
ISSN 0474-8662. Information Extraction and Process. 2020. Issue 48 (124) 86 

UDC 004.932      https://doi.org/10.15407/vidbir2020.48.086 

USE OF OBJECT SHAPE PRIORS FOR FRACTOGRAPHIC  

IMAGE SEGMENTATION  

T. S. Mandziy 

H. V. Karpenko Physico-Mechanical Institute of the NAS of Ukraine, Lviv 

E-mail: teodor.mandziy@gmail.com 

An approach to efficient level-set model with shape priors for images segmentation is 

considered. The use of edge based level-set model in combination with principal component 

analysis (PCA) based shape priors for image segmentation is investigated. Shape priors are 

considered as a tool to cope with proper segmentation of overlapping or partially visible objects 

on input image. It is argued that in some cases consequent optimization of different groups of 

parameters can be advantageous in comparison to simultaneous optimization of all parameters. 

The approach was applied for segmentation of fractographic images obtained by scanning 

electron microscope (SEM). Experimental results for image segmentation using the level-set 

model with shape priors are presented. 
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ВИКОРИСТАННЯ АПРІОРНОЇ ІНФОРМАЦІЇ ПРО ФОРМУ ОБ’ЄКТІВ 

ДЛЯ СЕГМЕНТАЦІЇ ФРАКТОГРАФІЧНИХ ЗОБРАЖЕНЬ 

Т. С. Мандзій 

Фізико-механічний інститут ім. Г. В. Карпенка НАН України, Львів 

Розглянуто підхід до ефективної сегментації зображень моделями на основі level-set ме-

тоду з використанням апріорної інформації про форму. Необхідність ускладнення моде-

лей сегментації зображень використанням апріорної інформації про форму зумовлена 

особливістю фрактографічних зображень. До таких особливостей належать зашумленість 

зображення, часткова видимість і перекриття об’єктів на зображенні. Перелічені фактори 

часто унеможливлюють коректну сегментацію об’єкта, що базується на текстурних ха-

рактеристиках зображення, або значеннях градацій сірого точок зображень. Використан-

ня апріорної інформації про форму накладає обмеження на форму сегметна зображення, 

яким виділяється об’єкт на вхідному зображенні. Особливу роль такі обмеження відігра-

ють саме у місцях, де локалізація границі об’єкта є неоднозначною. У даній роботі дослі-

джено поєднання level-set моделі, що базується на використанні контурів зображень, з ви-

користанням апріорної інформації про форму на основі методу головних компонент для 

сегментації зображень. Цей підхід застосовано для сегментації фрактографічних зобра-

жень, отриманих за допомогою сканівного електронного мікроскопа. Як відомо, моделі 

на основі level-set методу, що складаються з кількох компонент, поєднюють ці компонен-

ти з вдповідними ваговими коецієнтами. Значення цих вагових коецієнтів і їх співвідно-

шення вибрано залежно від конкретної задачі сегментації. Введення додаткової компо-

ненти, зокрема апріорної інформації про форму об’єкта, вимагає ретельного вибору зна-

чень відповідних вагових коецієнтів для коректної сегментації об’єкта. Виявлено, що у 

певних випадках почергова оптимізація певних груп параметрів може мати перевагу над 

одночасною оптимізацією всіх параметрів моделі. Подано експериментальні результати 

сегментації реальних фрактографічних зображень сканівного електронного мікроскопа. 

Ключові слова: сегментація зображень, level-set метод, апріорна інформація про форму. 

Introduction. Images produced by X-ray, MRI, SEM can contain noisy, over-

lapping or partially occluded objects. Automatized analysis of such images usually 

involves segmentation which in these conditions can be a very difficult task. One of the 

most problematic configurations is the case when overlapping objects share the same 

gray-scale levels of their pixels. In this case the task suffers from the lack of informa-

tion required to draw true boundary of the objects.  To  fulfill  proper image object seg- 
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mentation an additional information should be added to the final model. One of such 

additions is prior information about the shape of the segmented object. In general case 

such task is challenging. But in case of objects with comparatively simple shapes the 

problem can be solved with less efforts. 

General framework for image segmentation that accounts its shape consists of 

some well-known image segmentation technique with additional term to account shape 

information. Majority of image segmentation methods that allow such incorporation 

are optimization based techniques. Fitting shape to the image object is in general a 

complex problem. The main difficulty is the wide range of states that true shape of the 

object can be in. More formally, the object in image can have different scales, angle of 

rotation, position on the input image and possible variation of the shape. Finding all 

those parameters may be difficult and usually is done in iterative fashion. Thus, it is 

natural to incorporate shape information in well-known optimization based approaches. 

In this work we consider the level-set (LS) approach as a basic framework for image 

segmentation. It allows us to incorporate prior shape information as additional term in 

minimization functional. 

