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APPLICATION OF YOLOX DEEP LEARNING MODEL
FOR AUTOMATED OBJECT DETECTION ON THERMOGRAMS
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A method of automating the data analysis of therimelging systems in the field of safety
control is proposed. It has been established tidtyt video surveillance technologies have a
number of disadvantages that can be eliminatedsmguhermal imaging cameras. Analysis of
infrared images can be automated in order to regaceentage of false positives and increase
the efficiency of thermal imaging video surveillansystems. A high level of interference,
unclear object contours and low image resolutian raal problems in automating the object
detecting process on thermographic images. Thé&itmaal and promising methods of thermo-
grams analysis and approaches that can lead téingrehe automated thermal video sur-
veillance systems are discussed. It is proposedéodeep learning, which in recent years has
proven itself as an effective way of image analy$tse study is based on review of existing
works, as methods of automating the object detegtiocess on thermograms. It is proposed to
use YOLOX as a deep learning model, which has drieeobest quality indicators and speed
processing input parameters on standard dataselR’sFThermal Starter annotated set of
thermal images is used to train the model, whidbhevaf mAP at the level of 55% is obtained
according the results of model training for recagrg 4 classes of objects on thermograms.
Different advantages and disadvantages of this ldprent are analyzed. Ways of further
improvement of the neural network method of autéomabf thermal imaging safety control
systems have been determined.
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3ACTOCYBAHHS MOJEJII T'TUBUHHOI'O HABYAHHSI YOLOX IJIs1
ABTOMATHU30BAHOI'O JETEKTYBAHHS OB’ €EKTIB HA TEPMOI'PAMAX

I. O. Ckaaguukos, A. C. Momort, P. M. T'anaran, I'. A. boraan, K. M. Tpouiok
KuiBcbknii mosirexnivynmii incruryr im. Iropsa Cikopebkoro, Kuis

3anporoHOBAaHO METO/I aBTOMATH3allii aHali3y JaHUX TEIUIOBI3IMHUX CHCTEM Y raiy3i KOHTPO-
o Oe3nexu. BeraHoBICHO, 1110 HA CHOTOAHI TEXHOJIOTI BiZIEOCIIOCTEPEKEHHS MAIOTh HU3KY He-
NIOJTIKiB, SIKKX MOXKHA 1M030yTHCh, BUKOPUCTOBYIOUH TEILIOBI3iitHI kamepu. J{is 3HMKeHHs Bin-
COTKIB XHOHHX CITPAIIOBaHb Ta ITiIBUIICHHS €()EKTUBHOCTI TEILIOBI3IiTHUX CUCTEM BiJICOHATIIS-
Iy aHaii3 iH(padepBOHMX 300pakeHb MOXHA aBTOMaTrn3yBaTH. HenonikoM B aBTOMaTH3aril
JIETEeKTyBaHHsI 00 €KTiB Ha TepMorpadiqHux 300paKeHHSIX € BUCOKHMH PIBEHb 3aBaj, HEUITKi
KOHTYpH 00’ €KTiB, HU3bKA PO3/ALIBPHA 3/1aTHICTH 300paxkeHb. Po3rsiHyTO TpaaumiiiHi Ta mepc-
MeKTUBHI METOIM aHaNi3y TepMOTpaM Ta IMiAXOAW IO CTBOPCHHS aBTOMATH30BAHHX CHCTEM
TEIUIOBOTO BijeoHaraaay. Ha ocHOBI oy iCHYIOUMX Ipalb SIK METOJ aBTOMaTH3aLlii JeTek-
TyBaHHS 00’ €KTIB Ha TepMOrpamax 3alpOIIOHOBAHO BHKOPHUCTOBYBAaTH INIMOWHHE HABYaHHS,
sIKE 3a OCTaHHI POKH 3apeKOMEH/IyBalio ceOe sk e(eKTUBHUIT 3acib aHamizy 300paxeHb. 3a Mo-
[ienb TIIMOMHHOTO HaBYaHHs 3ampornoHoBaHo BxwuBatn YOLOX, sika Mae onHi 3 HalKpammx
MOKA3HMKIB SIKOCTI Ta MIBUAKOCTI 0OpOOJICHHS BXiJHUX IapaMeTpiB Ha CTaHJApTHUX Habopax
naHux. J{yis HaBY4aHHS MOJEINi BUKOPHCTAHO aHOTOBaHHU HaOip TeroBuX 300paxens Thermal
Startersing kommnanii FLIR. 3a pesynpraramn HaBU4aHHS MOJENi AJS PO3IMi3HABAHHS YOTHPHOX
KJaciB 00’ €KTiB Ha TepMorpamax OTpuMaHo 3HadeHHsS MAP Ha piBHI 55%. [IpoanamnizoBano
repeBary Ta HeJOJIKH 1€l po3poOku. Bu3HaueHO HUISIXH MOANBIIOTO BIOCKOHAICHHS HEipo-
MEpEXEBOI0 METOly aBTOMATU3aLlil TEIUIOBI3IHHUX CHCTEM KOHTPOJIIO Oe3MeKu.

