasting. While
meteorological data were also examined during the
modeling process, their contribution to predictive power
was found to be limited at field level (please refer to the
discussion section for further insights on this topic).

Given the relatively small number of agricultural
fields and predictors in this study, advanced machine
learning algorithms like neural networks were deemed
less suitable. Instead, a simpler yet effective approach,
Random Forest, was applied.

2.1. Input data

Satellite data were obtained from Sentinel-2 images
for each investigated year during the April-September
period, focusing solely on the NDVI (Normalized
Difference Vegetation Index) and LAI (Leaf Area Index)
values for each month. NDVI was calculated using red
(Red) and near-infrared (NIR) bands based on following
equation:

(NIR — Red)
l=——~. (1)

(NIR +Red)

In this study, we estimated Leaf Area Index (LAI)
using a Radiative Transfer Model (RTM) implemented
in the Sentinel Application Platform (SNAP).

We used the minimum, average, and maximum
indices of LAl and NDVI for each month of the growing
season as satellite-based predictors.

Weather data were used in the form of gridded data
(6.5 km resolution), generated from measurements
collected by ground-based meteorological stations.

As previously mentioned, field area and sowing date
were additional input parameters for the ML model.
Overall, the average field sizes are approximately
70 hectares for maize, 80 hectares for sunflower, and
70 hectares for wheat. Table 1 presents the average field
area for each crop by year, along with the mean sowing
dates.

NDV



O. O. Kryvoshein et al. Ykpaincokuii scypnan oucmanyiiinozo sondysanns 3emai, 2024, 11 (4), 24-30

Table 1. Averaged field area (ha) and sowing date
for each crop by year

. . Number
Year Crop Field area | Sowing date of fields
Maize 70.6 15-apr 110
2020 | Sunflower 74 7-apr 37
Winter Wheat 65.1 5-oct (2019) 46
Maize 73 20-apr 63
2021 | Sunflower 92.7 5-may 34
Winter Wheat 62.1 25-sep (2020) 50
Maize 62.6 3-may 50
2022 | Sunflower 704 1-may 41
Winter Wheat 79.5 28-sep (2021) 50

The actual yield data, analyzed as the target variable,
was examined based on distribution for each crop. Maize
showed the widest distribution, with a mean of 6.5 t/ha
and a standard deviation of 3.5 t/ha. In contrast, the
distributions for sunflower and winter wheat were
narrower, with sunflower having a mean of 3.3 t/ha and a
standard deviation of 1.2 t/ha, and winter wheat a mean
of 5.9 t/ha and a standard deviation of 1.1 t/ha (Fig. 2).
To achieve accurate predictions, we needed to identify
predictors that could best describe the variability of our
target variable. In Table 2, you can see the list of all
predictors used to train our ML model.

crop

B3 mais

B8 sunflower
L ES wheat

actual yield, tha

0-

Fig. 2. Boxplots of actual yield data distribution per crops
for 2020-2022

Table 2. List of predictors used to train the ML model

Type of Predictors
predictors

a) Monthly-averaged LAI and NDVI for
May, June, July, August, and September;

b) Monthly maximum LAI and NDVI for the
same months

¢) Monthly minimum LAI and NDVI for the
same months

a) Sum of temperature for March, April,
May, June, July, August, and September;

b) Sum of precipitation for the same months

a) Date of sowing;

b) Field area

Satellite-based

Meteorological

Other

2.2. Machine learning algorithms

In this study, the caret package in R was utilized for
yield prediction, employing a systematic approach. The
process began with data preparation, including cleaning
and feature engineering, followed by splitting the dataset
into training and testing subsets. A control framework
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was established using the “trainControl()” function to
implement  cross-validation  (10-fold) for model
evaluation. The model was trained using the “train()”
function with the method set to 'rf' (which stands for
Random Forest), allowing for the specification of
various algorithms and hyperparameter tuning through a
grid search. Model performance was assessed on the test
set using metrics such as RMSE and R2. Additionally,
feature importance was analyzed to understand the
contributions of different variables to yield prediction.
The model has been created for each crop, separately.
The process culminated in model deployment for future
predictive applications, demonstrating the effectiveness
of our approach in building robust machine learning
models for agricultural yield forecasting.