Wide range of LS formulations were developed over the years to solve different 

image processing problems. Many researches successfully used the LS method in 

different fields and applications. There are three major branches of the LS methods 

with application to image segmentation: region-based models [1, 2], edge-based 

models [3] and hybrid models [4]. Edge-based models evolve LS function based on 

image edge information. Region-based models guide contour based on image region 

features. And hybrid model combines region- and edge-based information for evolution 

of the LS function. 

One of the most known approaches for building shape prior terms is the one based 

on PCA transform. The popularity of this transform for shape modeling is its simplici-

ty, low computational complexity and effectiveness for this particular task. Many papers 

are dedicated to the incorporation of shape priors to the image segmentation techni-

ques. In [5] authors represented object shape with series of signed distance functions 

(SDF). The PCA transform then was applied to them to construct a shape model. This 

shape model was used in geometric active contour (GAC) [3] as a shape regularizing 

term. The problem with this approach consists in nonlinearity of SDF space, thus it is 

unable to reproduce all shapes with high precision. Nevertheless PCA based shape 

modeling is successfully used by many researchers. To cope with nonlinearity of SDF 

space in [6] the kernel PCA was used and authors concluded its superiority in compa-

rison to linear PCA as the additional term in the GAC model to capture more complex 

behavior of shape variations. To overcome some limitations of PCA based approach in 

[7–9] authors used distance measure directly on reference shapes and LS function as 

shape prior. Also authors in [10, 11] used nonparametric approach of Kernel Density 

Estimation for shape modeling as a technique that allows to model a wide range of 

distributions. 

The paper is organized as follows. In section II introduction to LS methods is 

presented. In section III approach to shape priors is discussed. Numerical results are 

provided in section IV. 

The level-set methods for image segmentation. Let us represent a gray-level 

image as 0 :u  , where 2  is image domain. LS method represents contour 

of the image object as zero crossing of the level-set function (LSF). 

The foundation for the LS approach was introduced by Mumford and Shah [1]. 

They considered segmentation of input image 0u  as finding such contour C  that 

separates image domain   on a sub-set of disjoint regions. In [1] the problem was 

formulated as minimization of the Mumford-Shah functional 
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where C  represents the length of contour C ,   and   are constant weights and u  is 

a piecewise smooth approximation of image 0u  which is smooth inside each region 

and is discontinuous only on the set of boundaries C . The first right-hand side term in 

(1) regularizes the length of contour C . The second is the so called data term which 

forces u  be as close as possible to the given image 0u . And the third term is the 

smoothing term, which forces u  be smooth everywhere in \ C . 

In [2] Chan and Vese simplified the Mumford-Shah functional and introduced its 

variational LS formulation for images with two segments as the following energy: 
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where ( )H   is the Heaviside function, 1 c  and 2 c  are constants and ( , )x y  is a LS 

function. In LS formulation contour C  is represented by means of ( , )x y whose zero-

level contour  ( , ) :  ( , ) 0C x y x y     and it partitions the image domain into two 

disjoint regions  1 ( , ) :  ( , ) 0x y x y     and  2 ( , ) :  ( , ) 0x y x y    . Model (2) is 

a particular case of the Mumford-Shah functional with piecewise constant u  that can 

take only two values 1 c  and 2 c , thus it assumes that image I can be approximated by 

constants 1 c  and 2 c  in 1  and 2 , respectively. The first two terms in (2) with a 

weight, regularizes the zero level contours, while the last two terms are the data fitting 

terms. Thus image 0u  segmentation is achieved by finding the LSF ( , )x y  and con-

stants 1 c  and 2 c  that minimize the energy 1 2( , , )F c c  . This model is called a 

piecewise constant (PC) model. 

The above models can be considered as a common framework for image segmen-

tation and edge detection, active contours and denoising problems. They represent re-

gion-based models as they approximate image regions. 

The most known edge-based LS approach is GAC [3] 
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functional (3) leads contour C  to the edges of segmented image thus trying to separate 

object from the background. 

The edge-based LS techniques are more stable to image intensity inhomogeneity 

and image distortions. But the main disadvantages of the edge-based LS techniques are 

sensitivity to initial conditions and boundary leakage in regions with weak object 

boundaries. These problems usually lead to unsatisfactory final segmentation of the 

input image. More satisfactory results can be achieved by enforcing some restrictions 

on the behavior of contour C  evolution. One of such restrictions is the introduction of 

prior information about shape of the segmented object and directing the movement of 
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the contour towards that desired shape. Incorporation of such prior knowledge is 

discussed in the next section. 

Shape priors. Construction of shape prior suggests the existence of training shapes 

set. This set should contain shapes that reflect all possible shape variations of the object 

of interest. Having such set one can built a proper parameterized mathematical model 

of this shape and use it as additional term in segmentation models described in 

previous section. 

