Системи CeO₂—Ln₂O₃ (Ln = лантаноїди ітрієвої підгрупи, Y₂O₃)

А. О. Макудера^{1*}, С. М. Лакиза², О. В. Дуднік¹

¹Інститут проблем матеріалознавства ім. І. М. Францевича НАН України Україна, 03142, Київ, вул. Омеляна Пріцака, 3 ^{*}E-mail: alina.makudera@gmail.com

²ENSEMBLE 3 Центр передового досвіду з нанофотоніки, передових матеріалів та нових технологій, заснованих на вирощуванні кристалів, Варшава, Польща

На основі аналізу даних літератури з побудованих експериментально діаграм стану систем CeO₂—Ln₂O₃ (Ln = Tb—Lu), а також температур поліморфних перетворень оксидів рідкісноземельних елементів (РЗЕ) побудовано орієнтовні діаграми стану вказаної системи у всьому інтервалі температур і концентрацій.

Ключові слова: оксиди РЗЕ, Y₂O₃, CeO₂, поліморфізм оксидів РЗЕ, діаграми стану.

Вступ

Взаємодія між оксидами лантаноїдів представляє інтерес у зв'язку з використанням їх сумішей для стабілізації діоксидів цирконію та гафнію для одержання сучасних теплобар'єрних покриттів [1]. Окремий інтерес викликає взаємодія діоксиду церію з оксидами лантаноїдів, оскільки CeO₂ є основним компонентом сумішей легких оксидів лантаноїдів.

Характерною особливістю оксидів лантаноїдів є наявність п'яти поліморфних модифікацій: низькотемпературної кубічної С, моноклінної В, низькотемпературної гексагональної А, високотемпературних гексагональної Н і кубічної Х.

Взаємодія в системах Ce₂O₃—Ln₂O₃ (Ln = лантаноїди ітрієвої підгрупи Tb—Lu, Y) не досліджувалась. Це зумовлено, в першу чергу, тим, що церій в оксидах існує переважно у формі Ce⁴⁺ (CeO₂), і саме ця сполука перспективна для створення твердих електролітів паливних елементів, що працюють при середніх і помірних температурах (600—800 °C), високотемпературної конструкційної кераміки (теплоізоляційних матеріалів, складових частин ядерних реакторів), біоінертних керамічних матеріалів для медичної діагностики, імплантатів та ін.

Мета даної роботи — дослідити взаємодію саме в системах CeO₂— Ln₂O₃ (Ln = лантаноїди ітрієвої підгрупи, Y₂O₃).

Діоксид церію кристалізується у кубічній типу флюориту кристалічній гратці і не має поліморфних перетворень у всьому інтервалі температур аж до плавлення при 2400 °C.

Аналіз друкованих джерел зі взаємодії в системах за участі СеО₂ [2—19] засвідчив, що експериментально вивчено системи CeO₂—Ln₂O₃, де Ln = = Dy, Er, Yb, Lu, Y [2]. Рівноваги досліджено при температурах не вище 1500—1700 °С. Це пояснюється зміною валентності церію з 4+ до 3+ за ISSN 2709-510X. УСПІХИ МАТЕРІАЛОЗНАВСТВА, 2023, № 7 **61**

вищих температур, втратою кисню і переходом до рівноваг у системі Ce_2O_3 — Ln_2O_3 . Отже, в інтервалі до 1500 °C встановлено єдиний характер взаємодії, а саме утворення обмежених областей розчинності різної протяжності на основі вихідних оксидів і двофазних областей, що їх розділяють (рис. 1, [2]). Детальні дослідження фазових співвідношень у цих подвійних системах свідчать про те, що ширина двофазних областей (тобто співіснування фаз F та C) зменшується зі збільшенням радіуса Ln^{3+} (рідкісноземельних іонів) [20].

Єдине дослідження взаємодії в системі CeO₂—La₂O₃ до температур плавлення здійснено розрахунками методом CALPHAD [21] (рис. 2). З цього дослідження нами використано два важливі висновки: 1) обидва компоненти системи утворюють безперервний ряд твердих розчинів з кубічною структурою і 2) перетворення кристалічних структур фаз на основі La₂O₃ відбувається за перитектоїдним механізмом. Надалі ці висновки застосовано для конструювання гіпотетичних діаграм стану усіх систем CeO₂—Ln₂O₃ (Ln = Tb—Lu).

