
ISSN 0474-8662. Відбір і обробка інформ. 2019. Вип. 47 (123) 73

ALGORITHMS AND SOFTWARE

UDC 004.424.5 https://doi.org/10.15407/vidbir2019.47.073

ACCELERATION OF LARGE INTEGER ARRAYS SORTING USING
RANGES OF VALUES AND FREQUENCIES OF ELEMENTS

A. V. Shportko1, L. V. Shportko2
1Academician Stepan Demianchuk International University

of Economics and Humanities, Rivne;
2Rivne College of Economics and Business, Rivne

E-mail: ITShportko@ukr.net

The speed of sorting of various types of large integer arrays by popular algorithms of different
groups of methods is analyzed. As a result, the algorithm of rapid exchange sorting with parti-
tioning and moving of the supporting element QuickSort has again been recognized as the most
effective. An alternative algorithm for partitioning of the QuickSort method in relation to the
half the range of values of the elements of each submachine, which makes it possible to use
sorting by narrow ranges, is given. It is shown that subarrays with the length of up to 10 ele-
ments should be sorted by simple inserts. For longer subarrays, if the range of values does not
exceed its size, it is advisable to use the sorting method by counting. Otherwise, it is necessary
to perform the iteration of the QuickSort method with a split in half the range of values of its
elements. It has been experimentally proved that such a complex use of methods accelerates,
for example, sorting of arrays with 1 million elements and with the range of values no more
than 1000 by 34%. The results obtained can be used to accelerate the sorting of large integer
arrays with the known or defined ranges of values.

Keywords: sorting of arrays, QuickSort sorting method, range of array elements values,
sorting by counting.

ПРИСКОРЕННЯ СОРТУВАННЯ ВЕЛИКИХ ЦІЛОЧИСЛОВИХ МАСИВІВ
ЗІ ЗАСТОСУВАННЯМ ДІАПАЗОНІВ ЗНАЧЕНЬ ТА ЧАСТОТ ЕЛЕМЕНТІВ

О. В. Шпортько
1, Л. В. Шпортько

2
1
ПВНЗ “Міжнародний економіко-гуманітарний університет імені академіка

Степана Дем’янчука”, Рівне;
2
ДВНЗ “Рівненський коледж економіки та бізнесу”, Рівне

Проаналізовано швидкість внутрішнього сортування різнотипних великих цілочислових
масивів популярними на сьогодні алгоритмами з різних груп методів. Найефективнішим
серед проаналізованих вкотре визнано алгоритм методу швидкого обмінного сортування
QuickSort, в якому розбиття виконується відносно випадковим чином обраного перемі-
щуваного опорного елемента. Наведено альтернативний алгоритм розбиття для методу
QuickSort відносно половини діапазону значень елементів кожного підмасиву, який дає
змогу за вузьких діапазонів застосовувати метод сортування підрахунком. Показано, що
цей метод має лінійну обчислювальну складність для розміру сортованого підмасиву та
діапазону значень його елементів, але його застосування допустиме лише тоді, коли роз-
мір вказаного діапазону значень не перевищує розміру масиву частот. Тому розширення
можливостей використання методу сортування підрахунком і відповідно прискорення
сортування загалом, можливе через збільшення розміру масиву частот.
Згідно з аналізом обчислювальної складності, показано, що підмасиви з довжиною до
10 елементів включно доцільно сортувати методом простих вставок. Для довших підма-
сивів, коли діапазон їх значень не перевищує кількості елементів та розміру масиву час-
тот, доцільно використати метод сортування підрахунком, а інакше варто виконати іте-
рацію методу QuickSort з розбиттям навпіл діапазону значень елементів підмасиву.

 A. V. Shportko, L. V. Shportko, 2019

ISSN 0474-8662. Information Extraction and Process. 2019. Issue 47 (123) 74

Експериментально доведено, що таке комплексне використання зазначених методів при-
скорює, наприклад, сортування масивів з діапазонами значень <1000 розміром 1 млн.
елементів на 34%. Отримані результати можна використати для прискорення сортування
та обчислення порядкових статистик (наприклад, медіан) великих цілочислових масивів
з відомими чи визначеними діапазонами значень.

