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DIFFRACTION OF NORMAL SH-WAVE FROM A SEMI-INFINITE RIGID
INCLUSION IN AN ELASTIC LAYER
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The Fourier integral transform is used to reduce the diffraction problem of the normal SH-wave
on a semi-infinite rigid inclusion in elastic layer to the Wiener—Hopf equation. Its solution is
obtained by the factorization method. The analytical expressions of the diffracted displacement
fields are represented in any region of interest. The dependences of the scattered field on the
parameters of the structure are given. The properties of identification of the inclusion type
defect in the plane layer are illustrated.
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JTA®PAKIIA HOPMAJBHOI SH-XBUJII HA HAITIBHECKIHYUEHHOMY
KOPCTKOMY BKIIOYEHHI B ITPYKHOMY IIAPI

M. B. Boiitko, 5. I1. Kynunanu
®isukxo-mexaniynuii iHcTUTYT iM. I'. B. Kapnenka HAH Ykpainn, JIbBiB

JocnimpkeHo au¢pakiiio HopMaibHOT SH-XBHIII Ha HaIiBHECKIHUCHHOMY )KOPCTKOMY BKJIIO-
YeHHI, PO3TAlIOBAHOMY HECHMETPHUYHO BIIHOCHO IUIOCKHMX ITOBEPXOHb MPYXKHOro mapy. Bea-
Kay, 10 MOBEPXHI 1Iapy BiJbHI Bill HAIPYXKeHb. BKIITOUeHHs MOJIEI0OBAIIH TIBIUIOLIMHOO, Ha
SIKil 3MIIIEHHS piBHI HyJII0. 3a7ady 3BEJCHO 10 3MIlIaHO] KparoBoi 3amadi uis piBHAHHA [ esbM-
roJIbLia, PO3B’S3OK SIKOI MOBHHEH 3a/I0BOJBHATH yMoBH [lipixyie Ha nedexti Helimana Ha mo-
BEpXHSAX IIapy, a TAKOXK BUIIPOMIHIOBaHHS Ha HeCKiHUEHHOCTi i MelikcHepa Ha BepIIMHAX Jie-
¢bexry. BukopuctoBytoun iHTerpaibse nepersopenss Oyp’e, 3MmilaHy KpailoBy 3a1ady 3BeNd
1o (GyHKIIOHaIBbHOTO piBHIHHA Binepa—Ionda, sike € cpaBeaauBUM y BU3HAUYCHIH CMy3i pery-
JsipHOCTI. [l pO3B’S3aHHS 1[bOTO PIBHAHHSA BUKOPHUCTAHO METOX JICKOMIIO3HLIl Ta Teopemy
Jliypins. [l nporo cmodyatky (akTOpH30BaHO XapakTepucTH4HY (yHkuito. Bona monana y
BUIIIAAL 10OYTKY 1BOX (DyHKIiH, SIKi € PeryJsipHUMH y MIBIUIOIMHAX 1 MAIOTh CHIJIbHY CMYTY
peryispHocTi. 3a MexxaMu o0acTeil perysspHoCTi Il (QYHKIIi TOMYCKatoTh OCOOIMBOCTI THITY
npocTux nomocis. Po3s’ ok piBHAHHSA Binepa—T'onda nonano B ananirnanomy suriszi. dani,
3aCTOCOBYIOUHM oOepHeHe reperBopeHHs Dyp’e, 3HAWNUIM BHpas3u Uil PO3CITHUX OB 3Mi-
IIeHb Y KOXHIN 13 mifoOaacTei Ui AOBUIBHOI 4acTOTH 1 Touku npoctopy. HaBeneno rpadiku
3aJIe)KHOCTEH Au(paroBaHOro Mo 3MillleHb Ha MOBEPXHAX IIapy 3aJieXKHO BiJ KOOPIMHATH,
nosioxeHHs1 edexTy Ta 4acToTu 30H1YyBaHHA. IIpoimrocTpoBaHO O3HaKM Uit ineHTH(ikamii
JeeKTy THITy BKIIOYEHHS B IUIOCKOMY LIapi. BcTaHOBIEHO TOBLIMHY IIAapy Ta 4acTOTH HOro
30HJ[yBaHHSI OCHOBHOIO XBHJIEBIIHOIO MOJIOIO, 32 SIKMX Miclie ()OpMYBaHHS iIHTEHCUBHHUX OCLIU-
JISILIH IPY)KHOTO I10J11 Ha IOBEPXHSAX € 03HAKOI YTBOPEHHS Kparo Ae(eKTy, AKUH IPOCTAraeTh-
¢ B 00J1aCTh, € OCIIMIIALII BiICYTHI. 3MiHa 4acTOTHOTO napamerpa ([iABUILEHHS YaCTOTH) J1ae
3MOTY OLHHUTH MIMOMHY HOTO 3aJIAraHHs.

