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The speed of sorting of various types of largegatearrays by popular algorithms of different
groups of methods is analyzed. As a result, therthgn of rapid exchange sorting with parti-
tioning and moving of the supporting element Qumk®as again been recognized as the most
effective. An alternative algorithm for partitiogirof the QuickSort method in relation to the
half the range of values of the elements of eadimsichine, which makes it possible to use
sorting by narrow ranges, is given. It is showrt thaarrays with the length of up to 10 ele-
ments should be sorted by simple inserts. For loagbarrays, if the range of values does not
exceed its size, it is advisable to use the sortiethod by counting. Otherwise, it is necessary
to perform the iteration of the QuickSort methodhwa split in half the range of values of its
elements. It has been experimentally proved thelh sucomplex use of methods accelerates,
for example, sorting of arrays with 1 million elem® and with the range of values no more
than 1000 by 34%. The results obtained can be tesedcelerate the sorting of large integer
arrays with the known or defined ranges of values.

Keywords: sorting of arrays, QuickSort sorting method, rangk array elements values,
sorting by counting.

IMPUCKOPEHHA COPTYBAHHSA BEJIMKUX HIVIOYNCJIOBUX MACHUBIB
31 3ACTOCYBAHHAM JIAITA30OHIB 3HAYEHb TA YACTOT EJIEMEHTIB

O.B. ].HHOpTLKOl, JI. B. ]JJnopTl,Ko2

'MIBH3 “Misknapoauuii ekoHoMiKo-rymMaHiTapHuii yHiBepcHTeT iMeHi akagemika
Crenana /lem’' sinuyka”, PiBHe;

2I[BH3 “PiBHeHCbKMI KOJIeIK eKOHOMiKM Ta 0i3Hecy”, PiBHe

ITpoaHasi30BaHO IIBHAKICTh BHYTPIIIHBOIO COPTYBAHHS PI3HOTHITHUX BEJIMKHUX LIJIOYHCIOBHX
MAacHBIB MOITYIIPHUMHU Ha ChOTOJHI aTOPUTMaMH 3 Pi3HUX Ipyn MeroniB. HalleexkTuBHimmmM
cepe]] IpoaHalli30BaHUX BKOTPE BU3HAHO aJITOPUTM METOJY IIBHIKOTO OOMIHHOTO COPTYBaHHS
QuickSort,B sikOMy pPO30HTTSI BUKOHYETHCS BiJHOCHO BHMAJKOBHM YMHOM OOPaHOTO Mepemi-
IIlyBaHOTO OIIOPHOrO ejieMeHTa. HaBeneHo albTepHaTHBHMII alNroOpuT™M PO3OMTTS UL METOIY
QUuickSOrtBiHOCHO TOJIOBUHH [[ialla30Hy 3HAYEHb CJIEMEHTIB KOXHOTO MiJMAacHBY, SKHIi Ja€e
3MOTY 32 BY3bKHX Jialla30HIB 3aCTOCOBYBATH METOJ COPTYBaHHs migpaxyHkoMm. ITokasaHo, 110
e MeToJ Mae JIiHIHY OOYNCITIOBAIBHY CKJIAJHICTD A PO3MIPY COPTOBAHOTO IiJMACHBY Ta
niarna3oHy 3Ha4eHb HOTO eJIEMEHTIB, aJle HOro 3aCTOCYBaHHS JIOMYCTHME JIHIIE TOJ1, KOJIU PO3-
Mip BKa3aHOTO Jiana30Hy 3Ha4eHb HE IIEPEBHIIYE PO3Mipy MAacHBY 4acTOT. TOMY PO3IINPEHHS
MOXJIMBOCTEH BHKOPHCTAHHS METOJY COPTYBAaHHS INJPaxyHKOM 1 BIAIIOBITHO HPHCKOPEHHS
COPTYBaHHS 3arajioM, MOXJIMBE Yepe3 301IbIICHHS PO3Mipy MaCUBY 4acTOT.