Слід зауважити, що у вказаних системах фаз зі структурою типу перовскиту CeLnO₃ не виявлено. Утворення такої фази характерно для систем, де обидва лантаноїди мають валентність 3⁺, а в нашому випадку церій чотиривалентний.

Ряд робіт присвячено синтезу і вивченню функціональних властивостей фаз $Ln_2Ce_2O_7$, які називають цератами РЗЕ [22, 23]. Вони цікаві для застосування як тверді електроліти паливних комірок, кисневі датчики, носії каталізаторів, вогнетриви для печей, термобар'єрні покриття та ін. Але ці фази є не індивідуальними сполуками, а твердими розчинами CeO_2 — Ln_2O_3 зі структурою типу флюориту [24—26]. Тому на діаграмах стану систем CeO_2 — Ln_2O_3 вони не показані як індивідуальні сполуки зі структурою, наприклад, типу пірохлору.

Закономірності зміни протяжності областей гомогенності на основі вихідних оксидів полягають у зменшенні розчинності із зниженням температури, що є загальновідомим явищем. Констатуємо, що розчинність на основі CeO₂ вища, ніж на основі оксидів лантаноїдів. Зазначимо, що точне встановлення таких областей експериментально є складним

Рис. 1. Фазові рівноваги в системі CeO₂—Y₂O₃ до 1700 °C [2].

Рис. 2. Розрахована діаграма стану системи CeO₂—La₂O₃ з доступними експериментальними даними [21].

ISSN 2709-510Х. УСПІХИ МАТЕРІАЛОЗНАВСТВА, 2023, № 7

завданням і для кожної з недосліджених систем (CeO₂—Ln₂O₃ (Ln = Tb, Ho, Tm)) точні межі розчинності можуть бути встановлені лише із застосуванням прецизійних методів дослідження.

Будову гіпотетичних діаграм стану систем CeO_2 — Ln_2O_3 (Ln = Tb—Lu) у широкому інтервалі температур аж до плавлення наведено на рис. 3. Метод побудови цих діаграм стану полягає у наступному.

- Компоненти систем нижче солідуса утворюють неперервні ряди твердих розчинів на основі кубічної структури типу флюориту CeO₂ [22].
- Зі зниженням температури у цих твердих розчинах відбуваються фазові перетворення за перитектоїдним механізмом через наявність поліморфних перетворень Н ≒ А ≒ В ≒ С у оксидах Тb—Lu.
- 3. З переходом від Тb до Lu двофазна область F + C розширюється з відповідним звуженням областей фаз F та C [20].

ISSN 2709-510X. УСПІХИ МАТЕРІАЛОЗНАВСТВА, 2023, № 7

Акцентуємо увагу на тому, що перевірити експериментально будову цих діаграм стану можливо із застосуванням високих тисків кисню, які пригнічуватимуть дисоціацію CeO₂ до Ce₂O₃. Крім цього, розрахункові методи [21] також могли б дати необхідну інформацію, хоча до неї слід підходити критично.

Закономірності будови гіпотетичних діаграм стану систем CeO₂— Ln₂O₃ (Ln = Tb—Lu) полягають у наступному.

- 1. Повна розчинність компонентів нижче солідуса з утворенням твердих розчинів зі структурою типу флюориту F.
- 2. Поява областей твердих розчинів на основі поліморфних модифікацій оксидів лантаноїдів Н, А, В та С різної протяжності, що приводить до виникнення нижче солідуса каскадів перитектоїдних перетворень. В ряду Тb—Lu температури переходів поступово підвищуються, що зумовлено зростанням температур поліморфних перетворень оксидів Tb—Lu [27].
- Області твердих розчинів на основі високотемпературної кубічної Х-фази Ln₂O₃ на гіпотетичних діаграмах стану відсутні, оскільки Х-фаза утворює безперервні тверді розчини з фазою F-CeO₂, яка має флюоритоподібну кубічну структуру. Подібність структур (кубічна сингонія) дозволяє утворювати неперервні ряди твердих розчинів.