KmouoBi cioBa: npyocnuii wap, exmouenns, ougpaxyis, nopmamwna SH-xeuns, memoo
Binepa-I'onga.

Introduction. The study of the diffraction of elastic waves by defects located in
various constructions is important for the development of new intelligent diagnostic
technologies that combine the usage of various technical means for collecting and
processing the information. For example, they are based on the common use of optical
and ultrasonic methods [1-6]. In order to provide the theoretical basis for this techno-
logy, the problem of SH-wave diffraction from a finite crack in an elastic layer and on
a crack located at the boundary of the junction of a layer with a half-space is solved by
the Wiener—Hopf technique [7-11]. In this paper, the cracks are modelled by a finite slit
of zero thickness without any stresses on the faces. Within the framework of this model, the
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resonance vibrations are analyzed to obtain the maximum response. The problem of
SH-wave scattering from a semi-infinite crack in a plane elastic waveguide is solved by
the mode-matching technique [12]; the reflected and transmitted coefficients as
functions of frequency are analyzed.

The purpose of this paper is to model
the displacement field on the layer surfaces
with an internal defect for its further identi- o
fication. For this purpose, the problem of
SH-wave diffraction from the defect located
in the elastic layer is solved. The defect is 0 >
modelled by the rigid semi-infinite inclusion
of zero thickness. Time factor is assumed to

be e7'®! and omitted throughout the paper.

Formulation of the problem. Let us
consider the elastic layer in the Cartesian
coordinate system xOy

Fig. 1. Geometrical scheme of the problem.

P(y) :{X e(—oo,+oo), ye (—d, +d ), Ze (—00,+oo)}
with the rigid inclusion (Fig. 1):
r'(h) :{X e(—oo,O), y=h,ze (—oo, +oo)} )

Let the incident normal transverse elastic wave of the horizontal polarization
(SH-wave) propagates in the negative direction of the axis x as

uiznc(x,y)ze”x cos(Bjy), (1)

WhereBJ- =%, Y =J[321-— k2, j=0,2,... ; k is the wave number, k=k'+ik",
k',k">0.

We seek the unknown diffracted field u=u(x,y) from the solution of the mixed
boundary value problem for Helmholtz equation

oZu(x,y)+a5u(xy)+ku(x,y)=0, @)
with the boundary conditions on the defect
u”(x,h£0)=0, xe(-=,0) (3)
and on the elastic layer surfaces
ayutOt(x, y=1d)=0, xe(-o0,+x),
where u™ =u+u™ is the total field. We seek the solution in the class of functions

which satisfy the radiation and the edge conditions.

Solution of the problem. Let us introduce the Fourier integral transformation of
the diffracted field as follows

1 40 i
U(a,y)=——=| u(xy)e'dx, 4
(a Y) \/%J‘_w ( y) (4)
where a=c+it (o, T are the real values).

Next, we represent the solution of equation (2) in the Fourier transform domain in
the form
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A(a)e” +B(a)e™, h<y<d,

- ()
C(a)e” +D(a)e™, —d<y<h.

U(ay)=

Here, A(a), B(a), C(a), D(a) are unknown functions, that are regular in the
strip aoeIl: {—ty<t<71y}, Where k”<to<k’; in order to satisfy the radiation
condition at infinity, we find that Rey > 0, where vy = a? —k?.