3. Results

3.1. Maize

Based on actual maize yield data, we observe
significant variation across years (Fig. 3). In 2020, the
yield reached a minimum value of approximately 3.8
tons per hectare on averaged, which is unusually low for
this crop. One possible reason for this low yield is the
occurrence of incorrect agronomic practices, coupled
with insufficient rainfall during a critical stage of maize
development. In July 2020, the Cherkasy region (where
nearly all the tested maize fields are located) received
only 34 mm of precipitation, which is significantly lower
compared to 75 mm and 56 mm in 2021 and 2022,
respectively.
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Fig. 3. Distribution of actual maize yield data by year

As mentioned in section 2.2, the Random Forest
model was chosen for crop yield prediction. The trained
model yielded satisfactory results on the holdout data,
with an R-squared of approximately 0.8 and an RMSE of
around 1.5 t/ha. The feature importance graph was used
to identify the most significant predictors. As shown in
Fig. 4, the top predictors for maize include vegetation
indices in August, as well as the "datsow" variable,
which refers to the sowing date (in day-of-the-year
format). The normalized RMSE, calculated based on the
average of the mean actual yields for each vyear
(2020: 3.8 t/ha, 2021: 10.3 t/ha, 2022: 7.8 t/ha), is
approximately 20%.

The feature importance graph in a Random Forest
algorithm visually represents how important each feature
(predictor) is in making predictions for the model.
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Random Forest, an ensemble learning algorithm based
on decision trees, calculates the importance of each
feature by evaluating its contribution to reducing
impurity (such as Gini impurity or entropy) at each
decision node in the trees. Each line in the graph
represents the importance of a specific feature in the
model. The longer the bar, the more important the
feature is for making accurate predictions (Breiman,
2001).

LAI_avg_aug

datsow

NDVI_avg_aug

NDVI_avg_sep

LAl_avg_sep —*

Importance

Fig. 4. Feature importance graph for maize prediction
(avg — average; aug — August; sep — September;
datsow — date of sowing)

3.2. Sunflower

The actual sunflower yield data shows little variation
across the years in the testing period (see Fig. 5). In 2020 and
2022, the average yield was around 3 t/ha, while in 2021, it
was 4 t/ha. The most likely explanation for this difference is
the more favorable weather conditions in 2021 (good
precipitation regime within AOI).

10
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2021
years

Fig. 5. Distribution of actual sunflower yield data by year

Additionally, as shown in Fig. 5, there are some
extreme values for actual yield in certain fields
(especially in 2021) that were excluded by the algorithm
during model training. The cross-validation process
shows that the model, on average, demonstrated
moderate accuracy with an R-squared of 0.4 and an
RMSE of approximately 0.9 t/ha. The top predictors
were the average LAI for May and July (see Fig. 6).
However, the selected predictors did not provide
sufficient predictive power, as evidenced by a
normalized RMSE of approximately 23%.
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Fig. 6. Feature importance graph for sunflower prediction
(avg — average; may — May; jul — July; aug — August;
min — minimum)

3.3. Winter wheat

The trend in actual winter wheat yields over the years
is similar to that of sunflower yields. The yield was
nearly at 5.5 t/ha in both 2020 and 2022, while in 2021,
it reached 6.5 t/ha (Fig. 7).
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Fig. 7. Distribution of actual winter wheat yield data by year

The relatively consistent yield pattern for winter wheat
makes it more difficult to identify suitable predictors that
can capture all the fluctuations in its yield. The lack of
extreme yield variation means that finding robust
predictors to explain this variability is challenging. This is
reflected in the moderate R-squared value (0.35) in yield
prediction models, indicating that while some predictors
can explain part of the yield variation (Fig. 8), the models
cannot fully account for all of it.

