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Yield prediction at the field level is crucial for optimizing agricultural productivity and ensuring food security. This study analyzes 

the yield variability of maize, sunflower, and winter wheat across 481 agricultural fields in two regions of Ukraine (Kyiv and 

Cherkasy) over a three-year period (2020–2022). The objective was to explore the influence of environmental factors on crop yield 

predictions using satellite and weather data, sowing dates, and field area as predictors in a machine learning model. The study 

employed Random Forest model. Satellite data from Sentinel-2, including NDVI and LAI values, were used to assess crop conditions 

during the growing season. For each investigated year during the April-September period, focusing solely on the NDVI and LAI 

values for each month. Weather data, especially precipitation, was also examined but found to have limited predictive power due to 

the coarser spatial resolution of the gridded data (6.5 km), which cannot fully account for the local variations within each grid cell. 

As a result, despite the strong correlation between precipitation and yield at a broader scale (regional), weather data alone were not 

sufficient to accurately predict yield variability at the field level. The results showed that maize had the highest yield variability, 

while sunflower and winter wheat exhibited more stable yields. For maize, the model demonstrated strong predictive performance, 

with an R-squared of 0.8 and an RMSE of 1.5 t/ha. The most significant predictors were vegetation indices in August and sowing 

date. The normalized RMSE for maize was 20%. For sunflower, the model exhibited moderate accuracy, with an R-squared of 0.4 

and an RMSE of 0.9 t/ha. Key predictors included the average LAI in May and July. However, the model’s predictive power was 

limited, resulting in a normalized RMSE of 23%. Winter wheat showed similar performance to sunflower, with an R-squared of 0.35 

and an RMSE of 0.9 t/ha. Due to higher average yields, the normalized RMSE for winter wheat was 15%. Overall, the study 

demonstrates varying levels of model accuracy across different crops, with maize achieving the best predictive performance. The 

results also emphasize the need for additional factors, such as soil properties, microclimates, and detailed field management 

practices, to improve predictive models at the field level. 
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1. Introduction 

 

Accurate yield prediction at the field level is pivotal 

for modern agriculture, as it influences key decisions 

related to resource management, market strategies, and 

food security. With the growing demand for efficient 

agricultural practices and the pressures of climate 

change, the need for precise and timely yield forecasts 

has never been greater. Yield prediction at the field level 

is critical for optimizing agricultural practices and 

managing resources. Accurate forecasting of crop yields 

enables farmers to make informed decisions about 

planting, fertilization, irrigation, and harvesting, thereby 

enhancing productivity and sustainability. Traditional 

yield prediction methods (Kryvobok, 2018), which often 

rely on historical yield data and agronomic models, have 

limitations in their ability to incorporate real-time 

environmental variability and spatial heterogeneity as 

well as the simple machine learning model, with just a 

single predictor, lacks the capability to deliver high-

accuracy predictions (Kryvoshein, 2023). 
 

____ 
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Recent advances in remote sensing technology and 

machine learning offer new opportunities to enhance 

yield prediction accuracy. Liu and Zhang provide an 

overview of remote sensing methods used for crop yield 

estimation and forecasting, highlighting key technologies 

(Liu & Zhang, 2022). They also focus on the use of 

satellite data combined with machine learning models 

for wheat yield prediction, showcasing its practical 

applications (Liu, Zhang & Liu, 2021). Khan and 

Hameed review the role of machine learning approaches 

in crop yield prediction, identifying both progress and 

challenges in the field (Khan & Hameed, 2023). Miao, 

Liu and Wang explore deep learning techniques 

integrated with remote sensing for field-scale crop yield 

prediction (Miao, Liu & Wang, 2024). Miller and Scott 

discuss advancements in forecasting crop yields by 

combining satellite and ground-based data (Miller & 

Scott, 2023). Zhang and Li evaluate the effectiveness of 

multi-source data combined with machine learning 

techniques for improving crop yield prediction (Zhang & 

Li, 2021). Huang and Liu present a real-time crop yield 

prediction model using remote sensing and ensemble 
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learning methods (Huang & Liu, 2022). Desloires et al. 

focus on predicting out-of-year corn yields by 

integrating Sentinel-2 satellite imagery with machine 

learning methods, offering insights into accurate field-

level yield forecasting (Desloires et al., 2023). In 

(Marszalek, Körner & Schmidhalter, 2022) explore the 

use of satellite and climatological data for predicting 

multi-year winter wheat yields at the field level, 

demonstrating the value of combining remote sensing 

and climate information for improved yield predictions. 

