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SPECKLE CORRELATION METHOD FOR MONITORING
OF LOCALIZED CORROSION IN WATER ENVIRONMENT
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A new correlation-based method for evaluation of the degree of localized corrosion damage on

rough surface using video inspection data signal is proposed. The possibility to evaluate very

low values of corrosion degree in the presence of high-level noises, typical of water/underwater
inspection of constructions is a key advantage of the proposed method. Results of the correla-

tion measurement system calibration and evaluation of its accuracy are presented. Parameters
of signal models are obtained from laboratory experiments for pitting corrosion testing of steel

samples.
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CHEKJ-KOPEJSLIITHWAI ME TO /1 IVISI MOHITOPUHTY
JOKAJIBHOI KOPO3Ii Y BOJHOMY CEPEJIOBHILII

O. B. JInuak
®isuko-mexaniynuii iHcTUTYT iM. I'. B. Kapnenka HAH Ykpainn, JIbBiB

3anpornoHOBaHO HOBUH KOPEIALIHHINA METO OLIHIOBAaHHS CTYNEHS MOIIKO/DKEHHS JIOKAIbHOIO
KOpO3i€I0 IOPCTKOI NMOBEPXHI 3 BUKOPUCTAHHSAM CUTHaNIB Bineoincnekuii. Sk iHpopmauiinuit
I1apamMeTp 3alpOIIOHOBAHO BUKOPUCTATH HOPMOBaHMI Koe(illieHT KopesL il MK CIeK-CUrHa-
namu (300pakKeHHSMH CIEKJI-CUTHAIIB) CBITJA, PO3CLTHOIO MIKPOHEPIBHOCTSAMH NOCIIIKyBa-
HOI NoBepxHi. BUKOHaHO HOPMYBaHHS 3aJISKHOCTI Koe(illieHTa KOPEJIALil B CTYIEHs MOIIKO-
JUKSHHSI JIOCIIIKYBaHOI ITOBEPXHI JIOKAJIBHOO KOpo3iero. KiTro4uoBoro nepeBaroro 3arpornoHoBa-
HOTO METOY € MOXIIMBICTb OL[IHIOBATH MaJli CTYIEH1 JIOKaJIbHOTO KOPO3iHHOTO MOLIKOKEHHS
MOBEPXHI JIOCIIKYBAaHOTO MaTepialy 3a 3HaYHUX IIYMiB, IO € THIIOBHUM JUIs IHCHEKLil mo-
BEPXOHb KOHCTPYKIIH y BopHOMY cepenoBuil. [lomano pesynbraTu KaniOpyBaHHS i OIIHKH
TOYHOCT] BUMIPIOBAJIBGHOI CUCTEMY, Y TOMY YHCII BHIIAAKOBY Ta CTaly CKIAJOBI (3MIllICHHS)
MOXUOKM BU3HAYEHHS Koe(illieHTa KOpeIIsLil Ta CTyIeHs KOpo3iiiHOro mnoukopkeHHs . [Tokasa-
HO, IO 3alpONOHOBaHUK MeTOJ poOOTO3/aTHUI 3a BUKOPHCTAHHS arapaTHOro 3a0e3leyeHHs
cepeiHbOrOo piBHs CKiIagHOCT (po3impenHs cuctemu nopsaky 1000x1000 mikcenis) i 3abe3me-
4ye HaJiliHe BU3HAYEHHS CTYICHS JIOKAIBHOTO KOPO3IHHOIO MOIIKO/DKEHHS Yy Jiana3oHi
0...60% 3 HapocTaHHAM CepeJHBOKBAIPATHYHOTO BIIXMJICHHS CUTHATY BXTHOTO MIyMy 10 38
rpajaiil mkamm ciporo 3a podo4oro Jiana3oHy BUMIpIOBAJIbHOI CHCTEMHU y 256 rpasanii. Bu-
KOPHUCTaHHS 3HIMAJIbHUX CHCTEM 3 OUIBIIMM PO3IIMPEHHSAM JACTh 3MOIYy 3MEHLIMTH HOXHOKY
BU3HAYEHH CTYNEHS MOIIKOKEHHS 3aBJIKU BUOOpY oOsacTi un obacTeil OLIHIOBAHHS LIyMY
3 OUIBIIOIO KUIBKICTIO MiKceniB. [lapamerpu Mozenell cUrHaiIiB OTpUMaHi 31 CTaHAAPTHUX Jia-
OopaTopHHX BHIPOOYBaHb TPHOX THUIIIB CTANEH 3 PI3HOIO OIIPHICTIO 0 MITHHTOBOI KOPO3ii .