Kirouosi cnoBa: mennogizitinuii 6ioeonaensao, enubunne Hag4anHs, 0emexkmy8anHs 00’ €kmia.

Introduction. Nowadays video surveillance technologies are adexst every-
where in different ways. They are especially wideded in the field of security control.

0 I. O. Skladchykov, A. S. Momot, R. M. Galagan, HA. Bohdan, K. M. Trotsiuk, 2022
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In recent years, it has already become increasitmylymon practice to rely on thermal
imaging equipment to achieve the best results éompeter protection, object identifi-
cation, and other similar security tasks. Therm@ders give a “different” view of the
world. Interpreting thermal images is not easyaAgsult, human operator becomes an
even more critical element in the threat detectioain. A human in a thermal surveil-
lance system imposes limitations that must be takenaccount. The human eye is not
perfect and has limitations on the amount of infation it can perceive [1, 2]. In ad-
dition, it is difficult for a human to provide higduality continuous supervision of the
territory. Therefore, the task of automating datalgsis of thermal imaging video
surveillance systems is becoming more and morgaete

Analyzing thermal images for meaningful informatisra challenging task. There-
fore, digital processing of thermograms is consideas a very important area of
research for their automated analysis and inteapogt There are many traditional
approaches to perform image processing, but aalifiotelligence plays an important
role in performing automation [3].

In recent decades artificial intelligence methodsehfirmly established themsel-
ves as possible alternative math tools. They adelywiused in many information sys-
tems. Special attention should be paid to deemilegumethods, which are most effec-
tive in signal processing, automatic control andge analysis That is why the use of
artificial intelligence is making great interestaameans of automating object detection
on thermal images. In particular, the usage of deaming will reduce the frequency
of false alarms and increase the overall religb#ihd efficiency of thermal imaging
safety control systems, minimizing human role inisien-making process [4].

Review of previous studiesThermal security cameras work reliably in places
with insufficient lighting and poor visibility. Figl shows a comparison of visible and
infrared images. Image courtesy by FLIR companykKiag at the image we can see
that no important details are visible in visiblesfpum. In particular, it is impossible to
recognize a person due to insufficient lightingisidefect is not present on the thermo-
gram.

Fig. 1. Comparison of the image in visib& &nd infraredlf) spectrum.

Another advantage of thermal surveillance is thiitalio ignore most of the
visual camouflage. For example, thick layer leases often be found near offices and
warehouses. In addition, thermal surveillance camean be equipped with intelligent
sensors and advanced analytics technology, whithhelp to reduce the number of
false alarms. Finally, thermal imaging-based systame often cheaper to install and
operate in the long term [5].