Ключові слова: сортування масивів, метод сортування QuickSort, діапазон значень
елементів масиву, сортування підрахунком.

Currently, most of the information stored on electromagnetic media is provided in
digitized discrete form. At the same time, for the fast processing of data of the same
type, arrays, placed in RAM are used. Sorting of these arrays allows us to perform bi-
nary search instead of the linear one and to accelerate the further processing of elements.
That’s why improving the methods and algorithms of sorting is the up-to-date task and
it will remain the urgent task in the future.

Imagine the situation when it is needed to sort the array 0 1 1(, , ... ,)NA a a a − , where

N ≥ 1000. For arrays, the concepts of record and key in the context of this paper actually
coincide, so in the future, under the element of the array, we will keep in mind both
these two concepts at the same time.

The analysis of the last researches and publications. As of today all the general
methods of practical internal sorting (sorting data located in RAM) the principle of
functioning are divided into five groups [1]:

– sorting by insertions, when a duty element is pasted in the already sorted
subsequence;

 – sorting by exchange, when that elements are moved at the large distances;
– sorting by choice, during which among the non-sorted part the maximum item is

selected each time and is written in the next position, for example;
– merge sort, the main idea of which is to combine sequentially each time the

further sorted sequences of the elements;
– sorting by a distribution, in which the elements are not directly compared with

each other but divided into different groups (for example, by the highest bit), after that
sorting is performed within each group separately and the results are consistently
combined with each other.

For sorting of large arrays the most effective algorithms of such methods are the
following [1, p. 148]:

– pyramidal sorting HeapSort [2], which initially arranges elements of the array
by the principle 2212 ; ++ ≥≥ mmmm aaaa , thus moving the largest value of the array into

an element 0a and forming a pyramid of subordination. Then it sequentially removes
the value from this element (chooses the largest value), adjusts the placement of the
remaining elements of the pyramid, so that the principle of ordering is preserved, and
records the deleted value at the end of the unassembled part. This method belongs to
the “Sort by choice” group;

– sorting by insertions ShellSort [3], according to which the remote elements of
the array are sorted by inclusions in the separate subarrays, and the displacement
between the elements for the formation of submachine sequentially decreases to unity.
This method belongs to the “Sorting by insertions” group;

– a quick exchange sorting with partition of QuickSort [4], according to which at
each iteration a reference element is selected and values not larger than this element are
placed to the left of it. Elements that are larger or equal are placed to the right. After
these operations the elements of the left and right parts are sorted in subsequent iter-
ations of the algorithm separately. This method belongs to the “Sort by exchange” group.

The algorithms of these methods have the average calculative complexity of the
order 2(log)O N N [5], although the speed of their work depends on the placement of

ISSN 0474-8662. Відбір і обробка інформ. 2019. Вип. 47 (123) 75

the array elements. In addition, the efficiency of the sorting algorithms also significantly
depends on the amount of used additional memory and implementation details. Let’s
see, for example, how to select a reference element for the QuickSort method. If the
value of the reference element is located approximately in the middle of the values of
the fragment of the array for sorting, then the recursion depth will be around 2[log]N
and the total computational difficulty will actually approach to 2(log)O N N , since for
the next division, it is necessary to compare each element of the array with the sup-
porting element of its fragment. But if at each iteration the reference element is mini-
mal/maximal for its fragment, then in its right/left part after the move of all its other
elements will fall and the length of the fragment for the next iteration will be reduced
to only one element. In this case the depth of the iterations will be N–1, and therefore
the total computational complexity of the algorithm will be closer to O(N2). The option
of selecting such a supporting element is not with such a little probability as it is
specified in [6], especially when the values of this supporting element are taken from
the first or the last element of the fragment, and the array itself is already pre-sorted.
The importance of choosing the correct supporting element was emphasized by the
author of QuickSort C. A. R. Hoare in [4]. In this work he proposed two options for
forming the value of the reference element: either set it to be equal to the median subset
of the elements (for example, from the first, the last and the middle element of the
fragment), or to select it randomly among the elements of the fragment. If for the first
variant of the formation it is still possible to pick up the elements of the array so that
the computational complexity of the sort is approaching O(N2), then for the second
option it is almost unrealistic [7]. So, in practice it is expedient to select the reference
element in a random manner.