3rifgHoO 3 aHaNmi30M OOUHCIIOBANBHOI CKJIAJHOCTI, MOKAa3aHO, IO MiJMAacCUBH 3 JOBXUHOIO 10
10 esieMEHTIB BKJIIOYHO JIOLIJIBHO COPTYBAaTH METOJOM IPOCTUX BCTAaBOK. J[yIst MOBIIMX minma-
CHBIB, KOJIM Jiana3oH X 3HaYeHb HE NEPEBUIIYE KUIBKOCTI €IEMEHTIB Ta pO3Mipy MacHBY 4ac-
TOT, JOLIJIGHO BHKOPHCTATH METOJ| COPTYBaHHS MiJpaXyHKOM, a iHaKIIe BapTO BUKOHATH iTe-
pauiro Meroay QUiCKSOrt3 po30UTTSM HaBIILI Aiara30Hy 3HAYCHb CJICMEHTIB ITiIMaCHBY.
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ExcriepuMeHTaIbHO JOBEICHO, 0 TaKe KOMIUIEKCHE BUKOPHCTAHHS 3a3HAUYCHUX METOAIB MPH-
CKOPIO€, HANPUKIIAL, COPTYBaHHS MacuBiB 3 aiamazonamu 3HaueHb <1000 posmipom 1 miH.
enemenTiB Ha 34%. OTpuMaHi pe3yabTaTiH MOKHA BUKOPUCTATH I IPUCKOPEHHS COPTYBaHHS
Ta 0OYMCIICHHS TTOPSIAKOBHUX CTATUCTHK (HAIPHKIA, ME/iaH) BEJIMKUX LIOYHCIOBIX MACHBIB
3 BiIOMHMH 41 BU3HAQUCHHMH Jliara30HaMH 3HA4YCHb.

KurouoBi cioBa: copmyeanus macusie, memoo copmysannsi QUICKSOrt, oianason 3nauens
enleMeHmi6 Macugy, COpmy6aHHs NiOPAxXyHKOM.

Currently, most of the information stored on eleatagnetic media is provided in
digitized discrete form. At the same time, for flast processing of data of the same
type, arrays, placed in RAM are used. Sorting ek#harrays allows us to perform bi-
nary search instead of the linear one and to aeteléhe further processing of elements.
That's why improving the methods and algorithmsatting is the up-to-date task and
it will remain the urgent task in the future.

Imagine the situation when it is needed to sorttay A(ay, &, ..., &y-1), Where

N = 1000. For arrays, the concepfsecordandkeyin the context of this paper actually
coincide, so in the future, under teeementof the array, we will keep in mind both
these two concepts at the same time.

The analysis of the last researches and publicatisnAs of today all the general
methods of practical internal sorting (sorting diteated in RAM) the principle of
functioning are divided into five groups [1]:

— sorting by insertionswhen a duty element is pasted in the alreadyedort
subsequence;

—sorting by exchangevhen that elements are moved at the large distanc

— sorting by choicegluring which among the non-sorted part the maxintem is
selected each time and is written in the next jsifor example;

— merge sortthe main idea of which is to combine sequentialighetime the
further sorted sequences of the elements;

— sorting by a distributionin which the elements are not directly comparedh wit
each other but divided into different groups (faample, by the highest bit), after that
sorting is performed within each group separately ¢he results are consistently
combined with each other.

For sorting of large arrays the most effective gthms of such methods are the
following [1, p. 148]:

— pyramidal sorting HeapSof2], which initially arranges elements of the array

by the principlea,, = 8,,,.1; @, = 8,m+2 » thus moving the largest value of the array into
an elementa, and forming a pyramid of subordination. Then ifjeentially removes

the value from this element (chooses the largesieyaadjusts the placement of the
remaining elements of the pyramid, so that theqgiple of ordering is preserved, and
records the deleted value at the end of the unddednpart. This method belongs to
the “Sort by choice” group;

— sorting by insertions ShellSoj®], according to which the remote elements of
the array are sorted by inclusions in the sepasatmarrays, and the displacement
between the elements for the formation of submackaquentially decreases to unity.
This method belongs to the “Sorting by insertiogs3up;

—a quick exchange sorting with partition of QuickiSdi, according to which at
each iteration a reference element is selected/alngs not larger than this element are
placed to the left of it. Elements that are largeequal are placed to the right. After
these operations the elements of the left and pahtis are sorted in subsequent iter-
ations of the algorithm separately. This methodfgs to the “Sort by exchange” group.

