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USE OF OBJECT SHAPE PRIORS FOR FRACTOGRAPHIC
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An approach to efficient level-set model with shape priors for images segmentation is
considered. The use of edge based level-set model in combination with principal component
analysis (PCA) based shape priors for image segmentation is investigated. Shape priors are
considered as a tool to cope with proper segmentation of overlapping or partially visible objects
on input image. It is argued that in some cases consequent optimization of different groups of
parameters can be advantageous in comparison to simultaneous optimization of all parameters.
The approach was applied for segmentation of fractographic images obtained by scanning
electron microscope (SEM). Experimental results for image segmentation using the level-set
model with shape priors are presented.
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BUKOPUCTAHHS AITIPIOPHOI IH®@OPMAIIIL TPO ®OPMY OB’EKTIB
JIJISI CETMEHTAIIII ®PAKTOTPA®IYHUX 305PAKEHD

T. C. Manj3ii
®izuxo-mexaHiynui iHcTuTyT iM. I'. B. Kapnenka HAH Yxkpainu, JIbBiB

PosrasiHyTO mizXix no eeKTHBHOI cermeHTarii 300paxkeHb MoJieIssMH Ha OCHOBI level-set me-
TOJYy 3 BUKOPUCTAaHHIM arpiopHoi iH(opMmaii mpo dpopmy. HeoOXigHICTh yCKIaTHEHHS MOe-
Jei cerMeHTanii 300pakeHb BUKOPUCTAHHAM ampiopHoi iHdopmamnii mpo ¢gopMy 3ymMoBIeHa
ocobmmBicTIO ppakTorpadidanx 300paxeHs. [10 TakuX 0cOOIMBOCTEH HaNEKATh 3alIyMIICHICTh
300pa’keHHs1, YaCTKOBA BUANMICTD i IEPEKPUTTS 00’ €KTiB Ha 300pakeHHi. [lepeniveni pakropu
4acTO YHEMOXKIMBIIOIOTh KOPEKTHY CETMEHTAIiI0 00’€KTa, 0 0a3yeTbcs HA TEKCTYPHUX Xa-
pakTepucTHKax 300pakeHHs, a00 3HAUEHHAX Tpajaliil Ciporo To4oK 300pakeHb. Bukopucran-
Hs anpiopHOi iHpopMarllii mpo GpopMy HakIagae 0OMeKeHHS Ha GOpMY CerMeTHaA 300paXKeHHS,
SIKMM BUISAEThCS 00’€KT Ha BXiTHOMY 300paxkeHHi. OcoONUBY pojib Taki 0OMEXEHHS Bimirpa-
FOTh CaMe Yy MICIIfX, JIe JIOKaITi3allisi rpaHuili 00’ €KTa € HEOAHO3HAYHOK. Y JIaHii poOoTi Joci-
IDKeHo noeHanHs level-set mozeri, o 6a3yeThest HA BUKOPUCTAHHI KOHTYPIB 300paXeHb, 3 BH-
KOpHCTaHHAM anpiopHoi iHopmarii mpo ¢popMy Ha OCHOBI METO/IY FOJOBHHX KOMITOHEHT IS
cerMeHTanii 300paxxens. Llei miaxim 3acTocoBaHO i cerMeHTamii dpakrorpadidaux 300pa-
JKEHb, OTPUMAaHHX 32 JOMOMOTOI0 CKaHIBHOTO €JIEKTPOHHOTO MiKpockoma. Sk Bimomo, Moaeni
Ha ocHOBI level-set metony, 1110 CKIIAMArOTHCS 3 KiTbKOX KOMITOHEHT, OEJHIOIOTH I[i KOMITOHEH-
TH 3 BAIIOBIAHWMHU BaroBUMH KOELIEHTAMH. 3HAYEHHS IIMX BarOBUX KOEIIEHTIB 1 X CIiBBIIHO-
IICHHs] BUOPAaHO 3aJIe)KHO BiJl KOHKPETHOI 3aJadi cerMeHrauii. BBeaeHHs J01aTKoBOI KOMIO-
HEHTH, 30KpeMa arpiopHoi iHdopmarii mpo ¢popMmy 00’€kTa, BIMarae peTei-HOro BUOOpy 3Ha-
YeHb Bi/IMOBIZIHMX BaroBUX KOCILIEHTIB Ul KOPEKTHOI cerMeHTauii 06’ekra. BusBieHo, 1o y
NEeBHUX BHIAKaxX ITOYEProBa ONTHUMI3allisl IEBHUX IPYI MapaMeTpiB MOXKe MaTH MepeBary Haj
OJTHOYACHOIO ONTHUMI3alli€l0 BCiX mapamerpiB mojeni. [TofaHo ekcrepUMeHTalbHI pe3yabTaTH
cerMeHTalii peagbHUX QpakrorpadiuHux 300pakeHb CKaHIBHOTO €JIEKTPOHHOTO MiKpOCKOIA.