Pr_m

NDVI_min_jun

NDVI_avg_jun

LA avg jun —

4‘0 E‘ﬂ Blﬂ mln
Importance
Fig. 8. Feature importance graph for winter wheat prediction
(Pr_m — precipitation in March; avg — average; jun — June;
aug — August; min — minimum)
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In the Fig. 8 the graph reveals that the sum of March
precipitation (Pr_m) is the most significant predictor
(precipitation during this period is critical for the
recovery of active plant growth after winter), followed
by the area of the field. These two features have the
highest importance scores, indicating that March rainfall
and field size are the most influential factors in
predicting the winter wheat yield. Next, the graph shows
NDVI and LAI for June, but their importance is slightly
lower than that of March precipitation and field area.

The model achieves RMSE of 0.9 t/ha, reflecting a
moderate level of prediction accuracy. Interestingly, this
RMSE is the same as the RMSE for sunflower,
indicating that the Random Forest model is equally
effective in predicting the yield of both crops with a
comparable level of precision. When normalized by the
average yield of winter wheat, the normalized RMSE is
approximately 15%.

4. Discussion

In agricultural research, one of the key objectives is
to understand the variability of crop yields, as it plays a
crucial role in optimizing production. Maize, sunflower,
and winter wheat were the three crops tested in this
study, each exhibiting varying levels of yield
fluctuations. These variations are influenced by various
environmental and climatic factors, and analyzing them
can provide valuable insights for improving crop
management strategies.

When comparing the yield variability of winter
wheat, sunflower, and maize, distinct patterns emerge.
Winter wheat and sunflower both exhibit relatively low
yield variability, while maize shows significantly higher
fluctuations. The standard deviation of winter wheat
yield is 1.2 tons per hectare (t/ha), and sunflower has a
slightly higher standard deviation of 1.3 t/ha. In contrast,
maize experiences a much higher standard deviation of
3.4 t/ha. This indicates that winter wheat and sunflower
yields are generally more stable, while maize yields are
more sensitive to environmental fluctuations.

The lower variability in winter wheat and sunflower
yields suggests that environmental factors influencing
their growth are more predictable or consistent. This
stability in vyield variability makes these crops less
sensitive to sudden changes in temperature, rainfall, or soil
conditions. On the other hand, maize, with its higher yield
variability, is more vulnerable to fluctuations in these
environmental factors. This greater sensitivity to changes
creates more uncertainty in predicting maize yields.

The relatively consistent yield patterns for winter
wheat and sunflower make it more difficult to identify
suitable predictors to capture the full range of yield
variability. With less pronounced fluctuations, finding
robust predictors that explain this variability becomes a
challenge. As a result, models designed to predict yields
for these crops tend to have a moderate R-squared value
(0.35-0.4), suggesting that while some predictors can
explain part of the yield variation, they cannot fully
account for all of it.

In contrast, the higher vyield variability of maize
provides more opportunities to identify influential
environmental factors, which could make predicting
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maize yields somewhat easier. However, this also means
that maize yield prediction models tend to be less stable
and may require more complex factors to improve their
accuracy.

In our analysis, it is evident that weather, particularly
precipitation, plays a significant role in determining the
actual yield levels of crops. However, a key challenge
arises from the fact that we only have access to gridded
weather data with a spatial resolution of approximately 6.5
km. Each grid cell encompasses several fields, which may
have varying yield outcomes due to differences in local
conditions. This means that the variability in yield across
individual fields within a single grid cell is not adequately
captured by the average weather data for that grid.

While weather data, such as March precipitation,
showed strong importance in predicting winter wheat
yields in this study, its effectiveness at the field level is
limited. The gridded weather data cannot fully account
for the local variations within each grid cell. As a result,
despite the strong correlation between precipitation and
yield at a broader scale, weather data alone were not
sufficient to accurately predict yield variability at the
field level. Other factors, such as soil properties, field
management practices, and microclimates, likely
contribute to the yield differences within the same grid
and need to be considered for more precise predictions.