Let us introduce the Fourier integrals:

==L ut

U (a,h£0)= )e'*dx (6)

U+ ( |(1de (7)

o)== ul
Here, U™ (a,h+0), U™ (a,h%0) are regular functions in the overlapping half-

planes t<1tq, T>—t9 Witha common strip of regularity o eIT.
Applying the Fourier transform to the boundary condition (3), we find that

U (o,h+0)=U"(0,h-0)=U"(a)

and
_ icos(ﬁjh)
U (o) ®
( ) \/E(O(.—iyj)
Using notations (6)—(8), we rewrite the expression (5) as follows:
ch(y(h-d)) ch(v(y-d)), h<y<d,
vl ©

U_(oc)+U+(oc)
————~“c¢h +d
ch(y(h+d)) (1(y+d)
Further, using the condition of continuity of the normal stresses at
{x €(0,+0),y =h+0}, we reduce the problem to the Wiener-Hopf equation [13, 14]:

U+(G)M+(a)+icos(th)M+(oc)= I (@) LTl 10)

\/E(Ot—iyj) M_(Ot)’

Here, J; (a)= \/_j [6 u(x,h+0)- yu(x,h—O)}eiO‘xdx is the unknown

, —d<y<h.

function that is regular in the lower half-plane t<tg; U+(0L)=O(oc_3/2),
J (oc)=0(of1/2), if |a|> o in the domain of regularity. The known functions

M_(a), M, (o) are regular in overlapping half-planes t<tq, ©> -1, respectively.
Outside the strip TT they have simple zeros at o =ziy, and poles at o ==iy,,,
o =ziyps3, N=12,...,
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where

M,(@)=M_(-a) and M, (a)=0(2), if o>

M, () = \/ﬂ—iex(a)(a + k)\/li(a)

AM, (o) M (a)

, (11)

ia

elifel?)

A :\/k cos(kly )cos (kl, ),

x(o)=—

© 2iad

Ml(a)=H{1+_a }e o
n=1 17n1

o ial

o i

Mz(a)=]‘[[1+_ }e“” ,
n=1 1Yn2

o iol,

o 22

Ms(a)=n{1+_ }e“” .
n=1 1Yn3

Fields representation. Applying the Liouville’s theorem, we arrive at a solution
of equation (10) in the following form:

i icos(th)
RN EYNE

Substituting expressions (12) and (8) into representation (10), we find the integral
representation of the diffracted field in the form

(12)

M+(0c)_M+(in)
t—iy; oy '

1 (o i
u(x,y)=——|{ U(a,y)e"*da, 13
() ==l V@) (13)
For the field analysis, we represent integral (13) through the series of the residues.

For this purpose we deform the integration path into the upper/lower complex half-
planes. As a result, the scattered field for each of the regions is written as follows:
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. x>0,-d<y<d:

cos(Bih|M_ (iy;:
- (),
. | - 14
. £ (_1)0|+1M+(qu)cos[%lee X a(y—d) (14)
x>y - COS| ——= |,
q=0 qu(qu"'Yj) 2d
where &g =1/2, when q=0 and &g =1, when q=>1;
Il. x<0,-d<y<h:
. cos(B:h|)M_ (iy:
u(x,y)=-u"(xy)+ (BJ I)Z +(yj)x
. ' (15)
= (-1)n(2q-1)e’? COS(n(q—l/Z)(y+d)J_
X 1
q=12Yq2(Yq2—Yj)M+(qu2) 12
Il. x<0,h<y<d:
. cos(B:h|M (iy;
U(X,y)=—u'znc(x,y)+ (BJ I)Z +(YJ)><
: (16)

3 (-1)"n(2g-1)e"®" Co{n(q-llz)(wd)}

q=12Yq3(Yq3—Yj)M+(qu3) h

Numerical analysis. Numerical calculations of the total displacement field are
represented for the layer in Fig. 1 for two different positions of the defect: h=23d /4
and h=d/4.

The defect is irradiated by the normal SH-wave (1) with number j=0 of the unit
amplitude. The dimensionless thickness of the plate is equal to  2kd .