Additionally, Hosseini et al. investigate soybean yield 

prediction at the field scale using Sentinel-1 data, 

showcasing the potential of radar satellite data in crop 

yield forecasting (Hosseini et al., 2020). These studies 

highlight the growing role of satellite data in enhancing 

the accuracy and reliability of yield predictions in 

agriculture. 

Machine learning techniques have proven to be 

highly effective in processing and analyzing these 

complex datasets. Algorithms such as regression models, 

decision trees, and neural networks can identify patterns 

and relationships between various input factors, 

improving the precision of yield forecasts (Khan & 

Hameed, 2023). For example, Liu et al. (2021) 

demonstrated how integrating satellite data with machine 

learning models significantly enhanced wheat yield 

predictions. Additionally, deep learning approaches have 

shown promise in processing high-resolution satellite 

images to make real-time yield forecasts (Chen & 

Zhang, 2022; Zhou & Liu, 2024). 

The combination of remote sensing data with 

machine learning techniques has led to the development 

of sophisticated predictive models that address the 

limitations of traditional methods. These models 

incorporate diverse data sources, such as weather data, 

soil properties, and crop-specific information, to 

generate accurate field-level yield predictions 

(Hernandez & Ritchie, 2023). Studies by Kumar and 

Verma (2023) and Shao & Chen (2023) highlight how 

integrating multiple data sources and employing 

ensemble models can improve prediction accuracy and 

reliability. 

However, challenges remain in applying these 

advanced techniques universally across different crop 

types and geographic regions. In the subsequent sections, 

we will outline the methodology employed to build and 

validate our model, present the results of our field-level 

assessments, and discuss the implications of our findings 

for future research.  

 

2. Materials and Methods 

 

The yield data for this study were obtained from 481 

agricultural fields–encompassing those with identical 

geometry but different crops cultivated in various years–

across two regions of Ukraine (Fig. 1): Kyiv, which 

accounted for approximately 10% of the fields, and 

Cherkasy, comprising about 90%. The data covers a 

three-year period from 2020 to 2022 and includes crops 

such as wheat (146 fields), maize (223 fields), and 

sunflower (112 fields). 
 

 

 
Fig. 1. Location of agricultural fields considering in this study 

(area of interest AOI) 

 

Satellite data, sowing dates, and field area were 

primarily utilized as key predictors to develop a machine 

learning model for yield forecasting. While 

meteorological data were also examined during the 

modeling process, their contribution to predictive power 

was found to be limited at field level (please refer to the 

discussion section for further insights on this topic). 

Given the relatively small number of agricultural 

fields and predictors in this study, advanced machine 

learning algorithms like neural networks were deemed 

less suitable. Instead, a simpler yet effective approach, 

Random Forest, was applied. 

 

2.1. Input data 

Satellite data were obtained from Sentinel-2 images 

for each investigated year during the April-September 

period, focusing solely on the NDVI (Normalized 

Difference Vegetation Index) and LAI (Leaf Area Index) 

values for each month. NDVI was calculated using red 

(Red) and near-infrared (NIR) bands based on following 

equation: 

(NIR Red)
NDVI .

(NIR +Red)

−
=                (1) 

In this study, we estimated Leaf Area Index (LAI) 

using a Radiative Transfer Model (RTM) implemented 

in the Sentinel Application Platform (SNAP).  

We used the minimum, average, and maximum 

indices of LAI and NDVI for each month of the growing 

season as satellite-based predictors. 

Weather data were used in the form of gridded data 

(6.5 km resolution), generated from measurements 

collected by ground-based meteorological stations. 

As previously mentioned, field area and sowing date 

were additional input parameters for the ML model. 