In study [6], the authors considered the historg@felopment and latest achieve-
ments in the field diagnostics of malfunctions ofmer equipment based on infrared
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thermography. This work indicates that the rapittéase in the amount of equipment
in electrical networks requires the replacemenrtwhan labor with automatic and in-
telligent technologies. With appearance of deepvords, intelligent identification of
equipment defects on thermal images has becomeaisiagly popular recently. This
method, using a training data set, provides fuliipmatic diagnostic detection features,
without human intervention. The small resolutionirdfared images is a main disad-
vantage of such a system. This prevents widespusadf intelligent diagnostics of
energy equipment using thermal imagers. It is psedoto create an open infrared
images database to solve this problem. It will [&adn improvement in the efficiency
algorithms for processing thermographic imagesguaitificial intelligence methods.

The authors of the work [7] conducted an experimegtit simulation of an active
thermal field. Infrared images of the object withhigh level of interference were
obtained. This work considered the usage of varinethods for processing thermo-
grams, such as: wavelet analysis, principal compoaealysis, and artificial neural
networks. It has been established that the metbbdggital thermograms processing
allow us to improve the quality of an image compate optimal thermogram, to
increase the signal-to-noise ratio and, as a tethdtreliability of testing. Modeling
showed that the main problem of most methods is hoige-resistance. The use of
neural networks for thermal field data analysisveba higher efficiency compared to
the principal component analysis method. The dffeness of deep learning has been
experimentally proven, which is confirmed by qutaitve characteristics.

Work [8] describes a cost-effective solution foingsa wireless infrared sensor
device that can be used in intelligent systemspfotection of private areas. This ap-
proach uses a new high-resolution infrared sensiiraplements the concept Internet
of Things (IoT) architecture, which is a goal otitstry 4.0. Authors of this develop-
ment propose to create a network of 10T deviceswdmitor physical parameters in a
smart house and control the security of the tewritti is proposed to develop appro-
priate automated notification and response prograased on deep learning. This
approach has proven itself as an effective wayeted objects in images in automatic
mode. In particular, this development can be usghén it is necessary to detect pre-
sence of person by thermal imaging systems.

The research [9] examines the prospects of usiagmil imaging systems in
safety control tasks. Ways of developing and irgirepefficiency of thermal imaging
systems are analyzed. Along with the improvementechnical parameters of heat
engineering equipment, automation of thermal daglysis is a promising direction.
Due to a number of advantages, the usage of cativadll neural networks is proposed
as a method of automating the thermal images psoapdt was decided to artificially
increase the data volume by applying augmentatioorder to improve the perfor-
mance system. The approach described by the autiaate it possible to automatically
detect and recognize the object class on thermadjés with an accuracy of 97.92%.
The disadvantage of this system is a detectiomlyf @ane object in the image, which is
impractical for use in thermal video surveillanggstems, because more than one
important object for recognition can be locatedseaure territory at the same time.

As it is known, there is a large number of deeprieg models [10]. The ways to
optimize the neural network architecture are liesifl. It leads to the task of analyzing
the possibility of using different types of deemrl@ng models in thermal imaging
security control systems. The speed and qualily déep learning model is becoming
increasingly important for computer vision. The @afl 1] presents various variants of
neural network architecture for object detectiolecaEfficientNet. Several key archi-
tecture optimizations are proposed to improve ffieiency of the models. First, a pro-
found bidirectional feature pyramid network (BiFPN)proposed, which allows easy
and fast multi-scale feature fusion. Next a comensive scaling method is created. It
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uniformly scales the resolution, depth, and widthhe model. Increasing the scale of
the model in any one dimension (width, depth, rgsmh) can improve accuracy, but
when the model becomes too large, the improvemesxtcuracy is not obvious.

The latest modification, named EfficientDet, is idasd for object detection in
images and consists of EfficientNet as a base hiclwa BiFPN functional pyramidal
feature detection unit is added. This network shawsean Average Precision (mAP)
of up to 46% at a data processing rate of abodita86es per second on the MS COCO
dataset. Such characteristics are a good comhinafispeed and accuracy of object
recognition. The disadvantage of this modificai®a large number of functional blocks.
Accordingly, they lead to an increase in the nunpmmameters. This model requires
significant resources to process the input parametecreasing the requirements for
computing power and data transfer speed in thendderideo surveillance system.