Kiro4uoBi ciioBa: ceavnenmayis 30opadgicenn, level-set memoo, anpiopna ingpopmayis npo gopmy.

Introduction. Images produced by X-ray, MRI, SEM can contain noisy, over-
lapping or partially occluded objects. Automatized analysis of such images usually
involves segmentation which in these conditions can be a very difficult task. One of the
most problematic configurations is the case when overlapping objects share the same
gray-scale levels of their pixels. In this case the task suffers from the lack of informa-
tion required to draw true boundary of the objects. To fulfill proper image object seg-
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mentation an additional information should be added to the final model. One of such
additions is prior information about the shape of the segmented object. In general case
such task is challenging. But in case of objects with comparatively simple shapes the
problem can be solved with less efforts.

General framework for image segmentation that accounts its shape consists of
some well-known image segmentation technique with additional term to account shape
information. Majority of image segmentation methods that allow such incorporation
are optimization based techniques. Fitting shape to the image object is in general a
complex problem. The main difficulty is the wide range of states that true shape of the
object can be in. More formally, the object in image can have different scales, angle of
rotation, position on the input image and possible variation of the shape. Finding all
those parameters may be difficult and usually is done in iterative fashion. Thus, it is
natural to incorporate shape information in well-known optimization based approaches.
In this work we consider the level-set (LS) approach as a basic framework for image
segmentation. It allows us to incorporate prior shape information as additional term in
minimization functional.

Wide range of LS formulations were developed over the years to solve different
image processing problems. Many researches successfully used the LS method in
different fields and applications. There are three major branches of the LS methods
with application to image segmentation: region-based models [1, 2], edge-based
models [3] and hybrid models [4]. Edge-based models evolve LS function based on
image edge information. Region-based models guide contour based on image region
features. And hybrid model combines region- and edge-based information for evolution
of the LS function.

One of the most known approaches for building shape prior terms is the one based
on PCA transform. The popularity of this transform for shape modeling is its simplici-
ty, low computational complexity and effectiveness for this particular task. Many papers
are dedicated to the incorporation of shape priors to the image segmentation techni-
ques. In [5] authors represented object shape with series of signed distance functions
(SDF). The PCA transform then was applied to them to construct a shape model. This
shape model was used in geometric active contour (GAC) [3] as a shape regularizing
term. The problem with this approach consists in nonlinearity of SDF space, thus it is
unable to reproduce all shapes with high precision. Nevertheless PCA based shape
modeling is successfully used by many researchers. To cope with nonlinearity of SDF
space in [6] the kernel PCA was used and authors concluded its superiority in compa-
rison to linear PCA as the additional term in the GAC model to capture more complex
behavior of shape variations. To overcome some limitations of PCA based approach in
[7-9] authors used distance measure directly on reference shapes and LS function as
shape prior. Also authors in [10, 11] used nonparametric approach of Kernel Density
Estimation for shape modeling as a technique that allows to model a wide range of
distributions.

The paper is organized as follows. In section Il introduction to LS methods is
presented. In section Il approach to shape priors is discussed. Numerical results are
provided in section IV.

The level-set methods for image segmentation. Let us represent a gray-level
image as Uy :Q— R, where Qe R? is image domain. LS method represents contour

of the image object as zero crossing of the level-set function (LSF).
The foundation for the LS approach was introduced by Mumford and Shah [1].