Overall, the average field sizes are approximately  

70 hectares for maize, 80 hectares for sunflower, and  

70 hectares for wheat. Table 1 presents the average field 

area for each crop by year, along with the mean sowing 

dates. 
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Table 1. Averaged field area (ha) and sowing date  

for each crop by year 

Year Crop Field area Sowing date 
Number  

of fields 

2020 

Maize 70.6 15-apr 110 

Sunflower 74 7-apr 37 

Winter Wheat 65.1 5-oct (2019) 46 

2021 

Maize 73 20-apr 63 

Sunflower 92.7 5-may 34 

Winter Wheat 62.1 25-sep (2020) 50 

2022 

Maize 62.6 3-may 50 

Sunflower 70.4 1-may 41 

Winter Wheat 79.5 28-sep (2021) 50 

 

The actual yield data, analyzed as the target variable, 

was examined based on distribution for each crop. Maize 

showed the widest distribution, with a mean of 6.5 t/ha 

and a standard deviation of 3.5 t/ha. In contrast, the 

distributions for sunflower and winter wheat were 

narrower, with sunflower having a mean of 3.3 t/ha and a 

standard deviation of 1.2 t/ha, and winter wheat a mean 

of 5.9 t/ha and a standard deviation of 1.1 t/ha (Fig. 2). 

To achieve accurate predictions, we needed to identify 

predictors that could best describe the variability of our 

target variable. In Table 2, you can see the list of all 

predictors used to train our ML model. 
 

 
 

Fig. 2. Boxplots of actual yield data distribution per crops  

for 2020–2022 

 

Table 2. List of predictors used to train the ML model 
 

Type of  

predictors 
Predictors 

Satellite-based 

a) Monthly-averaged LAI and NDVI for 

May, June, July, August, and September; 

b) Monthly maximum LAI and NDVI for the 

same months 

c) Monthly minimum LAI and NDVI for the 

same months 

Meteorological 

a) Sum of temperature for March, April, 

May, June, July, August, and September; 

b) Sum of precipitation for the same months 

Other 
a) Date of sowing; 

b) Field area 

 

2.2. Machine learning algorithms 

In this study, the caret package in R was utilized for 

yield prediction, employing a systematic approach. The 

process began with data preparation, including cleaning 

and feature engineering, followed by splitting the dataset 

into training and testing subsets. A control framework 

was established using the “trainControl()” function to 

implement cross-validation (10-fold) for model 

evaluation. The model was trained using the “train()” 

function with the method set to 'rf' (which stands for 

Random Forest), allowing for the specification of 

various algorithms and hyperparameter tuning through a 

grid search. Model performance was assessed on the test 

set using metrics such as RMSE and R². Additionally, 

feature importance was analyzed to understand the 

contributions of different variables to yield prediction. 

The model has been created for each crop, separately. 

The process culminated in model deployment for future 

predictive applications, demonstrating the effectiveness 

of our approach in building robust machine learning 

models for agricultural yield forecasting. 

 

3. Results 

 

3.1. Maize 

Based on actual maize yield data, we observe 

significant variation across years (Fig. 3). In 2020, the 

yield reached a minimum value of approximately 3.8 

tons per hectare on averaged, which is unusually low for 

this crop. One possible reason for this low yield is the 

occurrence of incorrect agronomic practices, coupled 

with insufficient rainfall during a critical stage of maize 

development. In July 2020, the Cherkasy region (where 

nearly all the tested maize fields are located) received 

only 34 mm of precipitation, which is significantly lower 

compared to 75 mm and 56 mm in 2021 and 2022, 

respectively. 
 

 
 

Fig. 3. Distribution of actual maize yield data by year 
 

As mentioned in section 2.2, the Random Forest 

model was chosen for crop yield prediction. The trained 

model yielded satisfactory results on the holdout data, 

with an R-squared of approximately 0.8 and an RMSE of 

around 1.5 t/ha. The feature importance graph was used 

to identify the most significant predictors. As shown in 

Fig. 4, the top predictors for maize include vegetation 

indices in August, as well as the "datsow" variable, 

which refers to the sowing date (in day-of-the-year 

format). The normalized RMSE, calculated based on the 

average of the mean actual yields for each year  

(2020: 3.8 t/ha, 2021: 10.3 t/ha, 2022: 7.8 t/ha), is 

approximately 20%. 