The algorithms of these methods have the averagealatve complexity of the
order O(N log, N) [5], although the speed of their work dependshenglacement of
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the array elements. In addition, the efficiencyhef sorting algorithms also significantly
depends on the amount of used additional memoryiraptémentation details. Let's
see, for example, how to select a reference elefoerihe QuickSort method. If the
value of the reference element is located appraeipan the middle of the values of
the fragment of the array for sorting, then thaursion depth will be arounflog, N]
and the total computational difficulty will actuplhpproach taO(N log, N), since for
the next division, it is necessary to compare ezdement of the array with the sup-
porting element of its fragment. But if at eachrateon the reference element is mini-
mal/maximal for its fragment, then in its rightflgfart after the move of all its other
elements will fall and the length of the fragmenit the next iteration will be reduced
to only one element. In this case the depth ofitdrations will beN-1, and therefore
the total computational complexity of the algorithwill be closer toO(N?). The option

of selecting such a supporting element is not gitich a little probability as it is
specified in [6], especially when the values ofthupporting element are taken from
the first or the last element of the fragment, #mel array itself is already pre-sorted.
The importance of choosing the correct supportilggnent was emphasized by the
author of QuickSort C. A. R. Hoare in [4]. In thaerk he proposed two options for
forming the value of the reference element: eiffetiit to be equal to the median subset
of the elements (for example, from the first, thstland the middle element of the
fragment), or to select it randomly among the elemef the fragment. If for the first
variant of the formation it is still possible tockiup the elements of the array so that
the computational complexity of the sort is apphiag O(N?), then for the second
option it is almost unrealistic [7]. So, in pra€tit is expedient to select the reference
element in a random manner.

On the other hand, in the QuickSort implementatibis not expedient to break
short subarrays (in our implementations up to fements inclusive) iteratively, but it
is better to use “straightforward” sorting methofis, example, simple inserts, as it is
specified in [1]. Also, modern partitioning schenedsthis method, in contrast to the
classical scheme of Hoare [7], always move the supmg element every time to the
edge of the subarray, that avoids additional indec@mparisons [8, p. 92-93]. We
applied all these modifications and schemes imptioeess of practical implementation
of the QuickSort method.

So,the purpose of this papelis to study the speed of sorting large integeryarra
of different types by the algorithms of above-menéd methods, selecting among
them the fastest average algorithm and its impr@rérby using a range of values and
frequencies of the array elements.

Analysis of the speed of sorting large integer arngs by the algorithms of dif-
ferent methods.To verify the efficiency of the above-mentionedaithms of sorting
methods, we implement the programs presented m 9—101] in the Microsoft Visual
Studio program in C # programming language [9]. Theice of this programming
language is due to its popularity today for the alepment of applications. For the
QuickSort method, we have developed two variantalgérithms with the choice of
the leading element at random: with the implemématf the partition of the Hoare
scheme QuickSort ) and with moving of the reference elemeQuickSort 2. Testing
was performed on a computer with an Intel Pentiupratessor with the clock speed
of 3 GHz and 4 Gb of RAM. Test results are showiable. 1. The same table shows
the sorting time of arrays by the standard Arrast(ponethod.
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Table 1. The duration of sorting in ascending ordeof variants of integer array
with 1 million elements by the algorithms of diffeent methods, ms

) Variant of array
Algorithm of - -
sorting method | Generated Sorted in Sorted in From equal
randomly | ascending ordef descending order elements