They considered segmentation of input image u, as finding such contour C that

separates image domain Q on a sub-set of disjoint regions. In [1] the problem was
formulated as minimization of the Mumford-Shah functional
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EM ,C)=p|Cl+A[|u—ug P dxdy+ [ |Vu[* dxdy, (1)
Q Q\C

where |C| represents the length of contour C, pu and A are constant weights and u is

a piecewise smooth approximation of image u, which is smooth inside each region
and is discontinuous only on the set of boundaries C . The first right-hand side term in
(1) regularizes the length of contour C. The second is the so called data term which
forces u be as close as possible to the given image uy. And the third term is the
smoothing term, which forces u be smooth everywhere in Q\C .

In [2] Chan and Vese simplified the Mumford-Shah functional and introduced its
variational LS formulation for images with two segments as the following energy:

E®Y (c1,C0. ) = [| VH () [+v | H (¢)dxdy +
Q Q

[ ug (%, y) — ¢ [* H ()dxdy + 2
Q

+ [ [ug(x,y) — ¢, [* (1= H (¢))dxdy ,
Q

where H () is the Heaviside function, ¢, and c, are constants and ¢(X,y) is a LS
function. In LS formulation contour C is represented by means of (X, y) whose zero-

level contour C = {(x, y)eQ: o(Xx,Y) =0} and it partitions the image domain into two
disjoint regions & ={(x,y): o(x,y) >0} and Q, ={(x,y): @(x,y) <0} . Model (2) is
a particular case of the Mumford-Shah functional with piecewise constant u that can
take only two values c¢; and c,, thus it assumes that image | can be approximated by
constants ¢ and ¢, in € and Q,, respectively. The first two terms in (2) with a
weight, regularizes the zero level contours, while the last two terms are the data fitting
terms. Thus image uy segmentation is achieved by finding the LSF ¢(x,y) and con-

stants ¢, and c, that minimize the energy F(c;,C,,¢). This model is called a

piecewise constant (PC) model.

The above models can be considered as a common framework for image segmen-
tation and edge detection, active contours and denoising problems. They represent re-
gion-based models as they approximate image regions.

The most known edge-based LS approach is GAC [3]

1
E®A¢(C) =2[|C'(s)| g( VI(C(s)) s, )
0

where g is a stopping edge-function g(| Vu, |):;. Minimization of

1+| VG, *uq |P
functional (3) leads contour C to the edges of segmented image thus trying to separate
object from the background.

The edge-based LS techniques are more stable to image intensity inhomogeneity
and image distortions. But the main disadvantages of the edge-based LS techniques are
sensitivity to initial conditions and boundary leakage in regions with weak object
boundaries. These problems usually lead to unsatisfactory final segmentation of the
input image. More satisfactory results can be achieved by enforcing some restrictions
on the behavior of contour C evolution. One of such restrictions is the introduction of
prior information about shape of the segmented object and directing the movement of
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the contour towards that desired shape. Incorporation of such prior knowledge is
discussed in the next section.

Shape priors. Construction of shape prior suggests the existence of training shapes
set. This set should contain shapes that reflect all possible shape variations of the object
of interest. Having such set one can built a proper parameterized mathematical model
of this shape and use it as additional term in segmentation models described in
previous section.

Inspired by [7], the shape model was constructed based on SDF representation of
training shapes with their consequent PCA processing. The PCA based shape model is
characterized by mean shape § and set of parameters b . Fitting the shape s=5 +Whb
to the given LSF ¢ also requires estimation of affine transformations: translation, scale

and rotation (t,,t,,m,0) . In [7] estimation of those parameters is obtained as the gra-

dient descent solution to correspondent functional minimization. But being mathema-
tically correct approach, its consistent performance require fine tuning of numerical
implementation and its convergence is rather slow. In this work we estimated those
parameters by a more direct approach [12] to avoid unnecessary computational
complexity and difficulties with fine tuning.