KmouoBi csoBa: cmynine nowkoodicents 10KanvbHoio KOpo3ielo, sumiplosanis Koegiyicuma
Kopenayii, Cneki-cuenan.

Introduction. Evaluation of the localized corrosion degree is of practical impor-
tance in monitoring the corrosion damage of metal surfaces in seawater. Visual (or
video) inspection with involvement of optical images and digital image processing is
widely used for evaluation of the degree of localized corrosion. It is based on the detec-
tion of contours (boundaries) of the damaged regions and calculation of their area rela-
tive to the whole inspected surface. However, the evaluation of the low values of corro-
sion degree and/or evaluation of the surfaces with small size damages are essentially
complicated, first of all because of the inaccuracy of contours detection that has essential
impact on calculation of the damage area in the case of small size damages. For example,
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in the case of the circle damage with a diameter of 10 pixels on digital image, even

minimal inaccuracy of contour detection — 1 pixel will result in 40% error in calcula-
tion of its area. Besides, the contour detection inaccuracy (and damaged area evaluation

inaccuracy) essentially increases when the inspected surface has the roughness ( R, pa-
rameter) above 1 um, what is typical of ordinary metal surfaces in constructions. This
takes place because the optical light signal, reflected from such, has an essential noise

component, caused be multiple diffusion of light on the surface relief roughness [1].
Optical signal, reflected from the inspected surface is also diffusing in environment —
on small particles of corrosion products and metal particles in seawater and on the

optical survey system window. So, the optical signal in a video inspection system has

an essential random noise component as a result of multiple light diffusion on small

particles. On the other hand, nucleation, appearance and development of localized

corrosion damage on the rough surface is a result of the random process, related to
many random parameters, like local surface relief, local concentration of aggressive
corrosive environment, potential, current density, etc. [2-5]. It finally results in local
damage initiation and development.

So, it is necessary to analyze the mostly random process of corrosion damage ini-
tiation and development, using the optical signal with the essential random noise com-
ponent. Naturally, the analysis will be performed using parameters of random processes
in these correlation coefficients. Sensitivity of the correlation coefficient of optical
signals from the metal surface to the process of corrosion is shown in [6-10]. Unfortu-
nately, no correlation — based methods for assessment of the degree of localized corro-
sion damage of the surface, its calibration, accuracy evaluation, are proposed. This
diminishes the advantage of the correlation method, despite of its high sensitivity.

Basic assumptions and selection of the parameters for simulation. Let us assume
that the optical signal, reflected from the tested surface and passed through the water
environment, is a result of multiple light scattering. For calibration of correlation-based
video inspection system, we will use the model of multiple scattered light signals, known
as a speckle-signal described in [11]. As a model for localized corrosion we will use
pitting corrosion. Pitting corrosion is typically localized corrosion. Pit nucleuses appear
chaotically, uniformly distributing on the rough surface. Then they can repassivate and
die or develop further in the form close to a circle, achieving the metastable and sable
growth stages [2-5]. It is established, that pits on the metal surfaces pass from the me-
tastable stage to the stable growth stage for the diameter range of 10...100 um [2-5].
They can increase in a diameter, join with neighboring ones, but can also be stable in
the visible diameter on the surface, developing undersurface and in depth of the material.
Image of the speckle signal, reflected from the rough surface, was simulated by means of
series of operations, shown in Fig. 1. Image resolution was set close to that of the
ordinary video system standard —750 x750 pixels. All calculations for this paper were
also performed using Harris ENVI software. Width of autocorrelation function of the
signal was increased 10 times (to 10 pixels) by means of Fourier-transform based low-
pass filtration. This corresponds to the above mentioned range of pit diameters (10:1) in
transition to the stage of stable growth and development. Signal range was scaled (with
some “gaps” on top and bottom) within 256 gray scale, that matched standard 8-bit
video signal. Corrosion damage and noises were introduced into the model of speckle
signal as explained in Fig. 2. Corrosion damages were established as sets of 52 uni-
formly distributed circles of uniform brightness, removing random speckle signal. It is
close by form and nature of distribution of pitting damages, visible on the surface [2-5].
Signal value in the simulated corrosion damage areas was set at the level of 60 gray
scale, that corresponded to the average value obtained during specially provided testing
for pitting corrosion of the rough metal samples in the environment simplified model of
sea water in the lab. Increase in the degree of corrosion damage was simulated by
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increasing the diameters of circles. Table 1 presents the values of the degree of corro-
sion damage of the sample surface, used for simulations.
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Fig. 1. Algorithm for simulation of speckle signal from the specimen surface.