The feature importance graph in a Random Forest 

algorithm visually represents how important each feature 

(predictor) is in making predictions for the model. 
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Random Forest, an ensemble learning algorithm based 

on decision trees, calculates the importance of each 

feature by evaluating its contribution to reducing 

impurity (such as Gini impurity or entropy) at each 

decision node in the trees. Each line in the graph 

represents the importance of a specific feature in the 

model. The longer the bar, the more important the 

feature is for making accurate predictions (Breiman, 

2001). 
 

 
 

Fig. 4. Feature importance graph for maize prediction  

(avg – average; aug – August; sep – September;  

datsow – date of sowing) 

 

3.2. Sunflower 

The actual sunflower yield data shows little variation 

across the years in the testing period (see Fig. 5). In 2020 and 

2022, the average yield was around 3 t/ha, while in 2021, it 

was 4 t/ha. The most likely explanation for this difference is 

the more favorable weather conditions in 2021 (good 

precipitation regime within AOI). 
 

 
 

Fig. 5. Distribution of actual sunflower yield data by year 
 

Additionally, as shown in Fig. 5, there are some 

extreme values for actual yield in certain fields 

(especially in 2021) that were excluded by the algorithm 

during model training. The cross-validation process 

shows that the model, on average, demonstrated 

moderate accuracy with an R-squared of 0.4 and an 

RMSE of approximately 0.9 t/ha. The top predictors 

were the average LAI for May and July (see Fig. 6). 

However, the selected predictors did not provide 

sufficient predictive power, as evidenced by a 

normalized RMSE of approximately 23%. 
 

 
 

Fig. 6. Feature importance graph for sunflower prediction  
(avg – average; may – May; jul – July; aug – August;  

min – minimum) 

 

3.3. Winter wheat 

The trend in actual winter wheat yields over the years 

is similar to that of sunflower yields. The yield was 

nearly at 5.5 t/ha in both 2020 and 2022, while in 2021, 

it reached 6.5 t/ha (Fig. 7). 
 

 
 

Fig. 7. Distribution of actual winter wheat yield data by year 

 

The relatively consistent yield pattern for winter wheat 

makes it more difficult to identify suitable predictors that 

can capture all the fluctuations in its yield. The lack of 

extreme yield variation means that finding robust 

predictors to explain this variability is challenging. This is 

reflected in the moderate R-squared value (0.35) in yield 

prediction models, indicating that while some predictors 

can explain part of the yield variation (Fig. 8), the models 

cannot fully account for all of it. 
 

 
 

Fig. 8. Feature importance graph for winter wheat prediction 
(Pr_m – precipitation in March; avg – average; jun – June;  

aug – August; min – minimum) 
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In the Fig. 8 the graph reveals that the sum of March 

precipitation (Pr_m) is the most significant predictor 

(precipitation during this period is critical for the 

recovery of active plant growth after winter), followed 

by the area of the field. These two features have the 

highest importance scores, indicating that March rainfall 

and field size are the most influential factors in 

predicting the winter wheat yield. Next, the graph shows 

NDVI and LAI for June, but their importance is slightly 

lower than that of March precipitation and field area.  

The model achieves RMSE of 0.9 t/ha, reflecting a 

moderate level of prediction accuracy. Interestingly, this 

RMSE is the same as the RMSE for sunflower, 

indicating that the Random Forest model is equally 

effective in predicting the yield of both crops with a 

comparable level of precision. When normalized by the 

average yield of winter wheat, the normalized RMSE is 

approximately 15%. 

 

4. Discussion 

 

In agricultural research, one of the key objectives is 

to understand the variability of crop yields, as it plays a 

crucial role in optimizing production. Maize, sunflower, 

and winter wheat were the three crops tested in this 

study, each exhibiting varying levels of yield 

fluctuations. These variations are influenced by various 

environmental and climatic factors, and analyzing them 

can provide valuable insights for improving crop 

management strategies. 