Inspired by [7], the shape model was constructed based on SDF representation of 

training shapes with their consequent PCA processing. The PCA based shape model is 

characterized by mean shape s and set of parameters b . Fitting the shape s s Wb   

to the given LSF   also requires estimation of affine transformations: translation, scale 

and rotation ( , , , )x yt t m  . In [7] estimation of those parameters is obtained as the gra-

dient descent solution to correspondent functional minimization. But being mathema-

tically correct approach, its consistent performance require fine tuning of numerical 

implementation and its convergence is rather slow. In this work we estimated those 

parameters by a more direct approach [12] to avoid unnecessary computational 

complexity and difficulties with fine tuning. 

Let us consider shape function   , ,s h x y . It depends on shape s  and set of 

transformations  , , ,x yt t m   represented by  ,h x y . Shape function   , ,s h x y  

represents the closest distance from the point  ,x y C ,     , | , 1C x y x y   , to 

the boundary of shape s .  

Integration of   2 , ,s h x y  along contour C  defines the shape similarity 

functional which acts as shape prior and has the following form [7] 

   2 , , | | ( )shapeE b h x y dxdy



     . (4) 

Applying the shape prior (4) the final image segmentation model is of the form  

 image shapeE E E   , (5) 

where  ( )GAC
imageE E gH dxdy



   .  

The gradient descent solution to (5) is as follows 
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In most papers authors conduct simultaneous adjustment of all parameters at each 

iteration. In our experiments we noticed that such approach not always produced de-

sirable results. For example, adjustment of shape parameters b  from the start of evo-

lution process is not effective and in some cases can slow the convergence of the model. 

It is more reasonable to start with mean shape s  as initial and fix parameters b  and at 

the beginning adjust only translation, scale and rotation. Only when these parameters 

change a little between iteration one can start updating parameters b . So it is proposed 

to conduct optimization of shape parameters b  after LS function ( , )x y and parameters 

( , , , )x yt t m   reached their optimal values. Also adjustment of parameter   is very 

important for final result. Larger values of   would force contour C  toward the shape 

s , which can be useful for partially visible objects, noisy images etc. But larger   also 

restricts contour C  from deviation from s  to accurately adjust to the object edges. 
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Majority of researchers adjust this parameter manually but it seems that adaptability of 

  during segmentation process can be advantageous for successful convergence.  

Experimental results. The model was tested on SEM fractographic images. The 

task consisted in segmentation of certain inclusions of spherical form. The problem 

arises when certain inclusions are overlapped with other parts of the steel structure. In 

such cases successful segmentation cannot be achieved by exploiting of only gray-level 

information. 

Given that shape of the object expected to be circular, the shape model was built 

on a set of training ellipses to allow us some deviation from the perfect circle. 

Fig. 1a contains a test image of the object with initial contour C . As it can be seen 

from Fig. 1a the object cannot be simply segmented based exclusively on pixel gray-

level intensity information because it coincides with the background and part of it 

overlaps with vaguely visible border between them. Such case is a good example to 

demonstrate the usefulness of prior shape information for image segmentation. 

 
Illustration of the proposed approach: a – input image with initial contour; b – segmentation result 

 by the conventional model (3); c – input image with initial contour and shape prior (dashed line);  

d – segmentation result by the proposed model (6). 

The presented experimental results are obtained by model (6) with parameters 

1.0   and 0.9  . 

Fig. 1 (b) shows the segmentation result by the conventional model (3). As it can 

be seen from obtained results the model converges to the boundaries that differ from 

the object true size. Because the background and the object are partly overlapping there 

is no any distinguishable border between the background and the whole object 

segmentation process failed to segment objects properly. 

Fig. 1c shows the initial contour and shape prior for model (6). Fig. 1d presents 

the segmentation result by the model (6). Even though the part of the object is occluded 

segmentation process managed to segment all true boundaries of the objects in a 

desirable way.  
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Conventional model (3) drives the evolution of contour C  represented by ( , )x y  

towards image boundaries regardless of the object of interest shape. Thus, in presence 

of noise and occlusions contour C  is likely to fail to find true object boundaries. The 

additional shape term (4) improves evolution of LS function by forcing contour C  

maintain its shape within certain boundaries. 

CONCLUSION 

In many practical applications it is not always possible to segment object of interest 

based strictly on the image pixel intensity values. In such cases segmentation model 

requires additional information for processing. In this paper shape priors as additional 

mechanism to drive segmentation process were discussed. Provided with shape priors 

information the original model produced better segmentation results in cases of object 

occlusion, presence of noise and in cases where parts of the object gray-levels coincide 

with the background. One can conclude that practical application of shape driven level-

set method for fractographic image segmentation can be very useful. As numerical 

experiments show the use of such shape priors is well behaved for real image segmen-

tation. Obtained experimental results showed efficiency and practical value of usage of 

the shape priors for difficult image segmentation tasks. 
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