Table 1. Values of the degree of localized corrosion damage used for calibration

mage# | 1 | 23| 4| 5| 6] 7] 8] 9ofw][wu]1w]is
cormosion | 1035|078 | 118 | 164 | 212 | 277 | 343 | 424 | 511 | 5.98 | 7.08 | 8.08
degree, %

Image# | 14 [ 15| 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 [ 24 | 25 | 26
g:grr:g'?)z 9.28 |13.24|16.24| 20.41 | 25.20 | 30.28 | 35.99 | 39.81 | 46.13 | 53.11 | 60.47 | 7L.75 | 83.02

Besides, it is necessary to introduce in the above simulated image of the speckle
signal the additional random noise. This noise will simulate the random diffusion of the
signal on small size particles (on the surface, in the environment, on optical windows),
electronic noise, etc., that are not related to local corrosion. The value of the real video
signal in the specimen surface image that is decreasing and fluctuating during corrosion
in seawater is established from the results of preliminary laboratory testing. Distribu-
tion of such noise/fluctuations obtained in time lag 1000 s, evaluated with Q-Q plot
(Fig. 3), is explained by well enough matching with normal distribution. Experimental-
ly obtained time dependence of the RMS (root mean square) noise in a frame of 50 x50
pixels without visible localized corrosion damage is presented in Fig. 4. Noise was
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introduced into the model of speckle signal by means of subtracting specially generated
random signals from a speckle signal with introduced corrosion damage. These signals
were generated by ENVI random program as sets of normal distributed sequences of
size 750x750 of random numbers with some RMS values and zero mean. The RMS of
noise signals established for simulation are explained in Table 2. Seed number for each
series was also set into a random number to provide independent noise sequences for
simulations.

Table 2. Values of RMS of random sequences used for noise simulations
in video signal

RMS, gray | 511 61(99| 128 | 169 | 191 | 227 | 255 | 295 | 320 | 350 | 380
scale levels
b

v

Fig. 2. Algorithm for introducing corrosion, noise and working area in the signal model:
a—model image of a speckle signal; b — corrosion damage of a model image;
¢ —random noise image; d — mask.
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Fig. 3. Q-Q plot of normal and experimental noise distributions in the frame of 50 x50 pixels.
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Fig. 4. Dependence of RMS of noise in speckle signal on time.
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Fig. 5. Changes in the signal line during introduction of corrosion damage and noise.
Signal in the speckle image was also masked by a circle of a diameter 740 pixels
to correspond to the typical form of the specimen surface during accelerated laboratory

testing in the seawater model. An example of a simulated line of the speckle signal
without corrosion damage, with damage and with damage and noise is explained in Fig. 5.
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Method for correlation-based data processing. The influence of corrosion and
noise on a speckle signal, diffused by the sample surface results in decorrelation (dec-
rease of correlation coefficient) between signals collected in different time moments.
Calibration of the speckle correlation measurement system is reduced to establishing
the dependence of correlation coefficient between speckle images, obtained at different
time moments p, and the increase of the degree of localized corrosion damage of AC
surface for this time interval. For such calibration the Pearson correlation coefficients
between the simulated speckle image without corrosion and a set of simulated speckle
images with introduced corrosion data (without introduced noise) were calculated. The
obtained calibration dependence of measurement system p(AC) is explained in Fig. 6.

—e— Correlation coefficient vs. degree of localized corrosion
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Fig. 6. Dependence of Pearson correlation coefficient on the degree of localized
corrosion without noise.