Висновки

На основі аналізу взаємодії у побудованих експериментально системах CeO₂—Ln₂O₃ (Ln = Dy, Er, Yb, Y) створено гіпотетичні діаграми стану систем ряду CeO₂—Ln₂O₃ (Ln = Tb—Lu, Y) з корективами, згідно з закономірностями зміни взаємодії при переході від Tb до Lu.

Компоненти систем проявляють повну розчинність нижче солідуса з утворенням твердих розчинів зі структурою типу флюориту F.

Поява нижче солідуса областей твердих розчинів на основі поліморфних модифікацій оксидів лантаноїдів H, A, B та C різної протяжності призводить до утворення каскадів перитектоїдних перетворень. З переходом в ряду Tb—Lu температури перетворень поступово підвищуються, що зумовлено зростанням температур поліморфних перетворень оксидів Tb—Lu.

Нижче 1700 °С на діаграмах стану існують дві області розчинності на основі F (CeO₂) і C (Ln₂O₃) твердих розчинів, розділених двофазною областю F + C. З переходом від Tb до Lu області твердих розчинів F і C звужуються. Звужуються вони також і з пониженням температури.

Експериментальна перевірка будови діаграм стану розглянутих систем можлива після проведення експериментів з використанням підвищених тисків кисневмісних середовищ або на основі термодинамічних розрахунків.

ISSN 2709-510X. УСПІХИ МАТЕРІАЛОЗНАВСТВА, 2023, № 7

Список літератури

- Lakiza S.M., Hrechanjuk M.I., Ruban O.K., Red'ko V.P., Hlabaj M.S., Myloserdov O.B., Dudnik O.V., Prokhorenko S.V. Thermal barrier coatings: current status, search and analysis. *Powder Metallurgy and Metal Ceramics*. 2018. Vol. 57, No. 1—2. P. 82—113. https://doi.org/10.1007/s11106-018-9958-0
- Longo V., Podda L. Phase equilibrium diagram of the system ceria-yttria for temperatures between 900 and 1700 °C. J. Mater. Sci. 1981. Vol. 16. P. 839—841.
- Longo V., and Podda L. Relazioi tra le fasi allo stato solido nel sistema CeO₂—ZrO₂— Y₂O₃ tra 1700 e 1400 °C. *Ceramica* (Florence). 1984. Vol. 37, No. 5. P. 18—20.
- Pepin J.G., Vance E.R, Mccarthy G.J. Subsolidus phase relations in the systems CeO₂—RE₂O₃ (RE₂O₃ = C-type rare earth sesquioxide. *J. Solid State Chem.* 1981. Vol. 38. P. 360—367. https://doi.org/10.1016/0022-4596(81)90066-9
- 5. Hinatsu Y., Muromura T. Phase relations in the systems ZrO_2 — Y_2O_3 — Nd_2O_3 and ZrO_2 — Y_2O_3 — CeO_2 . *Mater. Res. Bull.* 1986. Vol. 21. P. 1343—1349. https://doi.org/10.1016/0025-5408(86)90069-3
- 6. Parvulescu V.I., Vasiliu F., Segal E. Termal behavior of CO₂ laser-irradiated CeO₂ doped with Yb₂O₃. *J. Thermal Analysis*. 1995. Vol. 45. P. 1313–1322.
- Andrievskaya O.R., Red'ko V.P., and Lopato L.M. Interaction of cerium oxide with hafnium, zirconium and yttrium oxides at 1500 °C. *Powder Metallurgy and Metal Ceramics*. 2001. Vol. 40, No. 7–8. P. 405–413.
- Chavan S.V., Mathews M.D., Tyagi A.K. Phase relations and thermal expansion studies in the ceria—yttria system. *J. Amer. Ceram. Soc.* 2004. Vol. 87, No. 10. P. 1977—1980. https://doi.org/10.1111/j.1151-2916.2004.tb06349.x
- Mandal B.P., Grover V., Roy M., Tyagi A.K. X-Ray diffraction and Raman spectroscopic investigation on the phase relation in Yb₂O₃- and Tm₂O₃-substituted CeO₂. J. Amer. Soc. 2007. Vol. 90, is. 9. P. 2961–2965. https://doi.org/10.1111/j.1551-2916.2007.01826
- 10. Андриевская Е.Р., Гусаров В.В., Корниенко О.А., Самелюк А.В. Взаимодействие оксидов церия и эрбия при температуре 1500 °С. Зб. наук. праць ПаТ "УКРНДІ ВогнеТРиВІВ ім. А. С. Бережного". Харків: ПаТ "УКРНДІВ ім. А. С. Бережного". 2012. № 112. С. 133—140.
- Андриевская Е.Р., Корниенко О.А., Макудера А.А., Самелюк А.В., Спасенова Л.Н. Взаимодействие оксидов церия и эрбия при температуре 1100 °С. 36. наук. праць ПАТ "УКРНДІ Вогнетривів ім. А. С. Бережного". 2013. № 113. С. 156—163.
- Корниенко О.А., Андриевская Е.Р., Макудера А.А., Суббота И.С. Фазовые соотношения в системе CeO₂—Yb₂O₃ при температуре 1500 °С. Современные проблемы физического материаловедения. К.: ИПМ НАН Украины. 2013. Вып. 22. С. 3—9.
- 13. Лавриненко О.М., Биков О.І., Батаєв Ю.М., Батаєв М.М., Корнієнко О.А. Вплив температури на структуроутворення в системі CeO₂—Yb₂O₃. *Вісник Одеського Національного університету. Серія Хімія.* 2020. Т. 25, № 3 (75). С. 76—85. https://doi.org/10.18524/2304-0947.2020.3(75).208388
- Andrievskaya O.R., Kornienko O.A., Bykov O.I., Sameliuk A.V., Bohatyriova Z.D. Interaction of ceria and erbia in air within temperature range 600— 1500 °C. J. European Ceram. Soc. 2020. Vol. 40, No. 8. P. 3098—3103. https://doi.org/10.1016/j.jeurceramsoc.2020.03.002
- Andrievskaya O.R., Kornienko O.A., Sameljuk A.V., Sayir A. Phase relation rtudies in the CeO₂—Eu₂O₃ system at 600 to 1500 °C. *J. European Ceram. Soc.* 2020. Vol. 40, No. 3. P. 751—758. https://doi.org/10.1016/j.jeurceramsoc.2019.10