Let us consider shape function \y(s,h(x, y)) It depends on shape s and set of

transformations (tx,ty,m,e) represented by h(x,y). Shape function \y(s,h(x, y))

represents the closest distance from the point (x,y)eC, C :{(x, y) (X y):l}, to
the boundary of shape s.

Integration of \yz(s,h(x, y)) along contour C defines the shape similarity
functional which acts as shape prior and has the following form [7]

Eqnape = gj2 v (b.h(x,y))| Vo (e)dxdy . (4)
Applying the shape prior (4) the final image segmentation model is of the form
E = Eimage + *Eshape » ®)
where Eimage = E~C + 1| gH (¢)dxdy .
The gradient descent solution to (5) is as %Ilows
z—‘t" _5, ((p){—ug - div[g %) —kdiv(\pz (bh(x, y))%ﬂ . (6)

In most papers authors conduct simultaneous adjustment of all parameters at each
iteration. In our experiments we noticed that such approach not always produced de-
sirable results. For example, adjustment of shape parameters b from the start of evo-
lution process is not effective and in some cases can slow the convergence of the model.
It is more reasonable to start with mean shape S as initial and fix parameters b and at
the beginning adjust only translation, scale and rotation. Only when these parameters
change a little between iteration one can start updating parameters b . So it is proposed
to conduct optimization of shape parameters b after LS function ¢(x, y) and parameters

(ty,ty,m,6) reached their optimal values. Also adjustment of parameter A is very

important for final result. Larger values of A would force contour C toward the shape
s, which can be useful for partially visible objects, noisy images etc. But larger A also
restricts contour C from deviation from s to accurately adjust to the object edges.
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Majority of researchers adjust this parameter manually but it seems that adaptability of
A during segmentation process can be advantageous for successful convergence.

Experimental results. The model was tested on SEM fractographic images. The
task consisted in segmentation of certain inclusions of spherical form. The problem
arises when certain inclusions are overlapped with other parts of the steel structure. In
such cases successful segmentation cannot be achieved by exploiting of only gray-level
information.

Given that shape of the object expected to be circular, the shape model was built
on a set of training ellipses to allow us some deviation from the perfect circle.

Fig. 1a contains a test image of the object with initial contour C . As it can be seen
from Fig. 1a the object cannot be simply segmented based exclusively on pixel gray-
level intensity information because it coincides with the background and part of it
overlaps with vaguely visible border between them. Such case is a good example to
demonstrate the usefulness of prior shape information for image segmentation.

Illustration of the proposed approach: a — input image with initial contour; b — segmentation result
by the conventional model (3); ¢ — input image with initial contour and shape prior (dashed line);
d — segmentation result by the proposed model (6).

The presented experimental results are obtained by model (6) with parameters
p=1.0and A=0.9.

Fig. 1 (b) shows the segmentation result by the conventional model (3). As it can
be seen from obtained results the model converges to the boundaries that differ from
the object true size. Because the background and the object are partly overlapping there
is no any distinguishable border between the background and the whole object
segmentation process failed to segment objects properly.

Fig. 1c shows the initial contour and shape prior for model (6). Fig. 1d presents
the segmentation result by the model (6). Even though the part of the object is occluded
segmentation process managed to segment all true boundaries of the objects in a
desirable way.
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Conventional model (3) drives the evolution of contour C represented by ¢(x, y)

towards image boundaries regardless of the object of interest shape. Thus, in presence
of noise and occlusions contour C is likely to fail to find true object boundaries. The
additional shape term (4) improves evolution of LS function by forcing contour C
maintain its shape within certain boundaries.

CONCLUSION

In many practical applications it is not always possible to segment object of interest
based strictly on the image pixel intensity values. In such cases segmentation model
requires additional information for processing. In this paper shape priors as additional
mechanism to drive segmentation process were discussed. Provided with shape priors
information the original model produced better segmentation results in cases of object
occlusion, presence of noise and in cases where parts of the object gray-levels coincide
with the background. One can conclude that practical application of shape driven level-
set method for fractographic image segmentation can be very useful. As numerical
experiments show the use of such shape priors is well behaved for real image segmen-
tation. Obtained experimental results showed efficiency and practical value of usage of
the shape priors for difficult image segmentation tasks.