In the case of the additional noise absence, the accuracy of such measurement
system will be limited by the sample size (430 000 samples), used for estimation of the
correlation coefficient. The RMS of the error random part for estimation of the Pearson
correlation coefficient was evaluated using the interval between confidence limits as
explained in [12]. In accordance to [12], the confidence interval for the expected value

p of the Pearson correlation coefficient obtained for the sample size n can be evaluated

as follows:
p*12,/,41/(0=3), (1)

1+—‘)}/2 is the Fisher transformation of p; z,,,=2,576 for

1-p
confidence interval 99%; n is the sample size.
Establish the upper and lower limits for the Fisher-transformed correlation

coefficient as:
P *up =P*+2,,,/1/(n-3), 2
P¥iow = P* 2y /LI =3) . (3)

The upper and lower limits for the interval of evaluation for expected value of the
Pearson correlation coefficient were obtained:

ﬁup =(exp(2-p *up) -1 /(exp(2-p *up )+1), (4)

Fslow = (exp(2-p*jow) —D/(eXP(2 - p*jow) +1) - ©)

where p*=1n {
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Assuming that the confidence interval for the correlation coefficient is equal to
6-c obtain the RMS of its random error:

RMS, = (Pyp ~Prou)/6. ©)

Dependences of the RMS of the random error of the correlation coefficient esti-
mation on the expected value of the correlation coefficient for 430 000 samples and
2500 samples obtained from Eq. (2)—(6) are presented in Fig. 7. The RMS of the random
error for the sample size 2500 is also presented in Fig. 6 (as error marks for the correla-
tion coefficient).
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Fig. 7. RMS of random errors for estimation of the Pearson correlation coefficient.

As it was mentioned above, the compensation of the noise influence on the corre-
lation coefficient is an important problem. As we can see from Fig. 4, real noises have
essential RMS values that are compatible with RMS of the speckle signal from a video
system. So, it provides an essential impact on the correlation coefficient, thus causing
additional inaccuracy. Such interference should be estimated and compensated. The
attempt to estimate the unknown partial correlation coefficient from the evaluated mul-
tiple correlation coefficients is known [13]. As it is known from [13], for the set of three
correlated random populations named, for example, 1, 2 and 3 with known multiple
correlation coefficients between them — p1,,p13,p23, @ partial correlation between two

of them (1 and 2), removing the influence of 3, can be calculated as follows [13]:
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P12 —P13°P
Pro3 = 12 - 13 232 ’ (7)
\/(1—913)' d-p23)

where py,3 is the partial correlation coefficient between populations 1 and 2 without

the influence of population 3. Let us consider that random population 1 is a speckle
signal from the sample at time moment t =0, 2 is a speckle signal from the sample for
current time t = T and 3 is a noise at current time moment t = T. Then, the known es-
timations of multiple correlation coefficients allow us to remove the influence of noise

and to evaluate the localized corrosion degree — with py,5 and calibrating dependence

(Fig. 6). The essence of the problem consists in the evaluation of the multiple correlation
coefficients of noise, which is not related to the localized corrosion impact on a speckle
signal. For the evaluation of the correlation parameters of noise, the author proposes to
select some area on a speckle image of the sample without visible corrosion damage
and to estimate such parameters inside such an area. Sample size of 2500 pixels can be
suitable to the mentioned video system — on the specimen image in a frame of a circle
with a diameter of 740 pixels it is easy to find at least one area of ~50x50 pixels without
corrosion damage.

The RMS of random error for estimation of the correlation coefficient for such a
sample size with Eq. (2)—(6) is explained in Fig. 7. As it is seen from Fig. 7, the RMS
of the error for noise estimation area (2500 samples) is bigger in about one order for
the whole working area (430 000 samples), but it is still low enough ( <0.02) even at
very low correlation coefficient values (about 0.1...0.3) and is small enough for the
localized corrosion measurements (Fig. 6).

Let the selected area for noise evaluation with coordinates on the speckle image
Kmin s Xmin+50)» (Ymin: Ymins 50) be called AN. A noise signal will be defined as the dif-

ference between a speckle signal at time moment t =0and current time moment t=T:
Net (i, J) = ANo (i, j) - AN 7 (i ) , ©)
where i, j are pixel coordinates in the frame AN.

The correlation coefficient between a noise and a speckle signal in time t =0 is
evaluated as:

p13(T)=corr(N_t, ANy_g) . ©)

Dependence of the RMS of the error random component for such estimation on
the correlation coefficient value is explained in Fig. 7.