QuickSort 1 427 207 193 242
QuickSort 2 383 141 156 250
HeapSort 921 633 625 109
ShellSort 1133 164 313 164
Array.Sort 219 31 94 109

We see that among the explored algorithms, théngoof large integer arrays is
performed on the average quickly by the QuickStgor&hm with the movement of
the supporting element. It is 19.7% faster thanQoekSort algorithm with the Hoare
scheme and yields to it only in the arrays of id@htelements, and is on average faster
by 183% of the HeapSort algorithm and by 69.6%hef $hellSort algorithm. In our
opinion, the shortfall of QuickSort from the staralgorting method Array.Sort is due
to the use of the references in it instead of tluex of elements, which reduces the
number of checks for out of range. It is also iesting that the pyramid sorting for
random-generated arrays turned out to be faster $hellSort by an average of 23%,
as predicted in [1, p. 159]. Therefore, in this grawe will explore the possibilities of
improving the QuickSort algorithm.

Implementation of the QuickSort method by partitioning the range of array
elements valuesThe idea of this method is to split the subarraymaints relative to
the half range of its values and in the subseqiterative sorting of each of the two
received parts. An opinion on the use of a breakdofithe valuecloseto the middle
of the range was expressed by John McCarthy [128]. We recommend to execute
split selfin relation to this middle value.

Let minA— min(&,a,...,-1), MaxA « ma g @ ,... A1) are respecti-
vely, the minimum and maximum values of elementthefarray. We also set the value
of the constan@Q — 11, whereQ is the minimum length of the subarray, for whibk t

QuickSort iterative call is already used, ratheantthe method of sorting by simple
inserts [1]. Then, the QuickSort sorting algorittimat uses the partition of values is
sequentially written as follows:

1. Execution of the initial initializing, setting — 0, ] « N —1 (sorting limits) and

minElement- minA, maxElement me (range of values of elements).
2. If minElement maxEleme, we complete an iteration (as all elements of suba

rray are equal).
3. Calculation of d « maxElement minElementl, | — j—i +1, whered is a

range of values of elements of subariag an amount of elements of subarray.4fQ,
then we sort a subarray by the method of simpleriis and complete the iteration.

4. Calculation of element— L( minElemerit maxEIem)aMtJ. This is the middle

of the range of values of elements. Like splitiridioare, we need to rearrange the ele-
ments of subarrag,d; .1, ... a-1,8 SO that the elements belong to the ranges of value
an O[minElement elemef, m=i k; a,0[element1, maxElemdr, m=k+1, |.

We need to break up elements in relation to thellmidf the range of values.
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5. Assigning j < k, maxElement- eleme and iteratively sort the “left” subarray,

passing to step 2.
6. Restoring the previous values of the variables aassigning them
i « k+1 minElement— elementl and iteratively sorting the “right” subarray,

passing to step 2.

Finding the maximum and minimum values of the aofglements is not included
in this algorithm, since these values can be kntawthe user in advance and so it is
not expedient to spend time on their calculatiéims. example, in our experiments for
an array of millions of elements, the duration ofnputing these values on the average
took 11 ms. In contrast to the classic QuickSogbathm, the presented algorithm
does not remove the reference element from subeegoesideration at each step of
the iteration, but the range of values of the elemsés always split equally, so its

computational complexity would not excedd(N log, (maxA- minA 1)). So, the

QuickSort method with a breakdown of the range of alues should be used when
this range does not exceed the number of elementstioe array.

Adaptation of sorting method by counting to subarrg/s of QuickSort method.
The sorting method by counting allows us to arraingeger elements using the addi-
tional array of frequencies [1, p. 80]. To sort #reay in ascending order, this method
can be briefly paraphrased as follows:

1. Calculate the frequencies of the values of the efgmof the array;

2. Consistently selecting the values of the elememtasicending order, repeate in
each resultant array each value as many times iaseibcountered in the inputting
array.