Objectives of researchBased on the studies mentioned above, it can henesk
that the detection of objects in the infrared ramgebe more informative, qualitative
and practical than in the visible spectrum. It ¢enconcluded that thermal imaging
cameras provide powerful new evaluation capalslif&r video surveillance systems.
Operating individually or in combination with videzurveillance cameras, thermal
imagers give security operators much more dataleéatify and track intruders in a
protected area. However, today there is a probteohoosing an effective method of
automating the process of thermal image analysisgapecially — object detection.

To develop an automated object detection systeorder to solve this problem
the use of deep learning is proposed. This shaad to the increase in the informati-
veness and reliability of the operation of thermideo surveillance systems, as well as
to the reduction of the influence of the systemrafme on decision-making. The pur-
pose of this work is to implement a deep learnirgleh for detecting objects on ther-
mal images. Taking into account the proven researdhis planned to create a software
for automated analysis data from infrared camesasl fior security control. In order to
reduce the percentage of false positives, suclstarsyshould detect objects in images
with high reliability, have significant noise-retsince and high operation speed. This
requires choosing the optimal deep learning modelusing a representative dataset.

Description of the training dataset.To train the deep learning model, it is sug-
gested to use Thermal Starter dataset providetdd¥ IR company. This is a ready-
made annotated set of thermal images for trainimd)\alidating neural networks for
object detection. The image was obtained usingartal imaging camera installed on
a car. The dataset contains a total 14,452 annbtagzmal images, including 10,228
images taken from short videos and 4,224 images &aontinuous 144-second video.
The resolution of thermal images is 640640 pix&lse videos were shot under the
normal clear sky conditions, both during a day andght. Human annotators marked
four categories of objects, namely: person, bicyedes and dogs. The MS COCO label
vector was used for numbering the classes [12].

Annotators made bounding boxes around objectgyhtds possible. Tight boun-
ding boxes that let through small parts of the scihjsuch as limbs, were preferred
over wider boxes. Personal accessories were nhidied in the restrictive bounding
boxes on people. Heads and shoulders were a hmgfwity for boxing than other
body parts of humans and dogs. Minimal licenseeéir was applied to all images to
make them illegible.

Obtained dataset of experimental images was dividedtwo subsets, namely
training (8862 samples) and validation (1366 sag)plEraining set is actually used for
training the network; validation set serves to &eliee hyperparameters of the network
in the learning process.

Implementation of deep learning modelPython programming language is used
for effective work with neural networks. The adwagd of this language is primarily
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the existence of a large number of libraries treateha wide set of tools for creating
artificial intelligence models and data analysisirg this language, it is much easier to
cope with the tasks of image analysis and visuaimdyzed data. The PyTorch frame-
work was chosen to implement the deep learning inddes framework includes
many different tools for creating neural networkampared to other tools, models
based on PyTorch have a higher operating speed.

An urgent and important task is to determine aechitre of deep network, which
will allow us to detect the object with the greatediability. Since modern infrared
cameras do not have a high frame rate, the calonlgpeed of the deep learning model
takes a back seat. However, for real-time monitprifata processing frequency should
not be lower than 20-25 frames per second. Thisnfast be taken into account when
choosing a suitable model for object recognitionadidition, the task of object detec-
tion in infrared images is complicated by the loetadl thermal imprints of these
objects, which is related to physical featuresatfire infrared radiation. Therefore, the
deep learning model should be generally generaézaid have high adaptability.

To assess the quality of object detection modeBP rmetric is used — an indi-
cator of the average correctness of recognitiovaabus object classes. This indicator
calculates the average probability of correct amsvire the range from O to 1 for all
object classes that the model can recognize. Fdr eass, average accuracy of recog-
nition (Average Precision) is defined as the anedeu Precision-Recall curve. Higher
the value of this indicator, fewer false recogmtionodel performs on the test data.