On the other hand, in the QuickSort implementation, it is not expedient to break
short subarrays (in our implementations up to ten elements inclusive) iteratively, but it
is better to use “straightforward” sorting methods, for example, simple inserts, as it is
specified in [1]. Also, modern partitioning schemes of this method, in contrast to the
classical scheme of Hoare [7], always move the supporting element every time to the
edge of the subarray, that avoids additional indexes comparisons [8, p. 92–93]. We
applied all these modifications and schemes in the process of practical implementation
of the QuickSort method.

So, the purpose of this paper is to study the speed of sorting large integer arrays
of different types by the algorithms of above-mentioned methods, selecting among
them the fastest average algorithm and its improvement by using a range of values and
frequencies of the array elements.

Analysis of the speed of sorting large integer arrays by the algorithms of dif-
ferent methods. To verify the efficiency of the above-mentioned algorithms of sorting
methods, we implement the programs presented in [8, p. 89–101] in the Microsoft Visual
Studio program in C # programming language [9]. The choice of this programming
language is due to its popularity today for the development of applications. For the
QuickSort method, we have developed two variants of algorithms with the choice of
the leading element at random: with the implementation of the partition of the Hoare
scheme (QuickSort 1) and with moving of the reference element (QuickSort 2). Testing
was performed on a computer with an Intel Pentium 4 processor with the clock speed
of 3 GHz and 4 Gb of RAM. Test results are shown in Table. 1. The same table shows
the sorting time of arrays by the standard Array.Sort() method.

ISSN 0474-8662. Information Extraction and Process. 2019. Issue 47 (123) 76

Table 1. The duration of sorting in ascending order of variants of integer array
with 1 million elements by the algorithms of different methods, ms

Variant of array
Algorithm of

sorting method Generated
randomly

Sorted in
ascending order

Sorted in
descending order

From equal
elements

QuickSort 1 427 207 193 242

QuickSort 2 383 141 156 250

HeapSort 921 633 625 109

ShellSort 1133 164 313 164

Array.Sort 219 31 94 109

We see that among the explored algorithms, the sorting of large integer arrays is
performed on the average quickly by the QuickSort algorithm with the movement of
the supporting element. It is 19.7% faster than the QuickSort algorithm with the Hoare
scheme and yields to it only in the arrays of identical elements, and is on average faster
by 183% of the HeapSort algorithm and by 69.6% of the ShellSort algorithm. In our
opinion, the shortfall of QuickSort from the standard sorting method Array.Sort is due
to the use of the references in it instead of the index of elements, which reduces the
number of checks for out of range. It is also interesting that the pyramid sorting for
random-generated arrays turned out to be faster than ShellSort by an average of 23%,
as predicted in [1, p. 159]. Therefore, in this paper we will explore the possibilities of
improving the QuickSort algorithm.

Implementation of the QuickSort method by partitioning the range of array
elements values. The idea of this method is to split the subarray elements relative to
the half range of its values and in the subsequent iterative sorting of each of the two
received parts. An opinion on the use of a breakdown of the value close to the middle
of the range was expressed by John McCarthy [1, p. 128]. We recommend to execute
split self in relation to this middle value.

Let ()0 1 1min , , ... , NminA a a a −← , ()0 1 1max max , , ... , NA a a a −← are respecti-

vely, the minimum and maximum values of elements of the array. We also set the value
of the constant 11Q ← , where Q is the minimum length of the subarray, for which the
QuickSort iterative call is already used, rather than the method of sorting by simple
inserts [1]. Then, the QuickSort sorting algorithm that uses the partition of values is
sequentially written as follows:
1. Execution of the initial initializing, setting 0, 1i j N← ← − (sorting limits) and

minElement minA, maxElement maxA← ← (range of values of elements).