ISSN 2709-510X. УСПІХИ МАТЕРІАЛОЗНАВСТВА, 2023, № 7

- Andrievskaya O.R., Kornienko O.A., Sameljuk A.V., Bykov A.I. Interaction of ceria and ytterbia in air in temperature range 600—1500 °C. *J. European Ceramic Soc.* 2019. Vol. 39, No. 9. P. 2930—2935. https://doi.org/10.1016/j.jeurceramsoc.2019.03.021
- 17. Корнієнко О.А. Взаємодія оксидів церію та ітербію при 1100 °С. Вісник Дніпропетровського університету. Серія Хімія. 2016. Вип. 24 (2). С. 94—101.
- 18. Андриевская Е.Р., Богатырева Ж.Д., Корниенко О.А., Самелюк А.В., Суббота И.С. Взаимодействие оксидов церия и европия при температуре 1500 °С. Современные проблемы физического материаловедения. К.: ИПМ НАН Украины. 2014. Вып. 23. С. 19—27.
- Корниенко О.А. Фазовые соотношения в системе CeO₂—Dy₂O₃ при температуре 1500 °C. Современные проблемы физического материаловедения. К.: ИПМ НАН Украины. 2014. Вып. 23. С. 3—9.
- Grover V., Chavan S.V., Sengupta P., Tyagi A.K. CeO₂—YO_{1.5}—NdO_{1.5} system: An extensive phase relation study. *J. European Ceram. Soc.* 2010. No. 30. P. 3137—3143. https://doi.org/10.1016/j.jeurceramsoc.2010.06.005
- 21. Du Y., Yashima M., Koura T., Kakihana M., and Yoshimura M. *CALPHAD: Comput. Coupling Phase Diagrams Thermochem.* 1996. Vol. 20, No. 1. P. 95–108.
- Zhang H., Liao S., Guan Sh. Preparation and thermal conductivity of Dy₂Ce₂O₇ ceramic material. *J. Mater. Engineering and Performance*. 2012. Vol. 21, No. 6. P. 1046–1050. https://doi.org/10.1007/s11665-011-9950-z
- Salehi Z., Zinatloo-Ajabshir S., Salavati-Niasari M. New simple route to prepare Dy₂Ce₂O₇ nanostructures: Structural and photocatalytic studies. *J. Molecular Liquids*. 2016. Vol. 222. P. 218–224. https://doi.org/10.1016/j.molliq.2016.07.026
- Cao X., Vassen R., Fischer W., Tietz F., Jungen W., Stover D. Lanthanum-cerium oxide as a thermal barrier-coating material for high-temperature applications. *Adv. Mater*. 2003. Vol. 15, No. 7. P. 1438—1442. https://doi.org/10.1002/adma.200304132
- Andrievskaya O.R., Kornienko O.A., Sameljuk A.V., Sayir A. Phase relation studies in the CeO₂—La₂O₃ system at 1100—1500 °C. *J. European Ceram. Soc.* 2011. Vol. 31. P. 1277—1283. https://doi.org/10.1016/j.jeurceramsoc.2010.05.024
- Wang Ch., Wang Y., Zhang A., Cheng Y., Chi F., Yu Z. The influence of ionic radii on the grain growth and sintering-resistance of Ln₂Ce₂O₇(Ln = La, Nd, Sm, Gd). *J. Mater. Sci.* 2013. Vol. 48. P. 8133. https://doi.org/10.1007/s10853-013-7625-x
- 27. Макудера А.О., Лакиза С.М. Взаємодія в системах Y₂O₃—Ln₂O₃ (Ln = Tb—Lu). *Vcnixu матеріалознавства*. 2021. № 2. С. 72—78. https://doi.org/10.15407/materials2021.02.072