Today, YOLO (You Only Live Once) is considered a® @f the most promising
models for object detection. Its main feature igobdetection in one data pass. There
are no explicit loops in the YOLO architecture, efhimakes network fast. YOLO uses
a grid of predefined windows — areas in which otsjeece classified. On the MS COCO
dataset, modern YOLO modifications show up to 51r@32d° at a data rate of up to 60
frames per second. Networks with this architecareeamong the fastest in the object
detection task, which makes them promising foraseart of real-time thermographic
systems.

This model has many different modifications, sushY®DLOv5, YOLOX and
others. The work [13] describes in detail the défece between them, their advantages,
disadvantages and main parameters. Having anabitespects, YOLOX-M model
was chosen, which is considered balanced in tefntisecaverage accuracy of object
recognition, speed and a number of model parameY&@sOX object detector is a
very interesting addition to YOLO family.

YOLOX detector, released in July 2021, switchedato anchor-less approach,
which differs from previous YOLO networks. This nebdncludes 25.3 million para-
meters. On the test dataset, mAP indicator of wuariobject classes from the MS
COCO set is 46.4%. YOLOX is prospective for sevgedrs ahead, as it allows object
recognition on video with a frequency of 81 frarpes second. This is even an excess
— the frame rate in the most modern thermal imagysiems does not exceed 40 frames
per second, and human eye does not need more @Haantes per second for comfort.
Fig. 2 shows a simplified general architecture QfLYDX-M neural network head.

Authors of [14] have made prototypes of standard.®® models freely avai-
lable and presented small aspects for working itAnalyzing architecture, it can be
seen that a fully connected convolution is firstdiso reduce the feature extraction
pyramid (FPN) based channel width to 256, and thenparallel branches with two
fully connected convolutions each are added toesalassification tasks (Cls.) and
regression (Reg.) tasks in the form of bounding pi@diction around objects, respec-
tively. loU branch is added to regression and usegktimate presence of object in the
predicted bounding box. IoU (Intersection-Over-Uniparameter is a metric used to
assess reliability of bounding box detection.
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Fig. 2. Architecture of the head YOLOX-M network.

During training, the loss functions cls_loss (measucorrect classification of
each predicted bounding box: each box can contaiobgect class or “background”)
and total_loss (total loss of the model) [15] wased. The loss functions on training
set are presented in Fig. 3.
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Fig. 3. Loss function by classe® @nd overall loss functiorb) on the training data set.

traip/step train/step
T T

For this model, values of width 0.75 and depth @w&re experimentally selected,
which achieved most optimal results in terms ofagahquality criterion. The total
number of training objects presented in one batak ®gual to 64, and training took
place on one core of system for 50 epochs. TheUSdctivation function was used in
this development.

The YOLOX-M model uses data augmentation technigoesnprove training
outcomes. With help of augmentation, each traimngge was randomly modified in
order to increase the representativeness of dgte8etThe following augmentation
parameters are selected: flip probability = 0.59rdes = 10.0; translate = 0.1; mosaic
scale = (0.1, 2); mixup scale = (0.5, 1.5); she@rG=

A graph of training results on the validation datas shown in Fig. 4. As can be
seen, a larger number of epochs would lead to @mitg of the model. The mAP
value on validation sample reaches a maximum ¢ 8t30U of 50%. The processing
speed of one image was 22 ms, which corresponddrequency of about 45 frames
per second.
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Fig. 4. Value of mAP on the validation sample.

Results.An example of the model operation is shown in Bigt can be seen that
the system detects existing objects in the imagie quell. In particular, positions and
boundaries of cars and people present in the fammeorrectly defined. At the same
time, one false positive can be noticed, sinceettage actually only 3 people in the
image, not 4. However, this can be filtered by reimg all frames with objects whose
detection accuracy is below some threshold.

It is worth noting that for the naked human eyes itifficult to immediately see
details in thermal image. According to subjectivaireates, time to recognize all
objects on a given frame would be more than 22farswhich the model solved this
task. This once again confirms the importance ® ars automated data analysis for
increasing the effectiveness of object detection.