It is important to note that the forecasting lead time
for yield prediction, based on the top predictors, is
typically around one month before harvest. For maize,
usually harvested in September in Ukraine, the key
predictors are vegetation indices from August. For
sunflower, typically harvested in August, the main
predictors are from May and July. For winter wheat,
harvested at the end of June or early July, the primary
predictors are from March and June.

The normalized RMSE (Root Mean Square Error)
measures the accuracy of the model's predictions relative
to the average yield of each crop. For maize, the
normalized RMSE is approximately 20%, reflecting a
relatively high level of accuracy (80%) in yield
predictions. For sunflower, the normalized RMSE is
slightly higher at 23%, suggesting comparable predictive
performance (77%). For winter wheat, the normalized
RMSE is around 15%, indicating a lower prediction
error relative to its average yield.

5. Conclusion

This study explored the variability in crop yields of
maize, sunflower, and winter wheat, emphasizing the
role of environmental and climatic factors through
vegetation indices, weather and some agromanagement
data. The results highlight significant yield fluctuations
in maize, with lower yields in 2020 due to adverse
weather and probably agronomic practices, while
sunflower and winter wheat displayed more consistent
yield patterns over the years.

The Random Forest model, employed for yield
prediction, demonstrated varying degrees of accuracy
across crops. For maize, the model achieved a strong
R-squared of 0.8 and an RMSE of 1.5 t/ha, with
vegetation indices and sowing dates as key predictors.
In contrast, sunflower and winter wheat had lower
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prediction accuracy, with RMSE values of 0.9 t/ha for
both crops and moderate R-squared values, reflecting the
challenges of predicting yields for crops with more
stable yields and less pronounced fluctuations.