References

- Lakiza, S. M., Hrechanjuk, M. I., Ruban, O. K., Red'ko, V. P., Hlabaj, M. S., Myloserdov, O. B., Dudnik, O. V., Prokhorenko, S. V. (2018). Thermal barrier coatings: current status, search and analysis. Powder Metallurgy and Metal Ceramics, Vol. 57, No. 1–2, pp. 82–113. https://doi.org/10.1007/s11106-018-9958-0
- Longo, V., Podda, L. (1981). Phase equilibrium diagram of the system ceria-yttria for temperatures between 900 and 1700 °C. J. Mater. Sci., Vol. 16, pp. 839–841.
- Longo, V., and Podda, L. (1984). Relazioi tra le fasi allo stato solido nel sistema CeO₂—ZrO₂—Y₂O₃ tra 1700 e 1400 °C. Ceramica (Florence), Vol. 37, No. 5, pp. 18—20.
- Pepin, J. G., Vance, E. R., Mccarthy, G. J. (1981). Subsolidus phase relations in the systems CeO₂—RE₂O₃ (RE₂O₃ = C-type) rare earth sesquioxide. J. Solid State Chem., Vol. 38, pp. 360–367. https://doi.org/10.1016/0022-4596(81)90066-9
- 5. Hinatsu, Y., Muromura, T. (1986). Phase relations in the systems ZrO_2 — Y_2O_3 — Nd_2O_3 and ZrO_2 — Y_2O_3 — CeO_2 . Mater. Res. Bull., Vol. 21, pp. 1343—1349. https://doi.org/10.1016/0025-5408(86)90069-3
- 6. Parvulescu, V. I., Vasiliu, F., Segal, E. (1995). Termal behavior of CO₂ laser-irradiated CeO₂ doped with Yb₂O₃. J. Thermal Analysis, Vol. 45, pp. 1313—1322.