Now it is necessary to obtain multiple correlation coefficient p,; between a noise
and a speckle signal at time moment t= T (with localized corrosion and noise impact).
The problem is that it is impossible to separate the influence of noise from the corro-
sion impact in the whole speckle image (signal). The square of multiple correlation
coefficient pn, can be estimated as in [14], using ratio of variations of appropriate
signals (2 and 3). In our case N,_7 is obtained from Eq. (8) and S;_; is a signal of the
whole working area on the speckle image:

P23(T) = Pruir = \/Var(Nt=T )Var(Si_1). (10)
Random component of an error for such estimation is somewhat less than the error
for estimation of p;3 because Var(S;_t) is evaluated for much bigger population —

430 000 samples. It should be mentioned, that the use of such an attempt is restricted to the
inequalityVar (N;_7 ) <Var (S{_1) which proceeds from condition 0< p,t <1 [13, 14].
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Simulation, results and discussion. For real experimental data, the random com-
ponent of the inaccuracy of evaluation of time dependence of p;,5 (and degree of lo-

calized corrosion) can be estimated using partial derivatives of Eq. (7) and RMS of
random error values, explained in Figs. 6 and 7. Here estimation of the accuracy of cor-
relation measurement system was performed using the Monte—Carlo simulation method.
Correlation coefficients between the simulated speckle signal without introduced cor-
rosion and the simulated signals with different degree of corrosion (all without added
noise) were calculated and saved as “exact” control values. For noise simulation, the
groups of different 64 normally distributed random sequences of 430 000 digits with
zero average for each RMS value in Table 2 were generated for each speckle image
with introduced corrosion damage. For this purpose a separate generator of random
digits for generation of a seed value for Random procedure in ENVI was used. These
random sequences were used for simulation of random noise in a speckle signal as
shown in Figs. 2 and 5. Then the simulated speckle signals with introduced corrosion
damage and noise were processed in accordance to Eq. (7)—-(10). The average values of
multiple correlation coefficients p;,, corrected correlation coefficients p;, 5, degrees

of localized corrosion, their variations and the RMS values for each set of simulated
data were calculated. Simulation results (as dependences on RMS of noise, introduced
into speckle signal) are shown in Figs. 8-17. In Figs. 8 and 9 the dependences of averages
and RMS error values of correlation coefficients on the RMS of introduced noise for
the established degrees of localized corrosion (in %): 0; 2.1; 5.1; 9.3; 13.2; 20.4; 30.3;
39.8; 53.1; 60.5 are explained. In Figs. 10 and 11 the dependences of the RMS values
of random errors of estimations of correlation coefficients on the RMS of introduced
noises for the establishment of localized corrosion degree are explained. In Fig. 12 and
13 the dependences of averages (and RMS error values) of the evaluated degrees of loca-
lized corrosion for the established exact values are presented. In Figs. 14 and 15 the de-
pendences of the RMS of the random error component for the evaluated degree of loca-
lized corrosion on the RMS of introduced noise for the established levels of corrosion
degree are shown. In Figs. 16 and 17 the dependences of the differences between cal-
culated averages of the localized corrosion damage degree and exact established levels
(0%; 2.1%; 5.1%,; 9.3%; 13.2%; 20.4%; 30.3%; 39.8%; 53.1%; 60.5%) from the RMS
of introduced noise are explained. As can be seen from Figs. 8 and 9, the proposed tech-
nology of correction of correlation coefficient allows obtaining satisfactory results in a
wide range of correlation coefficient values up to the critically low values ( p ~ 0.2).
Increase in the variation of noises, introduced into a speckle signal, expectedly results
in increase in variations of the corrected correlation coefficient (Figs. 10, 11) and varia-
tions of the degree of localized corrosion (Figs. 12, 13). The RMS of random errors for
the evaluated raw (non-corrected are marked as “nc” and corrected as “c” in Figs. 8-11)
correlation coefficients and appropriate values of the corrosion degree are expectedly
less, because data from the 430 000 size samples only are introduced into its calculation.
Fields of admission of the corrected correlation coefficients are close to overlapping for
the RMS of introduced noise equal to 38 gray scale values. In fact, it is a point where
the noise range 38-6 = 228 really overlaps almost the whole range of the measurement
system (256 gray scales). The minimal RMS value of the introduced noise, used in this
study was 3.1 gray scale value, that is ~6 times more than a standard inaccuracy of the
signal value digitizing. It results in the RMS of corrosion degree deviations in the range
0.025...0.35%. It means what the selected range for input speckle signal — 256 gray
scale values is enough for such measurements. As can be seen from Figs. 8, 9, 11, 12,
16, 17 the average values of the corrected correlation coefficients and evaluated degree
of localized corrosion are stable enough with increase in the noise level in the measu-
rement system. As can be seen from Figs. 14-17 variations in the average values of the
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evaluated values of corrosion degree are much lower than the RMS of their random
errors. This confirms the applicability of the proposed technology.
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Fig. 8. Dependence of averages of corrected (c) and raw (nc) correlation coefficients
on the RMS of introduced noise for localized corrosion damage 0...13%.
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Fig. 9. Dependence of averages of corrected (c) and raw (nc) correlation coefficients
on the RMS of introduced noise for localized corrosion damage 20...60%.