Fig. 5. An example of the program operation on desa.

After training the model, quality of object detectiwas assessed using various
metrics on the validation set. Table 1 shows tHaegof the obtained metrics. It can
be concluded that the best results according torafee Precision indicator are
achieved with an loU value of 0.50. Mean of Averdyecision in the range of loU
from 0.50 to 0.95 is lower, because of increasiaguirements for reliability in
bounding boxes detection around objects leads ssing data. In a security control
task, missing an object has more negative consegaetihan false detection. This
should be taken into account when setting loU tiwlesduring model setup.

Table 2 shows the Average Precision and Averag@lRealues for each object
class. After analyzing data, we can pay attentoretatively small values of metrics
for the dogs and bicycle classes. This drawba@dssociated with a small number of
thermal images of these classes in the training slat. That is, classes were not pro-
perly balanced by the authors of the dataset. ddmsbe explained by the fact that dogs
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and bicycles are less common on city streets thas and pedestrians. When using a
larger volume of representative data for modehirgj, the quality of the indicators
system can be significantly improved. This may benaportant task for further deve-
lopments.

Table 1. Average Precision and Average Recall of theadel

Metric loU Result
0.50 0.539
Average Precisior}  0.75 0.276
0.50:0.95| 0.430
Average Recall 0.50:0.95 0.533

Table 2. Average Precision and Average Recall by class

Class | Average Precision, % Average Recall| %
person 55.11 59.40
bicycle 27.80 46.54

cars 65.95 70.01

dogs 12.30 31.29

This model showed a better result of object cl&sognition than YOLOX-M
presented in [13]. In the mentioned study, a s@nafes of visible spectrum was used.
For comparison, the mAP value of the mentioned vimk464 at loU = 0.5, while for
thermal images this indicator is 0.539. As a cosioly, the use of thermal images to
detect objects on city streets is more effectivd@sTs explained by greater contrast of
thermal objects and independence of result onlitmaination level. Object detection
in the visible spectrum is faster than in infraféd ms vs. 22 ms, respectively). Ho-
wever, for modern thermal imaging systems, suchfarence is not significant, espe-
cially considering obtained advantage in deteat@iability.

Disadvantage of this system is long training oraiatng of the model for deter-
mination of the specific objects classes, whiclunexg large computing resources. The
large weight of model does not allow it to be uskmectly on the basis of thermal
imager itself. This leads to the need to use ofi¢cloomputing or transfer data to a
separate device for further processing.

A small training database can lead to low-qualigining of the network and
erroneous operation system, as well as omissi@ofe object classes in the image.
To solve this issue, it is promising to create reglel database of annotated thermal
images in MS COCO format.

CONCLUSIONS

The advantages of using thermal imaging systems wideo cameras visible
spectrum in video surveillance technologies wevestigated. The current situation of
thermal video surveillance systems was analyzedd&edtions for their improvement
were determined. Taking into account the technoldgievelopment of thermal ima-
ging devices, automation of object detection onrtia images is a promising direc-
tion. For this, a deep learning model was develdpethe automated object detection
in thermal images on training dataset. To imprdwe efficiency of object detection
among existing deep learning models, the latest 1M architecture was chosen.
This model has a high speed (up to 45 frames memsg and mAP value of 0.539 at
loU = 0.5 based on experimental data. The propeeéidiare system showed a possi-
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bility of using thermal images to increase reli@pibf object detection in comparison
with similar models that work with images in theible spectrum.

In the nearest future it is possible to use a ladgeabase training data to obtain
better system of quality indicators. It has beenfiomed that the use of intelligent data
analysis systems in thermal imaging security corggstems allows us to improve
speed of threat recognition, reduce proportion al$ef positives due to subjective
factor. It will be also possible to avoid the ndedround-the-clock monitoring of the
territory by a human. Optimization of existing atelvelopment of new deep learning
models for solving the tasks of automated objetéam®mn on thermal images is a pro-
mising direction for development of security syssadmthe coming years.
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