It is clear that application of this method to sagtthe subarray is possible only
when the range of values of its elements does rotezl the size of the array of
frequencies. In addition, we will apply this methéar sorting subarrays of the
QuickSort method only if the same range of valuessdnot exceed the number of its
elements. The C # language code snippet for soofisgch subarrays is the following:

if (d <= 1 && d <= countFreq)
{for (m = @; m < d; m++) //reset frequencies of values
freq[m]=0;
for (m = i; m <= j; m++) //count up frequencies of values
freq[a[m]-minElement]++;
index = i;
for (m = @; m < d; m++) //sort possible values
for (c = 9; ¢ < freq[m]; c++) //repeat the frequency value
a[index++] = minElement + m;
continue; //complete sorting of subarray

}

It is interesting that thisnethod does not compare the elements with eduoér
directly and thus it is similar to the methods o tSorting by distribution” group, but
in the process of its workl + 2d comparisons of indexes ahdppropriations are per-
formed. The method of simple insertion performsaseragel (| —1)/4 comparisons
and the same number of assignments. Thereforefuke method by counting instead
of a simple insertion method is appropriate wHén-1)/2>3 + 2 . If | =d, this
inequality will always be true dt=11 (this is what determines the value of the cons-
tant Q). Comparing the computational complexity of thetisg method by counting
with the classic QuickSort method, we find that #d and| =11 it is expedient to
use the first from these methods of sorting, arlds — the second one.
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Results of experimentsLet’'s match the data in Table 1 and Table 2, whidsent
the results of testing the QuickSort algorithmdhwetbreakdown of the range of values
(QuickSort 3 and the same breakdown and implementation ofcthumting method
(QuickSort 4, which use a frequency array of 100 elements.

Table 2. The duration of sorting of variants of ineger arrays with 1 million elements
in ascending order by algorithms of the QuickSort nethod with a breakdown
of the range of values, ms

. Variant of array
Algorithm of - -
sorting Generated Sorted in Sorted in From equal
randomly ascending ordef descending order  elements
QuickSort 3 429 149 156 16
QuickSort 4 429 133 133 16

Let’s also consider the length of sorting by theegimodifications of the QuickSort
algorithm of integer arrays with different rangé&ements values (Table 3). Note that
the efficiency of the sorting method by countingoatiepends on the capacity of the
array of frequencies: if, for example, this arrayiricreased to fGlements, the array
sorting with a range of values 2 @ill last 117 milliseconds. And if we increase the
number of elements to 3,Ghe sorting process will take just 39 millisecend

Table 3. The duration of sorting of integer arrayswith 1 million randomly
generated elements in ascending order by differemhodifications
of the QuickSort algorithm, with different ranges d element values, ms

Width of the range of values of elements

10° | 10’ | 10° | 10* | 10° | 10* | 10

383 | 383| 365 343 318 273 269

The modification of QuickSort algorithm

QuickSort 2 (with moving of supporting
element)

QuickSort 3 (with splitting of the range of
values)

QuickSort 4 (with splitting of the range of
values and sorting a count)

Array.Sort 203| 20

430 | 430| 364 281 214 86 1

(93]

430 | 430| 234 172| 109| 31| 16

W

195180 | 164| 132 109

CONCLUSIONS

In order to sort integer arrays, in most cases #ufficient to use the standard
method of the programming language.

If you only need to get a fragment of a sortedya(far example, its median), you
should use the QuickSort algorithm to move the stpglement.

In cases where the width of the range of valueth®farray of elements is known
and this width does not exceed’ 1 order to accelerate its sorting, it is expati®
use the QuickSort method with a breakdown of tingeaof values with the methods of
sorting by counting and simple insertion. In thése, if the length of the subarray does
not exceed 10 elements it should be sorted by simngkrts, otherwise, if the range of
values does not exceed the size of the subarrayhgee to use the sorting method by
counting. If these two conditions are not fulfiljétlis advisable to perform the iteration
of the QuickSort method with a split in half thegea of values of the elements.
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In the future, we plan to use methods of splitting range of values and sorting

by counting in order to improve the algorithms thae sorting, in particular, the
median search algorithms and genethl of index statistics.
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