2. If minElement maxElement= , we complete an iteration (as all elements of suba-
rray are equal).
3. Calculation of 1d maxElement minElement← − + , 1l j i← − + , where d is a
range of values of elements of subarray, l is an amount of elements of subarray. If l < Q,
then we sort a subarray by the method of simple insertions and complete the iteration.

4. Calculation of () / 2element minElement maxElement ← +  . This is the middle

of the range of values of elements. Like splitting of Hoare, we need to rearrange the ele-
ments of subarray 1 1, , ... , ,i i j ja а a a+ − so that the elements belong to the ranges of values

[];ma minElement element∈ , ,m i k= ; []1;ma element maxElement∈ + , 1,m k j= + .

We need to break up elements in relation to the middle of the range of values.

ISSN 0474-8662. Відбір і обробка інформ. 2019. Вип. 47 (123) 77

5. Assigning ,j k maxElement element← ← and iteratively sort the “left” subarray,
passing to step 2.
6. Restoring the previous values of the variables and assigning them

1, min 1i k Element element← + ← + and iteratively sorting the “right” subarray,
passing to step 2.

Finding the maximum and minimum values of the array of elements is not included
in this algorithm, since these values can be known to the user in advance and so it is
not expedient to spend time on their calculations. For example, in our experiments for
an array of millions of elements, the duration of computing these values on the average
took 11 ms. In contrast to the classic QuickSort algorithm, the presented algorithm
does not remove the reference element from subsequent consideration at each step of
the iteration, but the range of values of the elements is always split equally, so its
computational complexity would not exceed 2(log (1))O N maxA minA− + . So, the
QuickSort method with a breakdown of the range of values should be used when
this range does not exceed the number of elements of the array.

Adaptation of sorting method by counting to subarrays of QuickSort method.
The sorting method by counting allows us to arrange integer elements using the addi-
tional array of frequencies [1, p. 80]. To sort the array in ascending order, this method
can be briefly paraphrased as follows:
1. Calculate the frequencies of the values of the elements of the array;
2. Consistently selecting the values of the elements in ascending order, repeate in
each resultant array each value as many times as it is encountered in the inputting
array.

It is clear that application of this method to sorting the subarray is possible only
when the range of values of its elements does not exceed the size of the array of
frequencies. In addition, we will apply this method for sorting subarrays of the
QuickSort method only if the same range of values does not exceed the number of its
elements. The C # language code snippet for sorting of such subarrays is the following:

 if (d <= l && d <= countFreq)
 {for (m = 0; m < d; m++) //reset frequencies of values
 freq[m]=0;
 for (m = i; m <= j; m++) //count up frequencies of values
 freq[a[m]-minElement]++;
 index = i;

 for (m = 0; m < d; m++) //sort possible values
 for (c = 0; c < freq[m]; c++) //repeat the frequency value
 a[index++] = minElement + m;

 continue; //complete sorting of subarray
 }

It is interesting that this method does not compare the elements with each other
directly and thus it is similar to the methods of the “Sorting by distribution” group, but
in the process of its work 2 2l d+ comparisons of indexes and l appropriations are per-
formed. The method of simple insertion performs on average (1) / 4l l − comparisons
and the same number of assignments. Therefore, use of the method by counting instead
of a simple insertion method is appropriate when (1) / 2 3 2l l l d− ≥ + . If l d≥ , this

inequality will always be true at 11l ≥ (this is what determines the value of the cons-
tant Q). Comparing the computational complexity of the sorting method by counting
with the classic QuickSort method, we find that if l d≥ and 11l ≥ it is expedient to
use the first from these methods of sorting, and at less l – the second one.