When comparing the yield variability of winter 

wheat, sunflower, and maize, distinct patterns emerge. 

Winter wheat and sunflower both exhibit relatively low 

yield variability, while maize shows significantly higher 

fluctuations. The standard deviation of winter wheat 

yield is 1.2 tons per hectare (t/ha), and sunflower has a 

slightly higher standard deviation of 1.3 t/ha. In contrast, 

maize experiences a much higher standard deviation of 

3.4 t/ha. This indicates that winter wheat and sunflower 

yields are generally more stable, while maize yields are 

more sensitive to environmental fluctuations. 

The lower variability in winter wheat and sunflower 

yields suggests that environmental factors influencing 

their growth are more predictable or consistent. This 

stability in yield variability makes these crops less 

sensitive to sudden changes in temperature, rainfall, or soil 

conditions. On the other hand, maize, with its higher yield 

variability, is more vulnerable to fluctuations in these 

environmental factors. This greater sensitivity to changes 

creates more uncertainty in predicting maize yields. 

The relatively consistent yield patterns for winter 

wheat and sunflower make it more difficult to identify 

suitable predictors to capture the full range of yield 

variability. With less pronounced fluctuations, finding 

robust predictors that explain this variability becomes a 

challenge. As a result, models designed to predict yields 

for these crops tend to have a moderate R-squared value 

(0.35-0.4), suggesting that while some predictors can 

explain part of the yield variation, they cannot fully 

account for all of it. 

In contrast, the higher yield variability of maize 

provides more opportunities to identify influential 

environmental factors, which could make predicting 

maize yields somewhat easier. However, this also means 

that maize yield prediction models tend to be less stable 

and may require more complex factors to improve their 

accuracy. 

In our analysis, it is evident that weather, particularly 

precipitation, plays a significant role in determining the 

actual yield levels of crops. However, a key challenge 

arises from the fact that we only have access to gridded 

weather data with a spatial resolution of approximately 6.5 

km. Each grid cell encompasses several fields, which may 

have varying yield outcomes due to differences in local 

conditions. This means that the variability in yield across 

individual fields within a single grid cell is not adequately 

captured by the average weather data for that grid. 

While weather data, such as March precipitation, 

showed strong importance in predicting winter wheat 

yields in this study, its effectiveness at the field level is 

limited. The gridded weather data cannot fully account 

for the local variations within each grid cell. As a result, 

despite the strong correlation between precipitation and 

yield at a broader scale, weather data alone were not 

sufficient to accurately predict yield variability at the 

field level. Other factors, such as soil properties, field 

management practices, and microclimates, likely 

contribute to the yield differences within the same grid 

and need to be considered for more precise predictions. 

It is important to note that the forecasting lead time 

for yield prediction, based on the top predictors, is 

typically around one month before harvest. For maize, 

usually harvested in September in Ukraine, the key 

predictors are vegetation indices from August. For 

sunflower, typically harvested in August, the main 

predictors are from May and July. For winter wheat, 

harvested at the end of June or early July, the primary 

predictors are from March and June. 

The normalized RMSE (Root Mean Square Error) 

measures the accuracy of the model's predictions relative 

to the average yield of each crop. For maize, the 

normalized RMSE is approximately 20%, reflecting a 

relatively high level of accuracy (80%) in yield 

predictions. For sunflower, the normalized RMSE is 

slightly higher at 23%, suggesting comparable predictive 

performance (77%). For winter wheat, the normalized 

RMSE is around 15%, indicating a lower prediction 

error relative to its average yield. 

 

5. Conclusion 

 

This study explored the variability in crop yields of 

maize, sunflower, and winter wheat, emphasizing the 

role of environmental and climatic factors through 

vegetation indices, weather and some agromanagement 

data. The results highlight significant yield fluctuations 

in maize, with lower yields in 2020 due to adverse 

weather and probably agronomic practices, while 

sunflower and winter wheat displayed more consistent 

yield patterns over the years. 