—e— 0%(c) <--0--- 0%(nc) —a— 2.1%(c) --A--2.1%(nc) —e— 5.1%(c)
--o--- 5.1%(nc) —m— 9.3%(c) --&-- 9.3%(nc) —m—13.2%(c) --&-- 13.2%(nc)
0.06
0.05

coefficient
o o o
> o o
[\S) (98] N

0.01 4

RMS of deviation_of correlation

0 5 10 15 20 25 30 35 40
RMS of introduced noise, gray scale levels

Fig. 10. Dependence of the RMS of random error of corrected (c) and raw (nc) correlation
coefficients on the RMS of introduced noise for localized corrosion damage 0...13%.
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Fig. 11. Dependence of the RMS of random error of corrected (c) and raw (nc) correlation
coefficients on the RMS of introduced noise for localized corrosion damage 20...60%.
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Fig. 12. Dependence of averages of evaluated degree of localized corrosion
on the RMS of introduced noise for localized corrosion damage 0...13% .

——20.4% —a—30.3% —e—39.8% —m—53.1% —%—60.5%

70
X L
°“ i ¥ ¥ I I 1 T
= 60 ¢
k= R e e e e
g 50 1 -+
S
") (P I N X
51
N
S 30 il = E_I—E—E—E—E—H
=
S 20 — == % 5 5 3 3 —F % 3%
8
2010
@)

0 T T T T T T T

0 5 10 15 20 25 30 35 40

RMS of introduced noise, gray values

Fig. 13. Dependence of averages of evaluated degree of localized corrosion
on the RMS of introduced noise for localized corrosion damage 20...60%.
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Fig. 14. The RMS of random error of evaluated degree of localized corrosion
vs the RMS of introduced noise for localized corrosion damage 0...13%.
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Fig. 15. The RMS of random error of evaluated degree of localized corrosion
vs the RMS of introduced noise for localized corrosion damage 20...60%.
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Fig. 16. Difference between averages of the evaluated degree of localized corrosion
and exact introduced values for localized corrosion damage 0...13%.
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and exact introduced values for localized corrosion damage 20...60%.

CONCLUSIONS

Calibration and analysis of the inaccuracy of the proposed correlation-based mea-
surement technology for the evaluation of the degree of localized corrosion explains its
potential efficiency, even in the case of application of the middle-level hardware equip-
ment. As it is shown, it can operate in a wide range of corrosion damage values 0...60%
and the RMS of the input noise variations — up to 38 of gray scale values. That makes it
attractive for the development of practically applicable correlation-based corrosion
monitoring technologies. The proposed technology will be most effective in the case of
low values of corrosion damage and high noises, where widely used video inspection
systems are not accurate enough. Similar analysis and calibration can be easily used for
the survey systems with other optical or resolution parameters. As it is seen, such mea-
surement technology does not require high range of input speckle signal (above 256 gray
scales), but can effectively reduce the influence of noise, for example light diffusion in
corrosive (water) environment. Its accuracy is dependent on the choice of size of the
sub-frame in a speckle image, where noise parameters are evaluated. Using the systems
with higher resolution will allow providing data for more accurate evaluation and cor-
rection of the impact of noise, because a few of even unconstrained areas with arbitrary
configuration shape can be selected on the input speckle image for this purpose.
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