Acknowledgements. The author would like to thank Prof. Dr. Sci. O. Student
from the Department of diagnostics of corrosion-hydrogen degradation of materials
of H.V. Karpenko Physico-Mechanical Institute of the NAS of Ukraine for providing
fractographic images and help.

1. Mumford, D.; Shah, J. Optimal approximations by piecewise smooth functions and associated
variational ~ problems, Commun. Pure Appl. Math, 1989, 42, 5  577-685.
https://doi.org/10.1002/cpa.3160420503

2. Chan, T.; Vese, L. Active contours without edges IEEE Trans.Image. Process. Feb., 2001, 10(2),
266-277. https://doi.org/10.1109/83.902291

3. Caselles, V. R.; Kimmel, R.; Sapiro, G. Geodesic active contours, Int. J. Comput. Vis. Feb., 1997,
22(1), 61-79. https://doi.org/10.1023/A:1007979827043

4. Lankton, S. D.; Nain, A.; Yezzi; Tannenbaum, A. Hybrid geodesic region-based curve evolutions
for imagesegmentation, In Proceedings of the Medical Imaging 2007: Physics of Medical
Imaging; Hsieh, J.; Flynn, M. J.; Eds.; International Society for Optics and Photonics:
Bellingham, WA, USA, 2007, 6510, 65104U. https://doi.org/10.1117/12.709700

5. Leventon, M.; Grimson, W.; Faugeras, O. Statistical Shape Influence in Geodesic Active
Contours, In Proc. IEEE CVPR, 2000.

6. Dambreville, S.; Rathi, Y.; Tannenbaum, A. A Framework for Image Segmentation Using Shape
Models and Kernel Space Shape Priors, IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2008, 30(8), 1385-1399. https://doi.org/10.1109/TPAMI.2007.70774

7. Bresson, X.; Vandergheynst, P.; Thirau, J.P. A priori information in image segmentation: Energy
functional based on shape statistical model and image information, In Proc. IEEE Int. Conf.
Image Processing, 2003, 425-428.

8. Cremers, D.; Soatto, S. A pseudo-distance for shape priors in level set segmentation. In IEEE 2™
Int. Workshop on Variational, Geometric and Level Set Methods, N.Paragios (eds.), Nice, 2003, 169-176.

9. Cremers, D.; Osher, S.; Soatto, S. Kernel Density Estimation and Intrinsic Alignment for Shape
Priors in Level Set Segmentation, International Journal of Computer Vision, 2006, 69(3), 335-351.
https://doi.org/10.1007/s11263-006-7533-5

10. Kim, J.; Cetin, M.; Willsky, A. Nonparametric Shape Priors for Active Contour-Based Image
Segmentation, Signal Processing, 2007, 87(12), 3021-3044. https://doi.org/10.1016/
j.sigpro.2007.05.026

11. Erdil, E.; Yildirim, S.; Cetin, M.; Tasdizen, T. Mcmc shape sampling for image segmentation
with nonparametric shape priors, In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2016, 411-419. https://doi.org/10.1109/CVPR.2016.51

12. Cremers, D.; Osher, S. J.; Soatto, S. Kernel densityestimation and intrinsic alignment for
knowledge-driven segmentation: Teaching level sets to walk, In Pattern Recognition. Lecture
Notes in Computer Science, 2004, 3175, 36-44. https://doi.org/10.1007/978-3-540-28649-3 5

Received 18.09.2020

ISSN 0474-8662. Binoip i 06podka ingopm. 2020. Bun. 48 (124) 91


https://doi.org/10.1002/cpa.3160420503
https://doi.org/10.1109/83.902291
https://doi.org/10.1023/A:1007979827043
https://doi.org/10.1117/12.709700
https://doi.org/10.1109/TPAMI.2007.70774
https://doi.org/10.1007/s11263-006-7533-5
https://doi.org/10.1016/%20j.sigpro.2007.05.026
https://doi.org/10.1016/%20j.sigpro.2007.05.026
https://doi.org/10.1109/CVPR.2016.51
https://doi.org/10.1007/978-3-540-28649-3_5