ISSN 0474-8662. Information Extraction and Process. 2019. Issue 47 (123) 78

Results of experiments. Let’s match the data in Table 1 and Table 2, which present
the results of testing the QuickSort algorithms with a breakdown of the range of values
(QuickSort 3) and the same breakdown and implementation of the counting method
(QuickSort 4), which use a frequency array of 100 elements.

Table 2. The duration of sorting of variants of integer arrays with 1 million elements
in ascending order by algorithms of the QuickSort method with a breakdown

of the range of values, ms

Variant of array
Algorithm of

sorting Generated
randomly

Sorted in
ascending order

Sorted in
descending order

From equal
elements

QuickSort 3 429 149 156 16

QuickSort 4 429 133 133 16

Let’s also consider the length of sorting by the given modifications of the QuickSort
algorithm of integer arrays with different ranges of elements values (Table 3). Note that
the efficiency of the sorting method by counting also depends on the capacity of the
array of frequencies: if, for example, this array is increased to 104 elements, the array
sorting with a range of values 105 will last 117 milliseconds. And if we increase the
number of elements to 105, the sorting process will take just 39 milliseconds.

Table 3. The duration of sorting of integer arrays with 1 million randomly
generated elements in ascending order by different modifications

of the QuickSort algorithm, with different ranges of element values, ms

Width of the range of values of elements
The modification of QuickSort algorithm

109 107 105 104 103 101 100

QuickSort 2 (with moving of supporting
element)

383 383 365 343 313 273 269

QuickSort 3 (with splitting of the range of
values)

430 430 364 281 211 86 16

QuickSort 4 (with splitting of the range of
values and sorting a count)

430 430 234 172 109 31 16

Array.Sort 203 203 195 180 164 132 109

CONCLUSIONS
In order to sort integer arrays, in most cases it is sufficient to use the standard

method of the programming language.
If you only need to get a fragment of a sorted array (for example, its median), you

should use the QuickSort algorithm to move the support element.
In cases where the width of the range of values of the array of elements is known

and this width does not exceed 105, in order to accelerate its sorting, it is expedient to
use the QuickSort method with a breakdown of the range of values with the methods of
sorting by counting and simple insertion. In this case, if the length of the subarray does
not exceed 10 elements it should be sorted by simple inserts, otherwise, if the range of
values does not exceed the size of the subarray, you have to use the sorting method by
counting. If these two conditions are not fulfilled, it is advisable to perform the iteration
of the QuickSort method with a split in half the range of values of the elements.

ISSN 0474-8662. Відбір і обробка інформ. 2019. Вип. 47 (123) 79

In the future, we plan to use methods of splitting the range of values and sorting
by counting in order to improve the algorithms that use sorting, in particular, the
median search algorithms and general i-th of index statistics.

1. Knuth, D. E. The Art of Computer Programming. Sorting and Searching, 2rd ed.; Massachusetts:
Addison Wesley Longman, 1997; 3; р 791.

2. Williams, J. W. Algorithm 232 – Heapsort. Communications of the ACM 1964, 7 (6), 347–348.

3. Shell, D. L. A high-speed sorting procedure. Communications of the ACM 1959, 2 (7), 30–32.

4. Hoare, C. A. R. Quicksort. The Computer Journal 1962, 5(1), 10–16.

5. Cormen, T. H, Leiserson, C. E., Rivest, R. L., Stein, C. Introduction to Algorithms, 3rd ed.;
Moscow: Williams, 2013; pp 1328. (in Russian).

6. Quick sort http://algolist.manual.ru/sort/quick sort.php (accessed by Jun 05, 2019). (in Russian).

7. Quicksort – Wikipedia https://en.wikipedia.org/wiki/Quicksort (accessed by Jun 05, 2019).

8. Vlasyuk, A. P. Practical Programming Work in the Environment of Turbo Pascal; Rivne:
NUWEE, 2005; Part.1; p 179. (in Ukrainian).

9. C# Language Specification. Standard ECMA-334, 5th ed.; ECMA International, 2017.

 Received 17.05.2019