ISSN 2709-510X. УСПІХИ МАТЕРІАЛОЗНАВСТВА, 2023, № 7

- Andrievskaya, O. R., Red'ko, V. P., and Lopato, L. M. (2001). Interaction of cerium oxide with hafnium, zirconium and yttrium oxides at 1500 °C. Powder Metallurgy and Metal Ceram., Vol. 40, No. 7–8, pp. 405–413.
- Chavan, S. V., Mathews, M. D., Tyagi, A. K. (2004). Phase relations and thermal expansion studies in the ceria–yttria system. J. Amer. Ceram. Soc., Vol. 87, No. 10, pp. 1977—1980. https://doi.org/10.1111/j.1151-2916.2004.tb06349.x
- Mandal, B. P., Grover, V., Roy, M., Tyagi, A. K. (2007). X-Ray diffraction and Raman spectroscopic investigation on the phase relation in Yb₂O₃- and Tm₂O₃-substituted CeO₂. J. Amer. Soc., Vol. 90, is. 9, pp. 2961—2965. https://doi.org/10.1111/j.1551-2916.2007.01826.x
- Andrievskaya, O. R., Gusarov, V. V., Kornienko, O. A., Sameljuk, A. V., Spasenova, L. M. (2012). Interaction of cerium and erbium oxides at temperature 1100 °C. Zb. Nauk. prac PaT "UKRNDI VogneTruviv im. A. S. Berejnogo". Charkiv: PaT "UKRNDIV im. A. S. Berejnogo", No. 112, pp. 133—140 [in Russian].
- Andrievskaya, O. R., Kornienko, O. A., Makudera, A. A., Sameljuk, A. V. (2013). Interaction of cerium and erbium oxides at temperature 1500 °C. Zb. Nauk. prac PaT "UKRNDI VogneTruviv im. A. S. Berejnogo". Charkiv: PaT "UKRNDIV im. A. S. Berejnogo", No. 113, pp. 156—163 [in Russian].
- Kornienko, O. A., Andrievskaya, O. R., Makudera, A. A., Subbota, I. S. (2013). Phase relationships in the system CeO₂—Yb₂O₃ at temperature 1500 °C. Sovremennye problemy fizicheskogo materialovedeniya, Kiyv: IPM NAN Ukrainy, Vyp. 22, pp. 3—9 [in Russian].
- Lavrinenko, O. M., Bykov, O. I., Bataev, Ju. M., Bataev, M. M., Kornienko, O. A. (2020). Temperature influx on structure in the system CeO₂—Yb₂O₃. Visnyk Odes'kogo Natsional'nogo universiteta. Seriya Chimiya, T. 25, No. 3 (75), pp. 76—85 [in Ukrainian]. https://doi.org/10.18524/2304-0947.2020.3(75).208388
- Andrievskaya, O. R., Kornienko, O. A., Bykov, O. I., Sameljuk, A. V., Bogatyriova, Z. D. (2020). Interaction of ceria and erbia in air within temperature range 600—1500 °C. J. European Ceram. Soc., Vol. 40, No. 8, pp. 3098—3103. https://doi.org/10.1016/j.jeurceramsoc.2020.03.002
- Andrievskaya, O. R., Kornienko, O. A., Sameljuk, A. V., Sayir, A. (2020). Phase relation rtudies in the CeO₂—Eu₂O₃ system at 600 to 1500 °C. J. European Ceram. Soc., Vol. 40, No. 3. P. 751—758. https://doi.org/10.1016/j.jeurceramsoc.2019.10
- Andrievskaya, O. R., Kornienko, O. A., Sameljuk, A. V., Bykov, A. I. (2019). Interaction of ceria and ytterbia in air within temperature range 600—1500 °C. J. European Ceram. Soc., Vol. 39, No. 9, pp. 2930—2935. https://doi.org/10.1016/j.jeurceramsoc.2019.03.021
- Kornienko, O. A. (2016). Interaction of oxides with cerium and terbium at 1100 °C. Visnyk Dnipropetrovskogo universiteta. Seriya Khimia, Vyp. 24 (2), pp. 94—101 [in Ukrainian].
- Andrievskaya, O. R., Bogatyriova, J. D., Kornienko, O. A., Sameljuk, A. V., Subbota, I. S. (2014). Interaction of oxides between cerium and europe at temperature 1500 °C. Sovremennye problemy fizicheskogo materialovedeniya, Kiyv: IPM NAN Ukrainy, Vyp. 23, pp. 19–27 [in Russian].
- Kornienko, O. A. (2014). Phase relationships in the system CeO₂—Dy₂O₃ at temperature 1500 °C. Sovremennye problemy fizicheskogo materialovedeniya, Kiyv: IPM NAN Ukrainy, Vyp. 23, pp. 3—9 [in Russian].
- Grover, V., Chavan, S. V., Sengupta, P., Tyagi, A. K. (2010). CeO₂—YO_{1.5}— NdO_{1.5} system: An extensive phase relation study. J. European Ceram. Soc., No. 30, pp. 3137—3143. https://doi.org/10.1016/j.jeurceramsoc.2010.06.005
- 21. Du, Y., Yashima, M., Koura, T., Kakihana, M., and Yoshimura, M. (1996). CALPHAD: Comput. Coupling Phase Diagrams Thermochem, Vol. 20, No. 1, pp. 95—108.