The Random Forest model, employed for yield 

prediction, demonstrated varying degrees of accuracy 

across crops. For maize, the model achieved a strong  

R-squared of 0.8 and an RMSE of 1.5 t/ha, with 

vegetation indices and sowing dates as key predictors.  

In contrast, sunflower and winter wheat had lower 
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prediction accuracy, with RMSE values of 0.9 t/ha for 

both crops and moderate R-squared values, reflecting the 

challenges of predicting yields for crops with more 

stable yields and less pronounced fluctuations. 

While weather, particularly March precipitation, 

proved to be a significant predictor for winter wheat, the 

spatial resolution of the gridded weather data limited its 

ability to capture yield variability at the field level. This 

highlights the need for incorporating additional factors 

such as soil properties, field management practices, and 

microclimates to improve prediction models and better 

account for the variability within individual fields. The 

study underscores the complexity of crop yield 

prediction and the need for more precise data to enhance 

agricultural decision-making. 
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ПРОГНОЗУВАННЯ ВРОЖАЙНОСТІ НА РІВНІ ПОЛЯ 

Кривошеїн O. O.1, 2, Кривобок O. A.1, 2, Жильченко Д. О.1 
1 Earth Observing System (EOS) Data Analytics, 01025, м. Київ, вул. Десятинна, 5 
2 Український гідрометеоролоічний інститут, 03028, м. Київ, проспект Науки, 37 

Прогнозування врожайності на рівні поля є критично важливим для оптимізації сільськогосподарської продуктивності та 

забезпечення продовольчої безпеки. В цьому дослідженні проведений аналіз варіабельності врожайності кукурудзи, 
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соняшнику та озимої пшениці на 481 сільськогосподарському полі в двох регіонах України (Київська та Черкаська області) 

за три роки (2020–2022). Метою було дослідити вплив навколишніх факторів на прогнози врожайності культур за 

допомогою супутникових і погодних даних, дат сівби та площі полів як предикторів у моделі машинного навчання.  

У дослідженні було використано модель Random Forest. Супутникові дані з Sentinel-2, включаючи значення NDVI та LAI, 

використовувалися для оцінювання стану культур під час вегетаційного періоду. Для кожного року дослідження в період з 

квітня по вересень основна увага приділялася значенням NDVI та LAI для кожного місяця. Погодні дані, зокрема опади, 

також були проаналізовані, але їх прогностична здатність виявилася обмеженою через значне просторове розрізнення даних 

сітки грідів (6.5 км), що не дає змоги повною мірою врахувати місцеві варіації в межах кожного гріду. Як результат, 

незважаючи на сильну кореляцію між опадами та врожайністю на більш високому рівні (регіональному), погодні дані не 

були достатніми для точного прогнозування варіабельності врожайності на рівні поля. Результати показали, що кукурудза 

мала найвищу варіабельність врожайності, тоді як соняшник і озима пшениця показували більш стабільні врожаї. Для 

кукурудзи модель продемонструвала відносно високі прогностичні результати з R-квадратом 0,8 та RMSE 1,5 т/га. 

Найважливішими предикторами були вегетаційні індекси в серпні та дата сівби. Нормалізоване RMSE для кукурудзи 

становило 20%. Для соняшника модель показала помірну точність з R-квадратом 0,4 та RMSE 0,9 т/га. Ключовими 

предикторами були середнє значення LAI у травні та липні. Однак, прогностична здатність моделі була обмежена, що 

призвело до нормалізованого RMSE 23%. Озима пшениця показала подібні результати до соняшника з R-квадратом 0,35 та 

RMSE 0,9 т/га. Завдяки вищим середнім значенням врожайності нормалізоване RMSE для озимої пшениці становило 15%. 

Загалом дослідження демонструє різні рівні точності моделі для різних культур, при цьому кукурудза показала найкращу 

прогностичну ефективність. Результати також підкреслюють необхідність врахування додаткових факторів для покращення 

прогностичних моделей на рівні поля (таких як властивості ґрунту, мікроклімат і детальний агроменеджмент). 

Ключові слова: врожайність, прогноз, культури, поле, супутникові дані, машинне навчання. 
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