While weather, particularly March precipitation,
proved to be a significant predictor for winter wheat, the
spatial resolution of the gridded weather data limited its
ability to capture yield variability at the field level. This
highlights the need for incorporating additional factors
such as soil properties, field management practices, and
microclimates to improve prediction models and better
account for the variability within individual fields. The
study underscores the complexity of crop yield
prediction and the need for more precise data to enhance
agricultural decision-making.
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Buecox aBtopiB: Konnentyamizamiss — O. Kpuomein Ta
O. KpuBobGok; metomomnorist — O. Kpusomiein; ¢dopmanbHuUit
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Konduiktn inTepeciB: ABTOpPH 3asBISAIOTH, IO HE MAalOTh
KOH(IIIKTY iHTEpecCiB.
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ITporHo3yBaHHsI BPOXKalHOCTI Ha PiBHI MOJIS € KPUTUYHO BKIMBUM JUIS ONTHMI3aLlii CiIbCHKOTOCTIONaPChKOi MPOAYKTHBHOCTI Ta
3a0e3MmedYeHHs] MPOAOBONIBYOI Oe3nekn. B 1mboMy nOCHiIKEHHI TMpOBEACHWI aHami3 BapiaOeNbHOCTI BPOXKAWHOCTI KyKYPYI3H,
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COHSIIHMKY Ta O3MMOi IeHuni Ha 481 clIbCEKOroCIoapchbKOMy IO B IBOX perioHax Ykpainu (Kuicpka ta Uepkacbka oOnacTi)
3a Tpu poku (2020-2022). Meroto Oyj0 AOCHIAWTH BIUIMB HABKOJHMINHIX ()aKTOpPiB Ha MPOTHO3M BPOXKAMHOCTI KyJIbTYp 3a
JIOTIOMOTOI0 CYMYTHHKOBHX 1 MOTOAHMX JaHMX, AAT CIBOM Ta IUIOIII HOJNIB SK NPEIUKTOPIB Y MOJENI MAIIMHHOTO HaBUaHHSA.
VY nochimkenni 6yno Bukopuctano monenb Random Forest. CymyTHukoBi nani 3 Sentinel-2, Bkimrouyaroun 3uadernss NDVI ta LA,
BUKOPUCTOBYBAJIUCS JUIA OL[IHIOBAHHS CTaHy KyJbTYyp IiJ Yac BereTaliifHoro mepioay. s KOXKHOTo poKy JOCHIIKEHHS B Tepiox 3
KBITHS TI0 BEpECEHb OCHOBHA yBara mpunaiuisiiacs 3HadeHHAM NDVI ta LAI mnst koxxHOTo Mics. [loroani naHi, 30kpemMa omajm,
TaKoX OyJIM IpoaHai30BaHi, ajie X MPOTHOCTHYHA 31aTHICTh BHSBIIIACS OOMEKEHOIO Yepe3 3HaYHe IIPOCTOPOBE PO3PI3HEHHS TaHUX
CITKH TpifiB (6.5 kM), II0 He Aa€ 3MOTH MOBHOIO MIpOIO BpaxyBaTH MICIIEBI Bapialii B MekaX KOXHOTO Tpimy. Sk pe3ynbTar,
HE3Ba)XKAI0UM HA CHIIBHY KOPEJIAIiI0 MK OIagaMH Ta BPOXKalHICTIO Ha OLTBII BHCOKOMY piBHI (perioHaJbHOMY), MOTOJHI JaHi He
OynM IOCTaTHIMH Il TOYHOTO NIPOTHO3YBaHHS BapiaOeNbHOCTI BpOXKAaHOCTI Ha piBHI mojs. Pe3ynbratu mokasany, mo KyKypyaAs3a
Masia HalBHUILy BapiaOeNbHICTh BPOXKAMHOCTI, TOMI SK COHSIIHHMK 1 O3MMa MIIEHHL MOKa3yBadu OuIbIN cTaOinpHI Bpoxai. s
KyKypyI3d MOJeib MPOJEMOHCTPYBaja BiZHOCHO BHCOKI MPOTHOCTHYHI pe3ynbratd 3 R-kBagparom 0,8 ta RMSE 1,5 1/ra.
HaiiBaxxmuBimumMu npenuxTopamMu Oyiid BereTauiifHI iHAeKCH B cepnHi Ta nata ciBOu. HopmamizoBane RMSE mns kykypynsu
craHoBmIO 20%. [ COHSIIHMKAa MOJeNb IOKa3aja HoMipHY TouHicTe 3 R-kBagparom 0,4 Ta RMSE 0,9 1/ra. KmrodoBumu
npexuKTopaMu Oyiu cepernHe 3HaueHHS LAI y TpaBHi Ta smmHi. OnHAK, IPOTHOCTHYHA 3MATHICTH Mojeli Oyira oOMexkeHa, 1o
npu3Beso 1o HopMmamizoBaHoro RMSE 23%. O3mma nnreHuIrs mokasana moAiOHiI pe3yIbTaT 10 COHSMIHMKA 3 R-kBanparom 0,35 ta
RMSE 0,9 1/ra. 3aBAskd BHIIMM CEpeIHIM 3HAYCHHSIM BpokaitHOCTI HopMmaitizoBane RMSE st o3umoi nmenuni ctanoBuio 15%.
3aranoM JOCTiKEHHs IEMOHCTPY€E Pi3HI PiBHI TOYHOCTI MOJEINI A Pi3HUX KYJIbTYp, IPU IbOMY KyKypy[3a MOKa3ana HalKparry
MIPOTHOCTHYHY €(eKTUBHICTh. Pe3ynbTaTi TaKoX IiAKPECIIOI0Th HEOOXITHICTh BpaxyBaHHs JOAATKOBUX (DAKTOPIB IS TIOKPAIICHHS
MPOTHOCTHYHHX MOJIeJIei Ha piBHI OIS (TAKKX SIK BIACTUBOCTI IPYHTY, MIKPOKIIIMAT 1 J€TAIbHIN arpOMEHEKMEHT).

Kiro4oBi ci10Ba: BpokaifHiCTh, IPOTHO3, KYJIBTYPH, IOJI€, CYITyTHUKOBI JaHi, MalllUHHE HABYaHHS.
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