ISSN 2709-510X. УСПІХИ МАТЕРІАЛОЗНАВСТВА, 2023, № 7

- Zhang, H., Liao, S., Guan, Sh. (2012). Preparation and thermal conductivity of Dy₂Ce₂O₇ ceramic material. J. Mater. Engineering and Performance, Vol. 21, No. 6, pp. 1046—1050. https://doi.org/10.1007/s11665-011-9950-z
- Salehi, Z., Zinatloo-Ajabshir, S., Salavati-Niasari, M. (2016). New simple route to prepare Dy₂Ce₂O₇ nanostructures: Structural and photocatalytic studies. J. Molecular Liquids, Vol. 222. pp. 218–224. https://doi.org/10.1016/j.molliq.2016.07.026
- Cao, X., Vassen, R., Fischer, W., Tietz, F., Jungen, W., Stover, D. (2003). Lanthanumcerium oxide as a thermal barrier-coating material for high-temperature applications. Adv. Mater., Vol. 15, No. 7, pp. 1438—1442. https://doi.org/10.1002/adma.200304132
- Andrievskaya, O. R., Kornienko, O. A., Sameljuk, A. V., Sayir, A. (2011). Phase relation studies in the CeO₂—La₂O₃ system at 1100—1500 °C. J. European Ceramic Soc., Vol. 31, pp. 1277—1283. https://doi.org/10.1016/j.jeurceramsoc.2010.05.024
- Wang, Ch., Wang, Y., Zhang, A., Cheng, Y., Chi, F., Yu, Z. (2013). The influence of ionic radii on the grain growth and sintering-resistance of Ln₂Ce₂O₇ (Ln = La, Nd, Sm, Gd). J. Mater. Sci., Vol. 48, pp. 8133–813. https://doi.org/10.1007/s10853-013-7625-x
- 27. Makudera, A. O., Lakiza, S. M. (2021). Interaction in systems Y₂O₃—Ln₂O₃ (Ln = = Tb—Lu). Uspihi materialoznavstva, No. 2, pp. 72—78 [in Ukrainian]. https://doi.org/10.15407/materials2021.02.072

Hypothetical CeO_2 — Ln_2O_3 phase diagrams (Ln = yttrium lanthanides, Y_2O_3)

A. O. Makudera¹*, S. M. Lakiza², O. V. Dudnik¹

¹I. M. Frantsevich Institute for Problems of Materials Sciences NAS of Ukraine, Kyiv ID ORCID: 0000-0002-9456-2834 *E-mail: alina.makudera@gmail.com ²Center of Excellence in Nanophotonics, Advanced Materials and New

Technologies Based on Crystal Growth, Warsaw, Poland

Based on the analysis of literature data from the experimentally constructed phase diagrams of CeO_2 — Ln_2O_3 systems (Ln = Tb—Lu), as well as the temperatures of polymorphic transformations of oxides of rare earth elements (REEs), approximate phase diagrams of the indicated system were constructed in the entire range of temperatures and concentrations. Cerium dioxide crystallizes in the cubic type of fluorite crystal lattice and has no polymorphic transformations in the entire temperature range until melting at 2400 °C. The solubility based on CeO_2 is higher than based on other lanthanide oxides. The components of the systems show complete solubility below solidus with the formation of solid solutions with a structure of the fluorite-type F. The appearance below the solidus regions of solid solutions based on polymorphic modifications of lanthanide oxides H, A, B and C with different width leads to the formation of cascades of peritectoid transformations. During the transition in the Tb-Lu series, their temperatures gradually increase, which is associated with an increase in the temperatures of polymorphic transformations of Tb-Lu oxides. Hypothetical phase diagrams of the CeO_2 — Ln_2O_3 series (Ln = Tb—Lu, Y) with adjustments according to such regularities of interaction during the transition from Tb to Lu. Experimental verification of the phase diagrams structure of the considered systems is possible when conducting experiments using increased pressures of oxygen-containing media, or by thermodynamic calculations.

Keywords: REE oxides, Y_2O_3 , CeO₂, polymorphic transformation of REE, phase diagrams.

ISSN 2709-510X. УСПІХИ МАТЕРІАЛОЗНАВСТВА, 2023, № 7