Case 1: h=3d /4. Under such condition, all the modes are evanescent in the
region x<0,h<y<d,if 0<2kd <2x. Inthe region x<0,—d < y<h all the modes
are evanescent if 0<2kd <4xr/7 . In this region the first propagating mode appears if
4n/7 < 2kd <12n/7 and two propagating modes appear if 12n/7 <2kd <2x .

Case 2: h=d /4. In this case all the modes are evanescent in the region x<0,
h<y<d,if 0<2kd <4n/3. The first propagating mode in this region is formed, if
4rn/3<2kd <27 . In the region x<0, -d<y<h if 0<2kd <4n/5 all modes are
evanescent, and only one propagating mode appears if 4n/5<2kd <2m .

In Figs. 2 and 3 the total displacement fields |u™" ut°t(x/(2d),y=id)‘ are

shown at the layer surfaces P(y==d): defect I'(h=3d/4) (see Fig. 2) and defect
I'(h=d/4) (seeFig. 3).

Here, taking into account the exponential nature of the damping of summands (14)
—(16), no more than five terms were used for the calculations.
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Fig. 2. Dependence of the total displacement
field |u™| on the normalized coordinate x/2d
with h = 3d/4:
a-2kd=15;

b —2kd =4.5;
c—2kd=55.

— o _y:d;

——y=-d.

From Fig. 2a we observe, that in the region x <0 the total field decays to zero on
the layer surfaces y=+d . The speed of the decaying on the surface y=d is higher,

than on the surface y=-d . This happens because the waveguide area above the in-

clusion is narrower than the one below. If x>0, the dependence |u'® | on the dimen-

sionless parameter x/2d is oscillatory in its nature. The module of the complex am-
plitude of the oscillation on the layer surfaces for y=-d and for y=d is different, if
x/(2d) <1; and this amplitude is twice as large as the amplitude of the primary normal

mode u!" (x,y) . That is, the oscillations in the incident and reflected waves occur ina
phase. With the increase of thickness up to 2kd =4.5 (see Fig. 2b), that is equivalent
increase of the sounding frequency we see that in the region x<0, y=d the total
field |u'" | saves an exponentially decreasing behavior. Here, in the region above of

the inclusion, all the modes are evanescent. In the region below the inclusion, one

propagating mode is formed. On the surface x <0, y=—d the behavior of |u'|
decreases exponentially to the value 0.25. This corresponds to the amplitude of the

scattered mode. Oscillatory behavior of |u' | is different for the upper and the lower
surfaces, if x>0.

With the increase of thickness up to 2kd =5.5 (Fig. 2c) in the region above the
inclusion all modes are evanescent. On the surface x <0, y=d the behavior |u'® | is
exponentially decreased. In the region below the inclusion, two modes are propagating
and others are evanescent. In this case, the behavior |u' | is oscillatory in its nature, if
x<0, y=-d.
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In Fig. 3 we see the dependences of the total displacement field |u'® | on y=+d

for h=d /4. As follows from Fig. 3a, |u'® | decays to zero on both surfaces of the

layer, if x<0. With the increase of the sounding frequency up to 2kd =3.5 one
propagating mode in the region x <0, —d < y < h is formed (see Fig. 3b). In this case,

on the surface y =—d , the value of the amplitude |u' |=0.5. Here, in the region

above the inclusion, all the modes are evanescent.
In the region above and below the inclusion one propagating mode appears, if

2kd =4.5 and x <0 (see Fig. 3c); the amplitude |u™" | on the surface y =d is seven
times higher than on the surface y=-d .

CONCLUSION

Using the Wiener—Hopf technique, we obtain the exact analytical solution of the
problem of the diffraction of normal SH-wave on a semi-infinite inclusion, which is
located in an elastic plane layer. The influence of the inclusion depth on the distribu-
tion of the displacement field, depending on the layer thickness is investigated. It is
found that the thickness of the layer and the frequencies of its sounding form intense
oscillations of the elastic field on the layer surfaces. The place, where the oscillation
start, is an indicator of the defect which can extend to the area where oscillations are
absent. The change of the frequency parameter allows the estimation of the defect
depth.
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